Syst. Biol. 64(2):356-362, 2015

© The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

DOI:10.1093/sysbio/syu084
Advance Access publication October 30, 2014

The Phylogenetic Likelihood Library

T. FLourt:*, F. IzQUIERDO-CARRASCO!, D. DARRIBAL, A.J. ABERER!, L.-T. NGUYEN?3, B.Q. MINHZ, A. VON HAESELER?3,
AND A. STAMATAKIS 4

Heidelberg Institute for Theoretical Studies, Heidelberg Institute, 69118 Heidelberg, Germany; 2Center for Integrative Bioinformatics Vienna,
Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, A-1030 Vienna, Austria; Bioinformatics and Computational Biology,
Faculty of Computer Science, University of Vienna, A-1090 Vienna, Austria; and *Karlsruhe Institute of Technology, Institute for Theoretical Informatics,

Postfach 6980, 76128 Karlsruhe, Germany;
*Correspondence to be sent to: Schloss-Wolfsbrunnenweg 35 Heidelberg Baden-Wiirttemberg Germany 69118;
E-mail: Tomas.Flouri@h-its.org

Received 22 March 2014; reviews returned 17 June 2014; accepted 27 October 2014
Associate Editor: Peter Foster

Abstract—We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface
for developing likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data
structures and functions that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as
likelihood calculations, model parameter as well as branch length optimization, and tree space exploration. The highly
optimized and parallelized implementation of the phylogenetic likelihood function and a thorough documentation provide
a framework for rapid development of scalable parallel phylogenetic software. By example of two likelihood-based
phylogenetic codes we show that the PLL improves the sequential performance of current software by a factor of 2-10
while requiring only 1 month of programming time for integration. We show that, when numerical scaling for preventing
floating point underflow is enabled, the double precision likelihood calculations in the PLL are up to 1.9 times faster than
those in BEAGLE. On an empirical DNA dataset with 2000 taxa the AVX version of PLL is 4 times faster than BEAGLE
(scaling enabled and required). The PLL is available at http://www.libpll.org under the GNU General Public License

(GPL). [Maximum likelihood; parallel computing; phylogenetics.]

In phylogenetics, the implementation of likelihood
calculations on trees often represents the major obstacle
for testing new ideas. A substantial amount of time
is spent to implement common functions and data
structures. This typically delays research by several
months, before testing the ideas at hand. In addition,
these implementations are often inefficient because
of the lack of familiarity with low-level optimization
and parallel programming techniques, since researchers
cannot be experts in every domain.

Thus, software libraries can contribute substantially
to the rapid development of applications. For instance,
Bio++ (Guguen et al. 2013) is a general-purpose
C++ library that has gained popularity and includes a
molecular phylogenetics module, which is characterized
by its ease of use and plethora of available functions.
However, such general-purpose libraries do not
necessarily focus on performance, and are therefore
typically not suited for specific compute-intensive
tasks such as likelihood calculations. In contrast, the
BEAGLE (Ayres et al. 2012) library has been specifically
designed to speed up likelihood-based programs such as
MrBayes (Ronquist et al. 2012) and BEAST (Drummond
et al. 2012), attaining over 60-fold speedups on codon
data over the native implementations. However,
BEAGLE only implements the “pure” likelihood
calculations and does not incorporate a tree data
structure. On the one hand, this facilitates integration
with existing software, but on the other makes it harder
to build new tools from scratch.

To bridge the gap between speed and ease of use, we
developed the Phylogenetic Likelihood Library (PLL), a
software library that offers an application programming

interface for fast prototyping and deployment of
high-performance likelihood-based phylogenetic
software. For efficient likelihood calculations, the
PLL deploys 128- and 256-bit vector instructions,
and offers an Intel Xeon PHI implementation. Apart
from the likelihood functions, PLL provides functions
for parsing input files, exploring tree space, and for
checkpointing. It supports partitioned analyses and
one can combine distinct data types to conduct joint
likelihood computations on concatenated datasets
containing binary, amino acid, and DNA data. Finally,
the PLL supports multi-core systems via POSIX Threads
and usage of Massively Parallel Processors via Message
Passing Interface (MPI). The underlying complexity of
the parallel code is transparent to the user.

