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Abstract

Mathematical models of cardiac function at the cellular level include three major components, such as electrical activity,
Ca2+ dynamics, and cellular shortening. We developed a model for mouse ventricular myocyte contraction which is based
on our previously published comprehensive models of action potential and Ca2+ handling mechanisms. The model was
verified with extensive experimental data on mouse myocyte contraction at room temperature. In the model, we
implemented variable sarcomere length and indirect modulation of the tropomyosin transition rates by Ca2+ and troponin.
The resulting model described well steady-state force-calcium relationships, dependence of the contraction force on the
sarcomere length, time course of the contraction force and myocyte shortening, frequency dependence of the contraction
force and cellular contraction, and experimentally measured derivatives of the myocyte length variation. We emphasized
the importance of the inclusion of variable sarcomere length into a model for ventricular myocyte contraction. Differences
in contraction force and cell shortening for epicardial and endocardial ventricular myocytes were investigated. Model
applicability for the experimental studies and model limitations were discussed.
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Introduction

Cardiac cell functions include the interaction of several major

subsystems, including those responsible for the generation of

electrical activity, Ca2+ dynamics, and cardiac contraction.

Experimental data from diseased hearts or obtained at fast pacing

rates show that the changes in one of the subsystems can lead to

abnormal behavior in others. For example, dysfunction of the L-

type Ca2+ channel, as in Timothy syndrome when the channel’s

inactivation is significantly reduced, affects Ca2+ handling in

cardiac cells [1,2] resulting in cardiac arrhythmias. Heterogene-

ities in cellular electrical activities in the heart, dysfunction of K+

channels, or acidosis can also produce pro-arrhythmic behavior,

such as action potential propagation block, re-entry, Ca2+

alternans, and irregular contractions [3,4]. In particular, instability

of Ca2+ dynamics (alternans) can lead to the action potential

alternans [5] and alternans in mechanical contraction [6].

Therefore, understanding interactions of the major cardiac cell

subsystems and mechanisms of their pro-arrhythmic activity is of

great importance.

Mathematical modeling of electrical activity, Ca2+ dynamics,

and cardiac contraction is a supplementary tool for experimen-

talists in order to understand mechanisms of pro-arrhythmic

activity in the heart. There are several models for cardiac myocyte

contraction that have been developed for different species. Such

models were developed for guinea pig [7,8], rabbit [9], canine

[10], and mouse [11] ventricular myocytes. The models include

experimentally-verified sets of ionic currents, Ca2+ dynamics, and

contractile parameters for cardiac cells of the particular species.

Myocyte contraction is a complex process which involves

activation of ionic currents, including L-type Ca2+ current,

through which Ca2+ enters the cell and causes Ca2+ release from

the intracellular Ca2+ store, the sarcoplasmic reticulum [12]. High

intracellular Ca2+ concentration leads to an increase in Ca2+

bound by intracellular proteins (troponin, calmodulin) and

changes the myofilament configuration, resulting in force devel-

opment. Force generation involves conformational changes in

thick (myosin) and thin (actin, tropomyosin, and troponin)

filaments (Fig. 1A) resulting in an increase in their overlap.

Myosin represents a polypeptide chain with globular heads, which

constitute crossbridges that interact with thin filaments. Thin

filaments are composed of long tropomyosin polypeptide chains,

on which globular actin molecules aggregate in double-stranded

helix with crossbridge binding sites. In a non-active configuration,

troponin blocks crossbridge binding sites. Upon Ca2+ binding to

troponin, troponin-tropomyosin complex exposes crossbridge

binding sites which interact with myosin globular heads, thereby

creating weak bonds. ATP molecules bound to actin release a

phosphate group and transform weak bonds into strong bonds.

This transformation results in a change of crossbridge conforma-

tion to a bent position and forces thick filaments to slide relative to

thin filaments.

Because of the complexity of the contraction mechanism, most

mathematical models use a significantly simplified description of
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this process [13]. They explore the Huxley two-state crossbridge

model [14], extend it to a larger number of crossbridge states, and

include direct and indirect interaction with troponin and variable

sarcomere lengths [13,15]. Such simplified description, for

example, does not involve energy metabolism and interaction

with mitochondria. The crossbridge models are further incorpo-

rated into cellular models, which include electrical activity,

comprehensive Ca2+ dynamics [7,9,11], and energy metabolism

[16,17].

A mathematical model which describes mouse ventricular cell

contraction for body temperature (310uK, or +37uC) was

developed and published recently by Land et al. [11]. The model

adjusted the cellular contraction model of Rice et al. [9] for mice

and is primarily devoted to simulation of the whole heart

contraction. While some experimental data is recapitulated by

the model, such as time course of the myocyte contraction, the

deviation of the simulated from the experimental data and model

limitations are also discussed by the authors [11]. For example,

absolute values of the simulated cellular contraction force are

considerably larger than the measured contraction force for both

physiological and room temperatures [18]. In addition, Land et al.

[11] did not study contraction force-frequency relationships at the

cellular level.

