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Abstract: The sodiation of substituted acrylonitriles and
alkenyl sulfides in a continuous flow set-up using NaDA
(sodium diisopropylamide) in EtNMe2 or NaTMP (sodium
2,2,6,6-tetramethylpiperidide)·TMEDA in n-hexane provides
sodiated acrylonitriles and alkenyl sulfides, which are subse-
quently trapped in batch with various electrophiles such as
aldehydes, ketones, disulfides and allylic bromides affording
functionalized acrylonitriles and alkenyl sulfides. This flow-
procedure was successfully extended to other acrylates by using
Barbier-type conditions.

The metalation of unsaturated nitriles and sulfides is an
important synthetic procedure.[1] After quenching with vari-
ous electrophiles, highly functionalized unsaturated products
are obtained, which may be useful building blocks for
biologically active heterocycles and natural products.[2] The
batch-metalation of alkenyl nitriles or sulfides with lithium
bases is often complicated due to competitive allylic lithia-
tions.[3] The use of stronger, more polar bases like sodium or
potassium amides may avoid such limitations. However, the
sodiation of such unsaturated compounds is much less
explored.[4] Moreover, the use of sodium organometallics is
of high interest due to the low price, high abundancy and low
toxicity of sodium salts.[5] Recently, arylsodium compounds
have been prepared by Collum using NaDA (sodium diiso-
propylamide) as deprotonating agent[4e,6] and by Asako and
Takai, who have investigated the utility of arylsodiums in
catalytic cross-couplings.[7] Yoshida, Ley, Organ and others
have demonstrated a high functional group tolerance per-
forming challenging metalations in a continuous flow set-up.[8]

Based on these studies, we have extended the Collum
procedure to the preparation of sodiated aryl and heteroaryl
derivatives which are difficult to generate otherwise and
decompose upon batch-sodiation.[9] KDA·TMEDA (potas-
sium diisopropylamide·N,N,N’,N’-tetramethylethylenedi-
amine) in n-hexane was used in continuous flow for similar

metalations.[10] Herein, we wish to report that NaDA and
NaTMP (TMPH = 2,2,6,6-tetramethylpiperidine) were effi-
cient bases for the regioselective flow-metalation of various
substituted acrylonitriles and alkenyl sulfides.[11] In first
experiments, we have optimized the sodiation of cinnamoni-
trile (1a) and have found that metalation with NaDA (0.24 m

in DMEA (dimethylethylamine), 1.2 equiv) at �78 8C using
a combined flow-rate of 10 mL min�1 and a 0.02 mL reactor
proceeded best with a residence time of 0.12 s affording
organosodium 2a. Subsequent trapping with electrophiles of
type 3 such as aldehydes, ketones, disulfides and allylic
bromides afforded 2-substituted cinnamonitriles of type 4
with usually high E/Z ratios (Table 1, entries 1–10). Thus, for
a quenching with aromatic aldehydes, we obtained the Z-
product of type 4 as major product, whereas for more
sterically hindered ketones the E-product was formed.

The diastereoselectivity of products of type 4 obtained
after the addition to a carbonyl electrophile was tentatively
explained by assuming that the sodiated nitrile 2a reacted fast
with an aldehyde (RCHO) according to pathway A leading to
the allylic alcohol Z-4. In contrast, by using ketones, an
equilibration to the cummulene form 2a’ may occur and the
cyclic transition state A would be disfavoured due to steric
hindrance. E/Z isomerization of the cummulene structure 2a’
occurred affording the E-4 product via transition state B
(Scheme 1).

We have then extended this flow procedure to various
functionalized arylacrylonitriles of type 5. Electron-rich
cinnamonitrile derivatives (5a–5d) were selectively meta-
lated in 2-position using NaDA in a continuous flow set-up
within 0.12 s at �78 8C. The resulting organosodiums (6a–d)
were trapped in batch with various carbonyl electrophiles,
such as m-anisaldehyde (3k), cyclohexanecarboxaldehyde
(3 l) or cyclohexanone (3m), and with 3-bromocyclohexene