APPLICATION PROGRAMMING INTERFACE

Overview

The PLL functions are organized into two groups
that handle different types of computations: 1)
parsers for trees, multiple sequence alignments
(MSAs), and partitioned model file formats; and 2)
functions for tree space exploration, model parameter
optimization, likelihood evaluation, and ancestral state
reconstruction. The PLL offers an internal data structure
for representing unrooted bifurcating trees, which is
particularly useful for developing novel application
codes from scratch. Optimized likelihood evaluation
functions and topological rearrangement operations
such as Subtree Pruning and Regrafting (SPR), Tree
Bisection and Reconnection (TBR), and Nearest Neighbor

356

http://www.libpll.org

2015

FLOURI ET AL.—THE PHYLOGENETIC LIKELIHOOD LIBRARY

357

PLL CORE

>

pllTreelnitTopology pllinstance
[Random|Parsimony|Newick]

pliCreatelnstance

pllParseAlignmentFile
[FASTA|PHYLIP] C

>

pllPartitionsParse

B D

) plIEvaluateLikelihood

acggt - - tacgtfaggt - - gt agt cgtjagat gct
acgt---tacgtlagcg- - gaagt cgt}- - a- gct
cgggt - -tacgtjag----- tagtc-tjagatgct
agtat- - tacadaggt a- - t agt cgtfag- - gct

> < 1 2 3
B D P P P

ALIGNMENT \ \ /
oot tacatoocs.casategt o act Model 1 Model 2
t toct
oFat tacacagsta. tagtcstag get alpha alpha
freqs fregs
CATrates CATrates
GAMMArates GAMMArates
PARTITIONS substRates substRates

pliDestroylnstance

Likelihood Evaluation

pllUpdatePartials

Model Parameters

alpha
frequencies
CATrates
GAMMArates
substitutionRates

substitutionMatrix = {JTT,WAG,...,GTR}|{JC,HKY,...,GTR}
f requenciesOptimization = [ML|Empirical|[Model|User]
optimizeSubstitutionRates = {TRUE,FALSE}

pllOptimizeModelParameters
pliSetFixedAlpha
plISetBaseFrequencies

pliSetSubstitutionRates
plISetModelToPartition

Tree Optimization

Topological Rearrangement Branch Lengths
(SPR / NNI)
plIRearrangeSearch pllOptimizeBranchs
pllIRearrangeCommit A B
pllRearrangeRollback

A =B > <
cl <D c ‘D

FIGURE 1. Architecture overview of the PLL.

Interchange (NNI) for exploring tree space are also
available. In addition, PLL also implements numerical
optimization functions such as the Newton-Raphson
method for branch lengths or Brent’s algorithm for other
model parameters. Moreover, the PLL accommodates
partitioned analyses where distinct sets of likelihood
model parameters are optimized for different parts of
the MSA. Finally, PLL also includes a highly optimized
and vectorized parsimony implementation (Alachiotis
and Stamatakis 2011) that can be used to generate
parsimony starting trees or to filter promising SPR
and TBR moves based on their parsimony scores. An
overview over the software architecture of the PLL is
provided in Figure 1.

Usage

To load and access the library, a client program
must first create a PLL instance by invoking the
library function pl1CreateInstance and passing an
argument of type pl1lInstanceAttr. This mandatory
argument describes key attributes of the PLL instance,
such as the model of rate heterogeneity that can either be
the I' model (Yang 1994) or the per-site rate (PSR) model
(Stamatakis 2006a), flags on whether to use a memory-
saving technique (Izquierdo-Carrasco etal. 2011) and fast
numerical scaling techniques, the number of threads to
use in the PThreads version of the PLL, and a seed for the
random number generator. The call returns an instance
handle of type pl1Instance that encapsulates all PLL
core components.