In this paper, we developed a new electromechanical model for

mouse ventricular myocyte contraction at room temperature

(298uK, or +25uC). We employed our previously published models

for action potential and Ca2+ dynamics in mouse ventricular

myocytes [19,20,21,22], which were also developed for room

temperature (298uK, or +25uC), and incorporated a myocyte

contraction model from Rice et al. [15]. These models were

successfully employed for simulations of proarrhythmic activities in

mouse cardiac cells and tissues [21,22]. In addition, in the Rice

et al. [15] model, we implemented sarcomere length variation

during twitch. We also explored the effects of heterogeneity of the

electrical activity and Ca2+ dynamics in epicardial and endocardial

cells on the contraction force generation and cell shortening. The

resulting model was adjusted to fit experimental data on mouse

ventricular cell contraction. Our model successfully reproduced

steady-state force-calcium relationships for different sarcomere

lengths; time courses of the Ca2+ transients, developed force, and

cellular shortening; peak force-frequency and cell shortening-

frequency relationships; and time-to-peak force and time-to-50%

force relaxation. We also investigated and emphasized the

importance of using variable sarcomere lengths in models of

myocyte contraction. In the simulations, we compared both the

Figure 1. Schematic diagram of the mouse model cell and Markov model for force generation. (A) Mouse model ionic currents and Ca2+

fluxes as presented by Bondarenko et al. [19]. Transmembrane currents are the fast Na+ current (INa), the L-type Ca2+ current (ICaL), the sarcolemmal
Ca2+ pump (Ip(Ca)), the Na+/Ca2+ exchanger (INaCa), the rapidly recovering transient outward K+ current (IKto,f), the slowly recovering transient outward
K+ current (IKto,s), the rapid delayed rectifier K+ current (IKr), the ultrarapidly activating delayed rectifier K+ current (IKur), the noninactivating steady-
state voltage activated K+ current (IKss), the time-independent K+ current (IK1), the slow delayed rectifier K+ current (IKs), the Na+/K+ pump (INaK), the
Ca2+-activated chloride current (ICl,Ca), the Ca2+ and Na+ background currents (ICab and INab). Istim is the external stimulation current. The Ca2+ fluxes
within the cell are uptake of Ca2+ from the cytosol to the network sarcoplasmic reticulum (SR) (Jup), Ca2+ release from the junctional SR (Jrel), Ca2+ flux
from the network SR (NSR) to junctional SR (JSR) (Jtr), Ca2+ leak from the SR to the cytosol (Jleak), Ca2+ flux from the subspace volume to the bulk
myoplasm (Jxfer), Ca2+ flux to troponin (Jtrpn). The model includes Ca2+ buffering by troponin and calmodulin in the cytosol and by calsequestrin in the
SR. [Ca2+]i, [Na+]i, and [K+]i are the intracellular Ca2+, Na+, and K+ concentrations in cytosol; [Ca2+]o, [Na+]o, and [K+]o are the extracellular Ca2+, Na+, and
K+ concentrations. Contraction force Fcontr develops due to interaction of thin and thick filaments in the cytosol. Thick filaments are composed of
myosin, thin filaments consist of actin, tropomyosin, and interact with troponin. (B) State diagram of the Markov model for the force generation in
mouse cardiac myofilaments [15]. Top states describe cross-bridge formation, bottom states describe Ca2+ binding to troponin. P0, P1, P2, and P3 are
the permissive states; N0 and N1 are the nonpermissive states. TCa is Ca2+ bound troponin; T is unbound troponin.
doi:10.1371/journal.pone.0063141.g001
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absolute value of the contraction force and cellular shortening, and

their normalized dependences to fit existing experimental data.

Methods

A mathematical model for mouse ventricular myocyte contrac-

tion is a natural extension of our previously published models for

action potential and Ca2+ dynamics in mouse ventricular myocytes

[19], with model improvements from [20,21,22] (Fig. 1A),

developed for room temperature (298uK, or +25uC). In this

paper, we explore mouse ventricular myocyte models from the

epicardial and endocardial regions of the heart [22]. Endocardial

cells have more prolonged action potentials and larger intracellular

[Ca2+]i transients compared to epicardial cells [22]. We incorpo-

rated the Rice et al. [15] contraction model 4 in our model of

electrical activity and Ca2+ handling [19,20,21,22] (See Appendix

S1) and adjusted model parameters to fit experimental data on

myocyte contraction obtained for room temperatures.

The Rice et al. [15] model links Ca2+ dynamics and myocyte

contraction (Fig. 1B). The model contains two nonpermissive

tropomyosin states (N0 and N1) and four permissive tropomyosin

states (P0, P1, P2, and P3). N0, N1, P0, P1, P2, and P3 are

functions of time that describe probabilities of finding the model in

that particular state. N0 is the rest state of the model, with no

strongly bound crossbridges. When Ca2+ binds to the tropomy-

osin, it changes its conformation to a permissive state without

strongly bound crossbridges (P0), which allows for strong binding

of one (P1), two (P2), or three (P3) crossbridges. The model also

includes one nonpermissive state with one strongly bound

crossbridge even without a bound Ca2+ ion. All transition rates

in the model are Ca2+-independent, except for kNP, which depends

on the concentration of troponin with Ca2+ bound to a low-affinity

binding site. Detailed analysis of several contraction models and

the plausibility of different cooperative mechanisms was performed

in [15]. The model which we adopted for the mouse ventricular

myocyte contraction (Model 4 from [15]) gave the best fit to the

existing experimental data for mice. The contraction model

parameters for epicardial and endocardial cells are presented in

the Supporting Information (Appendix S1).