Scheme 1. Tentative mechanism for the stereoselective addition of
sodiated phenylacrylonitrile 2a or 2a’ to aldehydes or ketones.
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(3e) using 10 mol% CuCN·2LiCl as catalyst, affording the
desired alcohols (7ak, 7bk, 7 cl and 7 dm) and an allylated
cinnamonitrile derivative (7de) in 57–97% yield with diaste-
reomeric ratios up to > 99/1 (Table 2, entries 1–5). Similarly,
regioselective sodiation of electron-deficient 3-(4-(trifluoro-
methyl)phenyl)acrylonitrile (5 e) followed by copper-cata-
lyzed allylation with 3-bromocyclohexene (3e) led to the
functionalized phenylacrylonitrile (7ee) in 66% yield with an
E/Z ratio > 99/1. Furthermore, an extension to methoxy- and
ethoxyacrylonitriles 5 f and 5g was possible resulting in
secondary alcohols (7 fn, 7 fd, 7gc and 7gl) after batch-
quench with aromatic aldehydes (3c, 3d and 3n), and
aliphatic aldehyde (3 l) in 91–98% and Z/E ratios > 99/
1 (entries 7–10). An alkenyl sulfide such as phenyl-

(styryl)sulfane (5h) provided the sodium derivative (6h)
upon metalation with NaDA, which after trapping with
sterically demanding ketones such as adamantanone (3o)
and benzophenone (3g) gave tertiary alcohols (7 ho and 7hg)
in 85–95% yield and comparable E/Z ratios to the starting
material 5h (entries 11–12).

Extension to alkyl-substituted acrylonitriles such as
geranylnitrile (8a, E/Z = 50/50) and the related nitrile 8b
(E/Z = 65/35) was possible under the standard sodiation
conditions providing after electrophilic quench the desired
functionalized nitriles (10ap, 10al, 10aq, 10br) in 60–98%
yield as E/Z mixtures (Table 3, entries 1–4). Interestingly,
starting from the diastereomerically pure acrylonitrile 8c (E/
Z> 99/1) the desired product 10cq was obtained in 67 % yield
(Z/E = 58/42) after quench with a-tetralone (3 q) (entry 5)
showing the prevalence of the cumulene structure of the
sodiated nitriles (see 2a� in Table 1). However, the methoxy-
substituted acrylonitrile 8d (E/Z = 80/20) afforded after
continuous flow sodiation and quenching with o-anisaldehyde
(3k) the allylic alcohol 10dk as single diastereoisomer in 58%
yield (Z/E> 99/1) showing the importance of the methoxy
group for controlling the stereochemistry of the intermediate
sodiated nitrile (entry 6). Also, the dienylnitrile 8e was
sodiated in flow and trapping with an allylic bromide (3 e)
or an aldehyde (3k) furnished the functionalized dienylni-
triles (10 ee and 10 ek) in 74–82% yield (entries 7–8).

Recently, Takai and Asako published a straightforward
synthesis of lithium-free sodium 2,2,6,6-tetramethylpiperidide
(NaTMP) in n-hexane by using sodium dispersion, TMPH,
TMEDA and isoprene.[12] This method would allow us to
avoid the use of the amine DMEA as solvent and therefore
making our method more practical. Using the Takai proce-
dure, we have prepared hexane-soluble NaTMP·TMEDA[13]

and have performed an efficient continuous flow sodiation of
cinnamonitrile (1a) selectively in 2-position within 0.12 s at
�78 8C. A subsequent batch trapping of 2a’ with various
ketones of type 3 afforded the desired tertiary alcohols of type
4 in 58–83% yield as single regioisomers (Scheme 2).
Similarly, ethoxyacrylonitrile 5g gave, after batch quench
with o-anisaldehyde (3k) and benzophenone (3g), the allylic
alcohols (7gk and 7gg) in 65–78 % yield (Z/E> 99/1).
Further, geranylnitrile (8a) provided the organosodium 9a
upon metalation with NaTMP·TMEDA, which after a copper-
catalyzed allylation using 3-bromocyclohexene (3e) led to the
desired product (10 ae) in 54 % yield with a E/Z ratio of 52/48.

However, the sodiation of other acrylates still remained
challenging. Applying our standard sodiation method to ethyl
cinnamate (11 a) afforded solely the condensation product
13a showing that the sodiation of 11 a was possible, but
difficult to control. Thus, the intermediate organosodium 12 a
reacted instantaneously with another molecule of 11 a before
the desired electrophile quench proceeded (Scheme 3a). To
prevent this self-condensation reaction, sterically hindered
tert-butyl cinnamate (11 b) was used affording organosodium
12b after continuous flow sodiation. A copper-catalyzed
batch allylation with 3-bromocyclohexene (3e) gave the
desired product 13be in 61% yield with an E/Z ratio > 99/
1 (Scheme 3b). To overcome the need of sterically hindered
esters, we envisioned a Barbier-type in situ trapping[14] of the

Table 1: Sodiation of cinnamonitrile (1a) using a microflow reactor and
subsequent batch quench of the intermediate sodium organometallic 2a
with various electrophiles of type 3 leading to functionalized cinnamo-
nitriles of type 4.