Next, the client program must load an MSA and
optionally a partition file, which splits the MSA
into partitions and assigns an evolutionary model
to each partition. PLL implements the General

Time Reversible (GTR; Tavaré 1986) model, which
can be used for nucleotide and amino acid data.
Moreover, for DNA data a linkage specification for
substitution rates and nucleotide frequencies can
be set to generate all 203 possible GTR substitution
matrices (Huelsenbeck et al. 2004), including the most
common ones (e.g., JC69/F81 and K80/HKY85—see
Yang 2006). Given that the GIR model is rarely used
on protein data, the library implements 18 widely
used empirical amino acid replacement models
(see Supplementary Material available on Dryad
http:/ /dx.doi.org/10.5061/dryad.9dk62 for a complete
list). In addition to fixed state frequencies (e.g., as
provided by the protein models), PLL can employ
empirical state frequencies or a maximum-likelihood
estimate of the state frequencies. PLL also supports
binary data with an option to correct for ascertainment
bias as specified in the original model by Lewis (2001).
An analogous ascertainment bias correction mechanism
for accommodating the a priori exclusion of variable sites
is also available for analyzing DNA SNPs datasets. PLL
does not currently implement either time-heterogeneous
models or models for among-partition rate variation.
The next step for the client program is to either pass
a starting tree to the PLL or use the PLL to generate a
random tree or a randomized stepwise addition order
parsimony tree. The starting tree and the optional list of
alignment partitions is thenloaded into the PLL instance.
To calculate the likelihood of the tree, the client
program calls pl1EvaluateLikelihood by passing
a node that is the end-point of the edge on which the
virtual root shall be placed. The virtual root acts as the
“direction” for the likelihood computation, indicating
that the likelihood shall be computed bottom-up, from
the leaves to the virtual root, with the two end-points of

http://dx.doi.org/10.5061/dryad.9dk62

358

SYSTEMATIC BIOLOGY

VOL. 64

the selected edge being the two direct descendants of the
virtual root.

The PLL offers two methods for computing the
likelihood, which differ in the number of conditional
likelihood vector (CLV) computations: partial or full tree
traversals. This difference is associated with the CLVs
storage technique, also known as views (Felsenstein
2004), at inner nodes. Instead of storing three CLVs per
inner node, that is, one per outgoing edge, the PLL only
stores one CLV and keeps track of the direction of the
computation. When choosing an evaluation via a full
traversal, the PLL (re-)computes the CLVs for all nodes,
and finally calculates the likelihood of the tree topology.
A full tree traversal is necessary when model parameters
(e.g., the a shape parameter of the I' distribution or
substitution rates) have changed, and hence the stored
CLVs become invalid. A partial traversal will only
recompute the CLVs of those nodes whose direction
is inconsistent with the new direction of likelihood
evaluations, specified by an altered location of the virtual
root. Therefore, the placement of the virtual root, even
though itis irrelevant for full traversals, affects the speed
of likelihood evaluations when using partial traversals.
Partial traversals are useful, for instance, when applying
local topological changes to a tree.

MATERIALS AND METHODS

The PLL is implemented in C and is currently available
for Linux, MAC, and Windows.

SIMD Implementations

All modern processors have the so-called single-
instruction multiple-data (SIMD) capabilities. SIMD
processors are capable of applying the same arithmetic
operation to multiple elements of a data vector
simultaneously.

SIMD instructions can be used by loading data
into specific vector registers (storage space within the
(co)processor) with a length of 128, 256, and soon 512
bits. Those registers can hold multiple, independent
data values of smaller size (e.g., a 256-bit register
can hold four 64-bit double-precision floating-point
values). If two registers contain four values each, for
instance, we can perform element-wise multiplications
of the vector elements using a single instruction,
instead of executing four separate instructions. Typically,
Intel-based architectures employ 128-bit registers using
streaming SIMD extensions (SSE), and 256-bit registers
using advanced vector extensions (AVX) instructions.
The AVX-2 instruction set implements some additional
and more complex vector operations (fused multiply—
add instructions) that can be leveraged by likelihood
calculations. In the future, AVX-512 will offer 512-bit-
long registers/vectors.

The phylogenetic likelihood function (PLF) typically
accounts for >95% of total execution time in current
state-of-the-art likelihood-based tools for phylogenetic
inference (Stamatakis 2006b). Therefore, the acceleration

and parallelization of the PLF is a crucial task. Except for
the generic unoptimized version of the PLF, PLL comes
with three optimized versions that use the SSE3, AVX,
and AVX-2 instruction sets.