Contraction force Fcontr (in mN/mm2) was calculated using the

equation [15]:

Fcontr~{73:26Fcontrn, ð1Þ

where

Fco�nt�rn~{
P1zN1z2 P2ð Þz3 P3ð Þ

F �m�a�x
, ð2Þ

Fmax~P1maxz2 P2maxð Þz3 P3maxð Þ, ð3Þ

P1max~
f01 2gmin xbð Þ 3gmin xbð Þ

S
, ð4Þ

P2max~
f01f12 3gmin xbð Þ

S
, ð5Þ

P3max~
f01f12f23

S
, ð6Þ

S~ gmin xbð Þ 2gmin xbð Þ 3gmin xbð Þzf01 2gmin xbð Þ 3gmin xbð Þ

zf01f12 3gmin xbð Þzf01f12f23,
ð7Þ

f01~3fXB, f12~10fXB, f23~7fXB ð8Þ

In equation (1), Fcontrn is the normalized contraction force, and

the coefficient 273.26 is obtained from fitting absolute values of

the steady-state and dynamic experimental forces. For simulation

steady-state force-calcium relationships (F-Ca), we used fixed

values of the sarcomere lengths (SL), so that d(SL)/dt = 0, and

changed intracellular Ca2+ concentration. We simulated F-Ca

relationships for sarcomere lengths 1.9, 2.1, and 2.3 mm. In this

case, Fcontrn has time-independent magnitude.

For simulation twitch contraction, where Fcontrn is time-

dependent, we used Hooke’s law, the linear relationship between

contraction/relaxation force and cell shortening/extension:

SL~0:8FcontrnzSL0, ð9Þ

where SL0 is the initial value of SL. In this case, sarcomere length

becomes a function of time. To compare simulation data with

experiments for cellular contraction, we estimated the variable cell

length by

L~L0|
SL

SL0

, ð10Þ

where initial cell length L0 = 100 mm. For all simulations, we used

extracellular Ca2+ concentration [Ca2+]o = 2 mM.

The electromechanical cardiac cell models were stimulated with

different frequencies using a stimulus current (Istim = 80 pA/pF,

tstim = 0.5 ms) for at least 200,000 ms to reach a quasi-steady state.

Simulated data of intracellular [Ca2+]i transients, myocyte

contraction force Fcontr, and sarcomere length SL on the interval

from 192,000 to 200,000 ms were compared to extensive

experimental data.

The model consists of 51 ordinary differential equations (see

Appendix S1). Differential equations are solved by fourth-order

Runge-Kutta method with time step 0.0001 ms. The model was

implemented as an original Intel FORTRAN 90 code, which was

run under SUSE Linux on a Dell Precision Workstation T3500

(Intel Xeon Processor W3670, 3.20 GHz, 8 GB RAM).

Results

Steady-state Force-calcium Relationships
We first simulated steady-state force-calcium relationships. Both

epicardial and endocardial cell models demonstrated the same

simulation data for the steady-state force, as the contraction model

Rice et al. [15] depends on intracellular [Ca2+]I concentration.

Figure 2A shows the Ca2+-dependence of the absolute value of

contraction force obtained by Prabhakar et al. [23] for two

different sarcomere lengths, 1.9 and 2.3 mm, from skinned mouse

ventricular myocytes. For both cases, the force represents an

increasing sigmoid function of calcium concentration. There is a

Model of the Mouse Ventricular Myocyte Contraction
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relatively small increase in the saturation force from 48.8 to

57.2 mN/mm2 when sarcomere length increases by about 20%,

from 1.9 to 2.3 mm. Figure 2B shows simulation of the steady-state

force-calcium relationships for three sarcomere lengths, 1.9, 2.1,

and 2.3 mm. Our model is able to closely reproduce the saturating

value of the force for corresponding sarcomere lengths. However,

there are some differences between simulated and experimental

data in sensitivity to external Ca2+, as simulated force saturates at

smaller values of Ca2+ concentrations. Such differences are due to

a decrease in Ca2+ sensitivity of skinned compared to intact

cardiac cells [24].

Our model is also able to reproduce a shift in Ca2+ sensitivity for

steady-state force-calcium relationships shown for three sarcomere

lengths (Fig. 2D). Such a shift can be clearly seen for normalized

steady-state force-calcium relationships. Simulations show that an

increase in sarcomere length leads to smaller half-saturation values

of Ca2+ concentrations, demonstrating an increase in Ca2+

sensitivity (Fig. 2D). A similar shift in Ca2+ sensitivity is also

observed experimentally for mouse cardiac cells (Fig. 2C) [23,25].

In addition to the skinned mouse ventricular myocytes, our

simulation data is also compared to the available experimental

data on steady-state force-calcium relationships from intact cells,

shown in Fig. 2C and 2D with unfilled circles [26]. Figure 2D

shows that our simulations are in good agreement with the

experimental data. IC50 and Hill coefficient h obtained by fitting

steady-state force-calcium relationships from McCloskey et al.