# electrophile product[a] # electrophile product[a]

nBu2S2

1 3a 4aa : 95 %,
Z/E>99/1[b]

6 3 f 4af : 93 %,
Z/E = 54/46

2 3b 4ab : 92 %,
Z/E>99/1[b]

7 3g 4ag : 82%,
E/Z>99/1[c]

3 3c 4ac : 74 %,
Z/E = 89/11[b]

8 3h 4ah : 82%,
E/Z>99/1
d.r.>99/1[c]

4 3d 4ad : 93%,
Z/E>99/1[c]

9 3 i 4ai : 78 %,
E/Z>99/1[b]

5 3e[d] 4ae : 93%,
E/Z =9/1[b]

10 3 j 4aj : 87 %,
E/Z>99/1[b]

[a] Yield of analytically pure product. [b] The E- or Z- diastereoselectivity
was assigned in analogy to related products, for which X-ray data were
obtained. [c] The diastereoselectivity was determined by crystal structure
analyses, see Supporting Information. [d] 10 mol% CuCN·2LiCl.
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highly reactive organosodiums of type 12. Interestingly, ethyl
cinnamate (11 a), which underwent self-condensation side
reactions applying our standard flow conditions (Scheme 3a),
was sodiated at�78 8C under Barbier-conditions and afforded
organosodium 12a, which was instantaneously trapped by
adamantanone (3o), outcompeting self-condensation and
resulting in the tertiary alcohol 13ao in 66% yield (E/Z>

99/1). Similarly, methyl-3-methoxyacrylate (11c) was sodiated
in 3-position in the presence of adamantanone (3o) using
NaDA (1.2 equiv) affording the spirolactone 13 co in 58%
yield (Scheme 3c).

In summary, we have reported the sodiation of substituted
acrylonitriles and alkenyl sulfides in a continuous flow set-up
using NaDA (sodium diisopropylamide) in EtNMe2 (DMEA)
and NaTMP (sodium 2,2,6,6-tetramethylpiperidide)·TMEDA

Table 2: Sodiation of substituted acrylonitriles and alkenyl sulfides of
type 5 using a microflow reactor and subsequent batch quench of the
intermediate sodium organometallics of type 6 with various electrophiles
of type 3 leading to functionalized phenylacrylonitriles and alkenyl
sulfides of type 7.

# SM product[a] # SM product[a]

1 5a
E/Z =

76/24

7ak : 97 %[b]

Z/E = 89/11
7 5 f

E/Z =

83/17

7 fn : 93%[c]

Z/E>99/1

2 5b
E/Z =
79/21

7bk: 84%[c]

Z/E = 90/10
8 5 f

E/Z =
83/17

7 fd : 98 %[c]

Z/E>99/1

3 5c
E/Z =

83/17

7cl : 74%[b]

Z/E>99/1
9 5g

E/Z =

68/32

7gc : 95%[c]

Z/E>99/1

4 5d
E/Z =

79/21

7dm : 67 %[c]

E/Z>99/1
10 5g

E/Z =

68/32

7gl :91%[b]

Z/E>99/1

5 5d[d]

E/Z =
79/21

7de : 57%[b]

E/Z>99/1
11 5h

E/Z =
71/29

7ho : 95 %[c]

E/Z = 77/23

Table 2: (Continued)

# SM product[a] # SM product[a]

6 5e[d]

E/Z =
78/22

7ee : 66 %[c]

E/Z>99/1
12 5h

E/Z =
71/29

7hg : 85%[b]

E/Z =68/32

[a] Yield of analytically pure product. [b] The E- or Z- diastereoselectivity
was assigned in analogy to related products, for which X-ray data were
obtained. [c] The diastereoselectivity was determined by crystal structure
analyses, see Supporting Information. [d] 10 mol% CuCN·2LiCl.

Scheme 2. General set-up for the sodiation of functionalized acryloni-
triles with NaTMP·TMEDA in a microflow reactor and subsequent
batch quench of the intermediate sodium organometallics with various
electrophiles leading to functionalized acrylonitriles. [a] The diastereo-
selectivity was determined by crystal structure analyses, see Support-
ing Information. [b] The E- or Z- diastereoselectivity was assigned in
analogy to related products, for which X-ray data were obtained.
[c] 10 mol% CuCN·2LiCl.
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in n-hexane. The resulting sodiated acrylonitriles and alkenyl
sulfides were subsequently trapped in batch with various
electrophiles such as aldehydes, ketones, disulfides and allylic
bromides affording functionalized acrylonitriles and alkenyl
sulfides. This flow-procedure was successfully extended to
other acrylates by using Barbier-type conditions.
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