PThreads and MPI Implementation

The PLL uses a master-worker paradigm to parallelize
the likelihood function by splitting up the computation
of the per-site entries of one CLV (associated with a single
node) at a time among processes. The master process
triggers likelihood calculations and orchestrates the
optimization of branch lengths and model parameters.
Asmentioned before, the tree must be fully (re-)traversed
to optimize substitution rates or the a-shape parameter.
After a change in these model parameters, the master
triggers a full tree traversal and every worker process
independently updates its fraction of the CLV entries
for each node. The worker processes are agnostic of the
tree topology and alignment structure, that is, they are
not required to maintain and update the current tree,
and only operate on consistently enumerated CLVs that
correspond to nodes in the tree.

For obtaining “good” load balance, when optimizing
ML or proposing new model parameters (Bayesian
Inference) for partitioned datasets, it is important to
propose and evaluate these new values (e.g., a-shape
values) simultaneously for all partitions to improve
parallel efficiency (Stamatakis and Ott 2009). In addition,
a well-balanced number of sites must be assigned to
each process, and the number of distinct partitions
per process (Zhang and Stamatakis 2012) needs to be
minimized. Since the sites in each partition evolve
under a different model, each partition incurs an
additional computational overhead (e.g., calculating the
transition probability matrix). Another technique for
load balancing is to distribute likelihood computation to
processes on a “per-node” basis. This, however, induces
a substantially increased synchronization overhead due
to node dependencies when computing the CLVs,
particularly for imbalanced trees and trees with a
relatively small number of taxa compared to the available
number of processors. Furthermore, most of typical CLV
updates in phylogenetics application are only partial
updates, which further limits the degree of parallelism
in a per-node parallelization approach. Overall, PLL
implements two approaches for load balancing: 1) a
cyclic distribution of the alignment sites; and 2) a
monolithic partition distribution.

The cyclic distribution works better when the input
alignment consists of at most as many partitions as
there are processes. The second approach distributes
partitions monolithically (entire partitions are assigned
to one process) among processes, and hence it is
important to have a considerably higher number of
partitions than processes (Zhang and Stamatakis 2012).

Recently, Kobert et al. (2014) showed that this
load-balancing problem is NP-hard and designed
a polynomial time approximation algorithm that is
guaranteed to yield a near-optimal distribution of sites

2015

FLOURI ET AL—THE PHYLOGENETIC LIKELIHOOD LIBRARY

359

and partitions to processes. The algorithm balances the
number of sites among processes and at the same time
minimizes the number of partitions assigned to each
process. Note that, in this setting, a single partition can
be split among several processes. The implementation of
this new method in PLL is underway.

EXPERIMENTAL RESULTS

The PLL has successfully been integrated with two
phylogenetic software packages: DPPDiv (Heath et al.
2012), a Bayesian tool for estimating divergence times on
a fixed tree topology; and IQ-TREE (Minh et al. 2013), a
tool for reconstructing maximum-likelihood trees and
assessing branch support with an ultra-fast bootstrap
approximation. In the following, we first provide a
performance comparison between PLL and BEAGLE
and then summarize the results for integrating and
accelerating DPPDiv and IQ-TREE with the PLL.

PLL versus BEAGLE
Here, we discuss the differences between PLL
and BEAGLE and experimentally assess their

performance and correctness (all necessary files
and instructions for repeating the experiments are avail-
able at http:/ /www.libpll.org /beagle-pll-experiments).
For testing, we used a 4-core Intel i7-2600 multi-core
system with 16 GB RAM and swapping disabled.

The main difference between PLL and BEAGLE lies in
the data structure. The PLL provides (and requires) its
own data structure that encapsulates the tree topology,
alignment, and model parameters. In contrast to this,
BEAGLE comes with no data structure, and requires
the client program to map its own tree data structure
to a BEAGLE instance by initializing the sequence
data and defining the postorder traversal of the tree.
This approach makes BEAGLE easier to integrate with
existing likelihood-based software that already has a
native tree data structure. In contrast to this and by
using an internal tree structure, the PLL can offer 1)
global branch length optimization across the entire tree,
2) topological rearrangements, and 3) model parameter
optimization (e.g., substitution rates, branch lengths, or
base frequencies).