[26] data with the function

F (½Ca2z�i)~Fminz
Fmax{Fmin

1z(½Ca2z�i=IC50)h

are 0.47 mM [Ca2+]i and 3.05, respectively. Fitting our simulation

data gives IC50 0.68, 0.59, and 0.49 mM [Ca2+]i and Hill

Figure 2. The steady-state [Ca2+]i-force relationship. The steady-state [Ca2+]i-absolute force relationship (A and B) and the normalized steady-
state [Ca2+]i-force relationship (C and D). Experimental data from Prabhakar et al. [23] (SL = 1.9 and 2.3 mm) and Konhilas et al. [25] (SL = 1.95 and
2.25 mm), obtained with skinned myocytes, are shown in (A) and (C) with filled symbols; experimental data for non-skinned myocytes from [26] is
shown by unfilled circles in (C) and (D). The model’s simulations at various initial sarcomere lengths (SL = 1.9, 2.1, and 2.3 mm) are shown in (B) and (D).
Simulated data for both epicardial and endocardial cells are the same.
doi:10.1371/journal.pone.0063141.g002
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coefficients 2.30, 2.33, and 2.25, for sarcomere lengths 1.9, 2.1,

and 2.3 mm, respectively.

Dynamic Behavior of Contraction Force
To test the ability of our model to reproduce the time behavior

of the contraction force developed by mouse ventricular myocytes,

we first stimulated the model cells with a constant frequency of

0.5 Hz. The time course of force in epicardial and endocardial cell

simulations is plotted in Fig. 3A by red solid and dashed lines,

respectively. As endocardial cells show larger [Ca2+]i transients

than epicardial cells, we obtained that the former develops

stronger contraction force and larger shortening than the latter.

The time behavior of the contraction forces obtained experimen-

tally is shown by black solid lines with symbols [18,27,28,29].

There are significant differences in the experimental data obtained

from different experimental groups on the time behavior of force,

both in peak values and residual forces (Table 1). Comparison of

the time behavior of normalized simulated and experimental

forces, both for epicardial and endocardial cells, shows a clear

similarity in the time-to-peak values and relaxation of the

simulated forces (Fig. 3B) [18,27,28,29,30].

Our model includes changes in sarcomere length during

myocyte contraction. The time behavior of normalized sarcomere

shortening for simulated cells is shown in Fig. 3C by red solid and

dashed lines for epicardial and endocardial cells, respectively. The

models do not show large differences in time-to-peak shortening

and relaxation times. They closely reproduce myocyte shortening

obtained in different experiments with mice (solid lines with

Figure 3. Contraction force, myocyte shortening, and [Ca2+]i transients. The time course of force (in mN/mm2) (A) and normalized force (B)
simulated by the model for epicardial (red solid lines) and endocardial (red dashed lines) cells are compared with experimental data from Stuyvers
et al. [18], Gao et al. [27], Kirchhefer et al. [30], Kogler et al. [28], McCloskey et al. [29]. (C) Normalized shortening as a function of time. Simulation
data is shown by red solid (epicardial cell) and red dashed (endocardial cell) lines, experimental data from Fentzke et al. [31] and Huang et al. [32] are
shown by lines with symbols. (D) Normalized [Ca2+]i transients as functions of time. The model simulation (red solid and red dashed lines for
epicardial and endocardial cells, respectively) is compared to experimental data from Gao et al. [27], Jones et al. [44], Kogler et al. [28], and McCloskey
et al. [29] (lines with symbols). For comparison, the initial sarcomere length in the model simulation is set to 2.1 mm, extracellular [Ca2+]i

concentration is 2 mM, and the frequency is 0.5 Hz, the frequency used most in the experimental data (see Table 1).
doi:10.1371/journal.pone.0063141.g003
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symbols in Fig. 3C) [31,32]. For comparison of the time scales of

contraction force and Ca2+ dynamics, we also plot the time courses

of the simulated and experimental intracellular Ca2+ transients by

red lines and black solid lines with symbols in Fig. 3D, respectively.

In each case, there is a delay in force development following the

peak of the Ca2+ transient (compare times to peaks in Fig. 3B and

3D).

Force-frequency Relationships
In order to investigate force-frequency relationships, we also

stimulated model cells with different frequencies ranging from 0.25

to 2.0 Hz. Frequency dependences of intracellular Ca2+ transients,

contraction force, and cell shortening are shown in Fig. 4. Our

simulated peak [Ca2+]i-frequency relationship (red solid and

dashed lines in Fig. 4a) is within the variability of experimental

data (solid lines with symbols in Fig. 4A) [18,29,33,34]. Note, that

the simulated amplitudes of [Ca2+]i transients for epicardial and

endocardial cells are verified by the experimental data obtained by

Dilly et al. [35] (Fig. 4D). The models are able to reproduce peak

contraction force-frequency relationships for mouse ventricular

myocytes in the frequency range from 0.5 to 2.0 Hz (Fig. 4B). The

experimental data shows biphasic behavior of the peak force, with

a decrease from 0.25 to 0.5–1.0 Hz, followed by an increase from

1.0 to 2.0 Hz [29], with a clear minimum in force-frequency

relationships (however, see data of Ito et al. [34] were the

minimum is less apparent). Our model reproduced such biphasic

behavior of the force-frequency relationships for epicardial cells.