Therefore, PLL is better suited when developing new
software from scratch: It provides functions for handling
FASTA, PHYLIP, and Newick files; explicitly supports
partitioned analyses including support for load-balance,
and the client application may directly use the PLL tree
structure as its primary data structure and benefit from
tree space exploration and branch length optimization
functions.

Both libraries implement vectorized versions of the
PLF. BEAGLE comes with a double-precision SSE
implementation, whereas PLL comes with double-
precision implementations using SSE or AVX. To
compare the PLF performance of the two libraries,

we used a random tree topology of 128 taxa, and
randomly generated alignments with lengths of 131,072,
262,144, 393,216, 524,288, 656,360, 786,432, 917,504 and
1,048,576 bp. We used randomly generated sequences
to thoroughly study the numerical stability of the
libraries. Figure 2 illustrates the performance in CLV
entry updates per second. This number was obtained
by executing 100 independent full tree traversals, where
each iteration recomputes all CLVs from scratch. The
term independent means that each full tree traversal is
independent from the others, that is, none of the 100
tree traversals is allowed to reuse intermediate results
(such as scaling factors) from preceding traversals. We
then used the time (in seconds) it took the fastest
out of these 100 tree traversals to calculate the CLV
entry updates per second. The plot shows that, the
SSE version of PLL is up to 1.9 times faster than the
corresponding BEAGLE SSE implementation. We were
only able to assess sequential AVX performance of the
PLL, since sequential AVX support is not yet available
in BEAGLE (see Supplementary Material available
on Dryad http://dx.doi.org/10.5061/dryad.9dk62 for
parallel AVX results with OpenCL in BEAGLE and
details on the comparison of the two libraries). We
executed 100 independent likelihood computations to
eliminate the potential impact of server-side events, such
as context switching or daemons, on the benchmark.
The run-times of each of the 100 executions are identical
with no external interference. The benchmark timings
only include the core likelihood computations. All
intermediate data structures for tree and alignment
parsing were deallocated once the instances of
PLL/BEAGLE were initialized. The order of the tree
traversal (or direction of likelihood computations) was
set using the BeagleOperation structure in BEAGLE
and for PLL using its dedicated tree structure. On
the 128-taxon alignment with a length of 917504 bp,
BEAGLE ran out of memory while the PLL was still
able to process and compute the likelihood. The last
alignment (1,048,576) was not computed by either library
due to lack of memory. We observed that, BEAGLE
requires ~12% more memory than the PLL for storing
the scaling factors as arrays. Scaling factors are stored
more efficiently in PLL using only one scaling factor
per node and per partition. We also compared the
performance on an empirical DNA dataset with 2000
taxa and a length of 1251bp from (Pattengale et al.
2009). For 1000 independent full tree traversals, BEAGLE
(SSE) required 312.6s, PLL-SSE 121.2s, and PLL-AVX
79.1s. The results indicate that the PLL is approximately
2.6 times faster than BEAGLE, when comparing the
SSE double-precision implementations of the likelihood
function with numerical scaling enabled. Thus, PLL-
AVX is up to 4 times faster than the BEAGLE SSE
version when analyzing empirical DNA datasets that
require frequent numerical scaling operations to prevent
arithmetic underflow. With numerical scaling disabled,
BEAGLE is faster than PLL, since PLL always computes
scaling factors by default.

http://www.libpll.org/beagle-pll-experiments
http://dx.doi.org/10.5061/dryad.9dk62

360

SYSTEMATIC BIOLOGY

VOL. 64

Comparison of log-likelihood function

g 500 1 1 1 1 1 1 1 1

g PLL-SSE &=

3 BEAGLE-SSE

& PLL-AVX messsen

2

@ 400 -
8

g

<

Qo

Ly

o = - aes o

£ 300 = .
.2

%

el

g 200 i
<

o)

4

&

— 100 A
=

£

o0

= |

2 |

E 0 ‘

131072 4=
262144
393216

524288

655360
786432
917504
1048576 A

Sequence size [bp]

FIGURE 2.
varying alignment length.

Finally, PLL is ready for high-performance
computing and features a POSIX threads and MPI
implementation (Supplementary Material available
on Dryad http://dx.doi.org/10.5061/dryad.9dk62 for
parallel performance data), as well as a port for the Intel
Xeon PHI coprocessor.

DPPDiv

DPPDiv is a Bayesian tool for estimating species
divergence times and lineage-specific substitution rates.
Given a fixed topology, it estimates these parameters
under anonparametric mixture model. More specifically,
DPPDiv uses a Dirichlet process prior to model variation
of substitution rates across the branches of the tree.
In evolutionary biology, divergence time estimates are
widely used for analyses of historical biogeography,
species diversification, and trait evolution.

DPPDiv uses Markov Chain Monte Carlo to sample
the posterior densities of the model parameters and
to estimate lineage-specific substitution rates as well as
node ages. Each time the Markov chain proposes a new
state, the PLF is invoked, and it needs to be computed
for each branch in the tree and for each rate category. In
fact, DPPDiv spends over 90% of overall execution time
on PLL calculations.

To optimize the code, we integrated PLL into
DPPDiv (Darriba etal. 2013). DPPDiv originally relied on
the MrBayes 4.0 beta (from 2005) PLF implementation for
carrying out likelihood evaluations on rooted trees. To
minimize the coding effort and circumvent complicated
and potentially error-prone modifications to the DPPDiv
proposals, we designed a one-to-one mapping of the

PLF performance of PLL versus BEAGLE for 100 likelihood evaluations using full tree traversals, on a dataset with 128 taxa and

DPPDiv tree data structure onto the unrooted PLL tree
data structure.

We obtained sequential speedups of 2.4-7.8 over the
original implementation. By deploying fine-grain loop-
level parallelism with PThreads, we obtained near-
optimal parallel speedups on sufficiently large input
datasets. Using the PThreads version on a 48-core shared
memory system in conjunction with vector instructions,
DPPDiv runtime was reduced by an overall factor of
more than 100 (factor of 350 in the best case). A detailed
description of the experimental setup and results can be
found in (Darriba et al. 2013). Datasets are available at
https:/ /github.com/ddarriba/pll-dppdiv.

IQ-TREE

We used PLL to re-implement the time-consuming
NNIsearchinIQ-TREE. Integration with PLL took one of
the authors of IQ-TREE <1 one month of programming
time. The new version is called IQ-TREEp; .

We compared inference times of IQ-TREEp;r
against IQ-TREE on empirical datasets from TreeBASE
(http:/ /www.treebase.org) on an Intel i5-2500K core.
We downloaded 70 DNA alignments containing
between 200 and 800 sequences (date accessed
November 2012) and 47 protein alignments containing
50—400 sequences. TreeBASE matrix IDs are available
in the Supplementary Material available on Dryad
http:/ /dx.doi.org/10.5061/dryad.9dk62. Figures 3a
and b show the distribution of runtime ratios between
IQ-TREE and IQ-TREEpr; ssg3 (i-e., the PLL is compiled
with SSE3 instructions) for DNA and protein alignments,
respectively. For DNA alignments IQ-TREEp;;_sse3

http://dx.doi.org/10.5061/dryad.9dk62
https://github.com/ddarriba/pll-dppdiv
http://www.treebase.org
http://dx.doi.org/10.5061/dryad.9dk62

2015 FLOURI ET AL—THE PHYLOGENETIC LIKELIHOOD LIBRARY 361
a C

i ; ;
£ 2 3.71 © 4.6)
g 1 1
c o] o
T [} |
< 1 |
Z ® s
2 ! :

o 1| = o J [| = =

T T T 1 T T T 1
2 4 6 8 2 4 6 8
b d

& 23 Q 29"
» | |
§ S ! IS '
1S 1 1
> ©] 2 |
(_g o ! o !
® | = |
09_ 1) | 7o) |
= B = . [e