Peak contraction force for endocardial cells increases with

stimulation frequency.

Finally, we are able to simulate peak lengthening-frequency

relationships (red lines in Fig. 4C). While some experimental data

shows consistent decrease in cellular shortening with frequency

[32], other data follows biphasic behavior [33,34] (solid lines with

symbols in Fig. 4C). Our modeling data demonstrates biphasic

behavior in cell shortening for epicardial cells, which is consistent

with the biphasic behavior of the contraction force and [Ca2+]i

transients (red solid lines in Fig. 4A, 4B, and 4C). Model

endocardial cells show only an increase in cell shortening as well

as in [Ca2+]i (red dashed lines in Fig. 4A and 4C, respectively).

Simulated time courses for contraction forces, sarcomere

lengths, and sarcomere shortenings for three different resting

sarcomere lengths (1.9, 2.1, and 2.3 mm) for epicardial and

endocardial cells are shown in Fig. 5. As seen from the figure, an

increase in the resting sarcomere length increases twitch force and

relative sarcomere shortening. Similar behavior is also observed

experimentally and from the simulations of others [9,11]. At

comparable sarcomere lengths, the endocardial cells develop

larger contraction force and sarcomere shortening than the

epicardial cells (Fig. 5).

Constant versus Variable Sarcomere Length
While steady-state simulations show that peak force is depen-

dent on the initial sarcomere length, there is also a dynamic

relationship between force and sarcomere length. Our models use

a variable SL when calculating the transition rate from non-

permissive to permissive states, as well as in the detachment rates

in permissive states. To see the effect of using a variable SL in the

transition rate equations, we ran simulations in which a constant

SL replaced the variable SL in the calculation of the normalized

sarcomere length

SLnorm~
SL{1:3mm

2:3mm{1:3mm
ð11Þ

which is used in the detachment rates and transition rates in

Markov model (Fig. 1B)

g10SL~gxbSL, g21SL~2gxbSL, g32SL~3gxbSL, ð12Þ

kNP~kPN
LTRPNCa½ �

LTRPNCa½ �totKhalf

� �Ntm

, ð13Þ

gxbSL~gminxb 2{ SLnormð Þ1:6
� �

, ð14Þ

Khalf ~1= 1z
KCa

1:5mM{SLnorm|1:0mM

� �
, ð15Þ

Ntm~5z3SLnorm, ð16Þ

where KCa = k2
ltrpn/k+

ltrpn, and the constants can be found in the

Supporting Information (Appendix S1).

Table 1. Experimental conditions for measurements of contraction force, cell shortening, and [Ca2+]i transients and corresponding
simulated conditions.

Reference Temperature,6C Sarcomere length, mm [Ca2+]o, mM Stimulation frequency, Hz [Ca2+]i indicator

Gao et al. 1999 [27] 20–22 2.1–2.2 2.0 0.5 Fura-2

Kirchhefer et al. 2003 [30] Room No data 2.0 0.5

Kogler et al. 2001 [28] 22–23 2.1–2.2 2.0 0.5 Fura-2

McCloskey et al. 2003 [29] 22 2.1 2.0 0.5 Fura-2

Stuyvers et al. 2002 [18] 25 2.0–2.1 2.0 1.0

Fentzke et al. 1999 [31] 22–23 2.3

Huang et al. 2001 [32] Room 2.3 0.5 0.5

Jones et al. 1998 [44] 25 2.0 Fluo-3

Simulation, this paper 25 2.1 2.0 0.5

doi:10.1371/journal.pone.0063141.t001
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Figure 6A shows force development in epicardial cells at a

stimulation rate of 1 Hz in the simulation using a constant SL

(dashed line) versus the simulation using a variable SL (solid line)

(see also Fig. 6B). Data for endocardial cells displays similar

behavior and is shown in Fig. 6C and 6D. The peak force when

using a constant SL is clearly higher, while the residual force

appears to be about the same. However, simulations run at various

frequencies show that the peak and residual force when using a

constant SL (Fig. 7E) is always higher than corresponding forces

when a variable SL is used (Fig. 7C). Even though there is a

difference in the magnitude of force, the frequency dependence of

peak force when using a constant SL (black dashed line in Fig. 7F)

is similar to the frequency dependence when a variable SL is used

(black solid line in Fig. 7F). For comparison, Figs. 7B and 7D show

simulated data on cell shortening and contraction force at different

stimulation frequencies for endocardial cells, using variable

sarcomere length (data on constant SL is not shown). As seen

from the figures, both peak contraction force and cell shortening

are larger for the endocardial cells than the epicardial cells.

In both cases, constant and variable SL, we observed a decrease

in time-to-peak and time to 50% relaxation rate for the

contraction force with an increase of stimulation frequency

starting from 0.5 Hz. A similar increase in the residual contraction

force at the larger stimulation frequencies is also observed

experimentally [36].