T T T T T T 1 T T T T T T 1
15 20 25 30 35 40 45 15 20 25 30 35 40 45
Speedup of IQ-TREEp, | _sse3 Speedup of IQ-TREEp| | _avx
FIGURE 3. Speedups of IQ-TREEp;; compared with IQ-TREE for empirical DNA (a and c) and protein alignments (b and d). Two PLL versions

were used, one with SSE3 (a, b) and the other with AVX (b, d) vector intrinsics. The dashed vertical lines indicate the median speedups.

is between 1.8 and 7.0 times (median: 3.8) faster. For
protein alignments the speedup ranges between 1.6 to
3.3 (median: 2.2). When using the AVX version of the
PLL, the median speedup of IQ-TREEp;; _4yx on DNA
data increases to 4.7 and to 2.9 on protein data (Fig. 3c
and d).

For the sake of completeness, we also assessed the
PThreads performance of IQ-TREEp;;_gsp3 on a DNA
(767 taxa, 5814 sites) and a protein (338 taxa, 1355 sites)
dataset using 8 cores on an AMD Opteron 6132 processor.
Note that, for the DNA dataset the time spent by 1Q-
TREEp;1_sse3 in the PLL, and hence the parallelized
part of the code amounts to 95% of total runtime for
DNA data and to 99% of total run time for protein
data. Thus, the speedups are limited by Amdahl’s
law (1967). Taking into account the total execution time,
we measured a total speedup of 2.62 (2.84 for the PLL
kernel) for the DNA dataset and 5.64 (5.87) for the
protein dataset. In general, the parallel scalability of
protein likelihood calculations is better than for DNA
data because one needs to conduct approximately 202
instead of 4% numerical operations per alignment site.
Hence, more computational work is done per parallel
region and the computation to communication ratio is
more favorable.

CONCLUSION

The PLL is a software library for developing high-
performance likelihood-based phylogenetic software. It
provides all necessary data structures and functions
required to calculate the likelihood of a topology,
explore the tree space, and perform model parameter

optimization on partitioned datasets. The PLL is highly
optimized, exploits state-of-the-art vector instructions
(SSE3, AVX, AVX-2), and takes advantage of multi-
core architectures, compute clusters, and the Intel Xeon
PHILBy integrating PLL into DPPDiv, we obtained
speedups of up to a factor of 7.8 on a single CPU
and up to 350-fold speedups on a 48-core system. The
integration with IQ-TREE yielded speedups of up to a
factor of 7. Under double precision and with numerical
scaling enabled, the sequential PLL version is 1.9 times
faster than the BEAGLE library. The multi-threaded
version of PLL is 3 times faster. Finally, the PLL requires
~12% less memory than BEAGLE when scaling is
enabled. Forthcoming extensions include an adaptation
of the PLF for the AVX-512 instruction set, a low-
level application programming interface that does not
require a tree data structure, bindings for programming
languages such as Python, and incorporating the new
load balance algorithm into PLL.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.9dk62.

FUNDING

T.F. is supported by DFG project STA/860-4. F.I.-C.
was supported by DFG projects STA/860-3 and
STA/860-2. L-T.N. and A.v.H. are supported by the
University of Vienna (Initiativkolleg 1059-N). B.Q.M. and
A.v.H. are supported by the Austrian Science Fund—-FWF
(I760-B17).

http://dx.doi.org/10.5061/dryad.9dk62

362

SYSTEMATIC BIOLOGY

VOL. 64

REFERENCES

Alachiotis N., Stamatakis, A. 2011. FPGA acceleration of the
phylogenetic parsimony kernel? International Conference on Field
Programmable Logic and Applications (FPL); 2011. p. 417-422.

Amdahl G.M. 1967. Validity of the single processor approach to
achieving large scale computing capabilities. Proceedings of the
Spring Joint Computer Conference AFIPS ‘67 (Spring); 1967 April
18-20; New York: ACM. p. 483—485.