Frequency Dependence of dL/dt and dF/dt
The frequency dependencies of the peak force and cell

shortening are shown in Fig. 4. As might be expected, dL/dt

and dF/dt also show frequency dependence. Simulated time

courses for dL/dt (Fig. 8A and 8B) and dF/dt (Fig. 8C and 8D) are

shown for various frequencies from 0.25 Hz to 4.0 Hz, both for

epicardial (Fig. 8A and 8C) and endocardial (Fig. 8B and 8D) cells.

A negative dL/dt value indicates cell shortening during a

Figure 4. Stimulation frequency dependence of peak [Ca2+]i, peak force, and cell shortening. (A) Peak [Ca2+]i. (B) Peak force. (C) Cell
shortening. The simulation data is shown by red solid (epicardial cell) and red dashed (endocardial cell) lines. The modeling results are compared to
data from Ito et al. [33,34] (A), McCloskey et al. [29] (A and B), and Huang et al. [32] (C). The initial SL for the simulation is 2.1 mm. (D) Experimental
(black bars [35]) and simulated (gray bars) intracellular [Ca2+]i transients obtained for epicardial and endocardial cells at stimulation frequency 1 Hz.
doi:10.1371/journal.pone.0063141.g004
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Figure 5. Time course of the contraction force, sarcomere length, and percentage of shortening for epicardial and endocardial cells
for different sarcomere lengths. Simulations with different resting sarcomere lengths (SL0 = 1.9, 2.1, and 2.3 mm) show a significant difference in
the magnitude of the contraction force (A, D), sarcomere length (B, E) and percentage of sarcomere length shortening (C, F). The stimulation
frequency for each simulation is 1 Hz. Simulations are performed for epicardial (A, B, C) and endocardial (D, E, F) cells.
doi:10.1371/journal.pone.0063141.g005
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contraction, while a positive dL/dt corresponds to relaxation. A

positive dF/dt indicates the increase in force during a contraction,

while a negative dF/dt corresponds to relaxation. The epicardial

cell demonstrates a monotonic increase in the magnitudes of peak

values for dL/dt and dF/dt in the frequency range from 0.25 to

4 Hz (Fig. 8A and 8C). In contrast, the endocardial cell shows a

biphasic behavior in the peak magnitudes of the derivatives: an

increase when the stimulation frequency changes from 0.25 to

2 Hz, and a decrease in the frequency range from 2 to 4.0 Hz

(Fig. 8B and 8D).

The frequency relationship for +dL/dtmax (solid lines) and

2dL/dtmax (dashed lines) is shown in Fig. 9A. Both values show

biphasic behavior. For the epicardial cell, +dL/dtmax and 2dL/

dtmax decrease at stimulation frequencies from 0.25 to 0.5 Hz, and

then increase for stimulations frequencies up to 4 Hz. For the

endocardial cell, +dL/dtmax and 2dL/dtmax increase at stimula-

tion frequencies from 0.25 to 2.0 Hz, and then decrease for

stimulations frequencies up to 4 Hz. When compared to the

experimental data, our model tended to show, on average, peak

contraction rates approximately equal to experimental data (open

symbols) [32,37,38]. However, the model showed somewhat

slower relaxation, thus lower values of +dL/dtmax, than experi-

mental data (solid symbols) [32,37,38].

Figure 9B shows the frequency relationship for +dF/dtmax (solid

lines) and 2dF/dtmax (dashed lines). As with corresponding values

for +dL/dtmax and 2dL/dtmax, the +dF/dtmax and 2dF/dtmax

show biphasic behavior for both epicardial and endocardial cells.

To compare experimental and simulated data quantitatively, we

plotted experimental and simulated results on time-to-peak and

time-to-50% relaxation of the contraction force and intracellular

[Ca2+]i transients in Fig. 10. Simulated data are shown for both

epicardial and endocardial cells (black and red, respectively, in

Fig. 10B and 10D). Simulated data for time-to-peak force shows

good agreement with the experimental data (compare Fig. 10B

and 10A), while time-to-50% relaxation are somewhat longer in

the simulated data than those obtained in the experiments

Figure 6. The effects of constant and variable sarcomere lengths on the contraction force development and myocyte shortening. (A)
Force development for the models with variable (solid line) and constant (dashed line) sarcomere lengths. Changing the SL from a variable to a
constant (B, D) does not change [Ca2+]i transients, but changes contraction force (A, C). The initial SL for each simulation is 2.1 mm with a stimulation
frequency of 1 Hz. Simulation data shows an increase in force, both for epicardial (A) and endocardial (C) cells, when variable SL is replaced by
constant SL.
doi:10.1371/journal.pone.0063141.g006
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(compare Fig. 10D and 10C). Experimental data for time-to-peak

and time-to-50% relaxation of [Ca2+]i transients are somewhat

longer than those from simulations, but the simulated time-to-50%

relaxations approach the experimental values at larger frequencies.

Epicardial and endocardial cells show similar simulated values for

time-to-peak and time-to-50% relaxation of [Ca2+]i transients, and

for time-to-50% relaxation of contraction force. However, there

are moderate differences between the cells for time-to-peak of the

contraction force (Fig. 10B).

Figure 7. The effects of stimulation frequency on the time behavior of sarcomere length and contraction force for epicardial and
endocardial cells. The time courses of the SL (A and B) and contraction force (C, D, and E) over a four second interval are shown at different
stimulation frequencies for epicardial (A, C, and E) and endocardial (B and D) cells. The simulation data with constant SL is shown only for epicardial
cells, as the data for endocardial cells is similar. The frequency dependence of force for an epicardial cell when a variable SL parameter is used is not
as pronounced as the frequency dependence of force when a constant SL parameter is used (C and E). The initial SL for each simulation is 2.1 mm, but
the residual force for higher frequencies leads to significant shortening (A and B). Frequency dependence of peak force for epicardial and endocardial
cells with variable SL and for epicardial cells with constant SL is shown in (F).
doi:10.1371/journal.pone.0063141.g007
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Discussion

In this paper, we developed a new model for mouse ventricular

myocyte contraction. This model is based on our previously

published models for epicardial and endocardial cells

[19,20,21,22], which includes a comprehensive description of

action potential, ionic currents, and Ca2+ dynamics. For a

description of myocyte contraction, we adopted Model 4

developed by Rice et al. [15] by fitting experimental data on

contraction for mice.

Mice demonstrate considerably faster heartbeats than many

other species. Their contraction rate is about 10 beats per second

[39], which is, for example, faster than the rabbit (4 Hz, [40]) and

human (1 Hz, [41]) heart contraction rates. In addition, the action

potential duration in mouse ventricular myocytes is also consid-

erably shorter (APD50 , 4.5 ms in mice [19] versus ,200 ms in

rabbits [9] and ,300–400 ms in humans [42]). These differences

suggest different time characteristics for contractions in mouse,

compared to human or rabbit, ventricular myocytes.

In a mouse cardiac cell, at moderate stimulation rates, an

increase in action potential is followed by an increase in [Ca2+]i

and a delayed increase in force. The peak value of Ca2+ transient

occurs after almost complete repolarization of action potential. In

addition, peak contraction force appears after a significant decline

of [Ca2+]i. Our model replicates this relationship. Figure 11 shows

normalized values for epicardial action potential (solid line),

[Ca2+]i (dashed line), and force (dotted line) over a 0.5 second

interval for a simulation at 1 Hz. In larger species, such as rabbit,

time scaling of the action potential, [Ca2+]i and contraction force

transients is different (Fig. 9 in [9]). For rabbits, [Ca2+]i transient,

in significant part, overlaps with the action potential and

contraction force transient, while the peak sequence is the same

as in mice.

Mouse ventricular myocytes, unlike other species, demonstrate

biphasic frequency dependence of intracellular [Ca2+]i transient

Figure 8. Time behavior of dL/dt and dF/dt for different stimulation frequencies. Simulated time course of the rates of cellular shortening
dL/dt (A, B) and contraction force dF/dt (C, D) during twitches for epicardial (A, C) and endocardial (B, D) cells. For epicardial cells, the largest values of
6dL/dtmax and 6dF/dtmax are observed at relatively fast stimulation frequency of 4 Hz (solid lines in (A) and (C)). For endocardial cells, the largest
values of 6dL/dtmax and 6dF/dtmax occur in the frequency interval from 1 to 4 Hz (dashed lined in (B) and (D)).
doi:10.1371/journal.pone.0063141.g008
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and peak force [18,29] (however, see data of Ito et al. [34] were

biphasic behavior is less apparent). Stuyvers et al. [18] suggested a

qualitative mechanism which explains this biphasic behavior based

on frequency-dependent Ca2+ dynamics. The minimum occurs at

the crossroad of the descending frequency trend of the Ca2+ load

into the sarcoplasmic reticulum during diastole and ascending

trend in Ca2+ entry into the cell through L-type Ca2+ channels.

They used a simplified description of Ca2+ dynamics for mouse

ventricular myocytes. Our model for an epicardial cell, which

includes a comprehensive description of the electrical activity and

Ca2+ dynamics in mouse myocytes during cell twitch, was also able

to reproduce this physiological phenomenon. In our model,

myocyte contraction force is related to Ca2+ dynamics through the

Markov model for crossbridge kinetics. While both peak [Ca2+]i

transients and peak contraction force show minimum values as

functions of stimulation frequency, these minimum frequency

values are slightly different (Fig. 4). This trend is also confirmed by

the experimental data of McCloskey et al. [29].

However, our model for the endocardial cell does not show

biphasic behavior in the frequency-dependence of both peak

[Ca2+]i transients and peak contraction force. There are also some

experimental data in which non-monotonic increase in peak

[Ca2+]i transients and myocyte shortening in mice is less apparent:

even saturation and decrease in myocyte shortening amplitude at

relatively large stimulation frequencies occur [34]. Our model for

the endocardial cell, at least qualitatively, reproduced saturation

and even decrease in sarcomere shortening and contraction force

amplitude at 4-Hz stimulation (Fig. 7B and 7D). This effect can be

explained by the larger peak and diastolic values of [Ca2+]i

transients in endocardial cells compared to epicardial cells, which

shift the operation interval of intracellular Ca2+ towards a smaller

slope in force-calcium relationships (Fig. 2D).