Ayres D.L., Darling A., Zwickl D.J., Beerli P., Holder M.T., Lewis
P.O., Huelsenbeck].P.,, Ronquist F., Swofford D.L., Cummings
M.P,, Rambaut A., Suchard M.A. 2012. BEAGLE: an application
programming interface and high-performance computing library
for statistical phylogenetics. Syst. Biol. 61:170-173.

Darriba D., Aberer A]., Flouri T.,, Heath T.A., Izquierdo-Carrasco
F., Stamatakis A. 2013. Boosting the performance of bayesian
divergence time estimation with the phylogenetic likelihood library.
IPDPS Workshops, Cambridge, MA: IEEE Computer Society.

Drummond A.., Suchard M.A., Xie D., Rambaut A. 2012. Bayesian
Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol.
29:1969-1973.

Felsenstein J. 2004. Inferring phylogenies. Sunderland, Massachusetts:
Sinauer Associates.

Guguen L., Gaillard S., Boussau B., Gouy M., Groussin M., Rochette
N.C., Bigot T, Fournier D., Pouyet F, Cahais V. Bernard
A., Scornavacca C., Nabholz B., Haudry A., Dachary L., Galtier
N., Belkhir K, Dutheil J.Y. 2013. Bio++: Efficient extensible libraries
and tools for computational molecular evolution. Mol. Biol. Evol.
30:1745-1750.

Heath T.A., Holder M.T., Huelsenbeck J.P. 2012. A dirichlet process
prior for estimating lineage-specific substitution rates. Mol. Biol.
Evol. 29:939-955.

Huelsenbeck J.P,, B. Larget, M.E. Alfaro. 2004. Bayesian phylogenetic
model selection using reversible jump Markov Chain Monte Carlo.
Mol. Biol. Evol. 21:1123-1133.

Izquierdo-Carrasco F., Smith S.A., Stamatakis A. 2011. Algorithms,
data structures, and numerics for likelihood-based phylogenetic
inference of huge trees. BMC Bioinformatics 12:470.

Kobert K., Flouri T., Aberer A., Stamatakis A. 2014. The divisible
load balance problem and its application to phylogenetic inference.

Algorithms in Bioinformatics vol. 8701 of Lecture Notes in Computer
Science. Berlin Heidelberg: Springer. p. 204-216.

Lewis P.O. 2001. A likelihood approach to estimating phylogeny
from discrete morphological character data. Syst. Biol. 50:
913-925.

Minh B.Q., Nguyen M.A.T, von Haeseler A. 2013. Ultrafast
approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30:1188—
1195.

Pattengale N.D., Alipour M., Bininda-Emonds O.R.,, Moret
B.M., Stamatakis A. 2009. How many bootstrap replicates are
necessary? J. Comput. Biol. 17:337-354.

Ronquist F., Teslenko M., van der Mark P.,, Ayres D.L., Darling
A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck
J.P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference
and model choice across a large model space. Syst. Biol. 61:
539-542.

Stamatakis A. 2006a. Phylogenetic models of rate heterogeneity:
a high performance computing perspective. High Performance
Computational Biology Workshop, 20th IEEE/ACM International
Parallel and Distributed Processing Symposium (IPDPS) Rhodes
Island, Greece: IEEE Computer Society.

Stamatakis A. 2006b. RAXML-VI-HPC: maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics 22:2688-2690.

Stamatakis A., Ott M. 2009. Load balance in the phylogenetic likelihood
kernel. Proceedings of the 2009 International Conference on Parallel
Processing ICPP '09 IEEE Computer Society, Washington, DC, USA.
p. 348-355.

Tavaré S. 1986. Some probabilistic and statistical problems
in the analysis of DNA sequences. Amer. Math. Soc. 17:
57-86.

Yang Z. 1994. Maximum likelihood phylogenetic estimation from dna
sequences with variable rates over sites: Approximate methods. J.
Mol. Evol. 39:306-314.

Yang Z. 2006. Computational molecular evolution, vol. 284. Oxford:
Oxford University Press.

Zhang]., Stamatakis A. 2012. The multi-processor scheduling
problem in phylogenetics. 2012 IEEE 26th International. Parallel
and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), Shanghai, China: IEEE. p. 691-698.

	The Phylogenetic Likelihood Library