Figure 9. Frequency dependence of dL/dtmax and dF/dtmax. (A) The simulated frequency dependences of (+dL/dt)max (solid lines) and (2dL/
dt)max (dashed lines). Experimental data from Chu et al. [37], Flagg et al. [38], and Huang et al. [32] are shown by symbols. We consider (2dL/dt) to
correspond to cell shortening. (B) The simulated frequency dependence of (+dF/dt)max (solid lines) and (2dF/dt)max (dashed lines). We consider (+dF/
dt) to correspond to contraction. The initial SL for the simulations in (A) and (B) is 2.1 mm. Data for epicardial and endocardial cells are shown in black
and red, respectively.
doi:10.1371/journal.pone.0063141.g009

Model of the Mouse Ventricular Myocyte Contraction

PLOS ONE | www.plosone.org 12 May 2013 | Volume 8 | Issue 5 | e63141



While there are no specific experimental studies of contraction

force and cell shortening in mouse epicardial and endocardial

ventricular myocytes, there are a few studies of the differences in

action potentials and Ca2+ handling in these cells [35,43]. The

studies show that the endocardial cells demonstrate significantly

larger [Ca2+]i transients, and our modeling predicts larger

contraction force and shortening in these ventricular myocytes.

Our electromechanical model for mouse ventricular myocyte

contraction includes a variable sarcomere length during cell

contraction, the effect that occurs in most experiments. Simula-

tions with variable sarcomere length produce significantly smaller

contraction force than the simulations with constant sarcomere

length despite the same time course and amplitude of [Ca2+]i

transient during twitch. This suggests the importance of the

inclusion of cell shortening in the model for cardiac myocyte

contraction. Note that a similar result was obtained with a more

complex model of Rice et al. [9], developed for rabbit ventricular

myocytes, who also studied the effects of variable and fixed

sarcomere length on the force development.

Several models for cardiac myocyte contraction have been

developed to date [7,9,11,15,17] (see also review [13]). Earlier

models did not include sarcomere shortening during twitch

[7,15,17]. They are primarily focused on simplification of the

description of crossbridge kinetics, their dependence on Ca2+

dynamics, and careful reproduction of the existing experimental

data on steady-state and dynamic force-calcium relationships.

Most of these models have limitations due to this and other

simplifications.

Rice et al. [15] investigated five Markov models describing

contraction mechanisms in cardiac myocytes. Two of the models

consisted of four tropomyosin states and transitions between them

(N0, N1, P0, and P1, see Fig. 1B). These models differ by the

mechanisms of modulation of the transition rates (in Fig. 1B they

are defined as kNP and kPN). In Model 1, rates kNP and kPN are

independent of the developed force, while in Model 2 the rates

depend on the developed force. In both models, Ca2+ binding to

troponin directly affects tropomyosin shifting, i.e., rates kNP and

kPN. Model 3 includes an indirect connection of the Ca2+ binding

to troponin and tropomyosin shifting, as shown by dashed arrows

Figure 10. Time-to-peak and time-to-50% relaxation of the contraction force and [Ca2+]i transients as function of stimulation
frequency. Experimental (A) and simulated (B) frequency dependencies of time-to-peaks for intracellular [Ca2+]i transients and contraction force, and
experimental (C) and simulated (D) frequency dependencies of time-to-50% relaxations for intracellular [Ca2+]i transients and contraction force.
Experimental data are obtained by Gao et al. ([27], triangles) and Ramirez et al. ([45], circles). Unfilled and filled symbols are used for intracellular
[Ca2+]i transients and contraction force, respectively. Simulation data for contraction force and intracellular [Ca2+]i transients are shown by solid and
dashed lines, respectively, and data for epicardial and endocardial cells are shown in black and red, respectively.
doi:10.1371/journal.pone.0063141.g010
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in Fig. 1B (see also [15]), and only four states (N0, N1, P0, and P1).

Models 4 and 5 were extended to up to three crossbridge bindings,

which resulted in four permissive tropomyosin states, P0, P1, P2,

and P3, (Fig. 1B and [15]). The only difference between Models 4

and 5 is the modulation of the k2
ltrpn rate by generated force.

Because Model 4 and Model 5 yielded an approximately equal

description of myocyte contraction, we implemented Model 4 in

our electrophysiological model, as Model 5 led to unstable

solutions.

Our model of mouse ventricular myocyte contraction also has

some limitations due to the simplification of the biophysical

mechanism of contraction. In particular, the model uses a

simplified description of the relationships between contraction

force and cellular shortening in the form of Hook’s law, while the

real dependence is more complicated [9]. It does not describe the

effects of cellular shortening on Ca2+ transients, as does the model

of Rice et al. [9]; however, this effect is relatively small. Also, our

model, as most other models, did not take into account

intracellular spatial inhomogeneities of Ca2+ concentration and

crossbridge binding sites.

Nevertheless, despite the limitations, our electromechanical

model of mouse ventricular myocyte contraction was extensively

verified by experimental data obtained for mice. It reproduced

reasonably well a significant amount of the existing experimental

data. The model can be used for cells from two different regions of

the heart (epicardium and endocardium). As with most other

models, it uses a simplified description of the contraction force

generation. We employed a six-state Markov model for tropomy-

osin dynamics and separate Ca2+ binding to troponin (Fig. 1B) to

describe force development. More comprehensive models will be

necessary to develop a better simulation of more extended

experimental data sets.
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