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ABSTRACT Moraxella catarrhalis is a leading cause of otitis media and exacerbations of
chronic obstructive pulmonary disease; however, its response to iron starvation during
infection is not completely understood. Here, we announce a sequential window acqui-
sition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) data set
describing the differential expression of the M. catarrhalis CCRI-195ME proteome under
iron-restricted versus iron-replete conditions.

Moraxella catarrhalis is a human-restricted bacterial pathogen that causes otitis
media in children and exacerbations of chronic obstructive pulmonary disease in

adults. Iron is a cofactor required by proteins involved in respiration and DNA replica-
tion and thus is essential to life for most bacterial species (1). As iron is sequestered by
host tissues, all host-adapted pathogens encounter periods of iron starvation. Previous
studies have defined the repertoire of genes required for the growth of M. catarrhalis
under iron-restricted conditions (2) and described differential expression at the tran-
scriptional level (3). However, global changes in protein expression in response to iron
starvation have not been investigated.

M. catarrhalis CCRI-195ME grown in brain heart infusion (BHI) broth with the iron
chelator desferal (30 �M) was compared with bacteria grown in BHI only. Cells were
grown at 37°C with six replicates per condition. Cell lysates were equalized to 1 �g/�l
protein in 50 mM triethylammonium hydrogen carbonate buffer (TEAB). A total of
100 �g of each sample was reduced with 5 mM dithiothreitol at 65°C for 30 mins,
alkylated with 10 mM iodoacetamide at 25°C for 30 mins, and digested with 1:25 trypsin
at 37°C for 16 hours. Samples were acidified with 1 �l 100% formic acid, pelleted, and
resuspended in 100 �l of loading buffer (2% acetonitrile and 0.1% formic acid).
Information-dependent acquisition (IDA) and sequential window acquisition of all
theoretical fragment ion spectra mass spectrometry (SWATH-MS) experiments were
performed by the Australian Proteome Analysis Facility (Sydney, NSW, Australia) using
a 5600 TripleTOF mass spectrometer (AB Sciex) with an Ultra nano-liquid chromato-
graphy (nanoLC) system (Eksigent) as previously described (4). For 1D IDA, replicates
were pooled and 10 �l was injected. For 2D IDA, all samples were pooled and
fractionated with high-pH reversed-phase high-performance liquid chromatogra-
phy (HPLC). A total of 13 fractions were collected, dried, and resuspended in 20 �l
of loading buffer, and 10 �l was injected. Protein identification was performed with
ProteinPilot (v4.2) in “thorough mode” using the database M. catarrhalis CCRI-
195ME coding DNA sequence (CDS) (2,136 proteins) ASM208012v1. SWATH library
construction was performed by merging 1D-IDA and 2D-IDA runs using SwathXtend
(5) (https://www.bioconductor.org/packages/release/bioc/html/SwathXtend.html). For
SWATH-MS, each sample was diluted 1:1 in loading buffer, and 10 �l was injected in
random order with one blank run between samples. SWATH data were extracted using
PeakView (v2.1) with the following parameters: the 6 most intense fragments of each
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peptide were extracted (75-ppm mass tolerance and 10-min retention time window),
shared and modified peptides were excluded, and peptides with a confidence level of
�99% and false discovery rate (FDR) of �1% were used for quantitation. Peptide peak
areas were normalized to the total peak area for each run, and statistical analysis was
performed as previously described (4). Proteins are considered differentially abundant
if the quantitation ratios were �1.5 or �0.67 and respective P values were �0.05.

SWATH-MS identified 695 proteins, of which 94 were differentially abundant under
iron-restricted versus iron-replete conditions. Under iron restriction, 39 proteins were
more abundant, including the lactoferrin- and transferrin-binding proteins LbpA, LbpB,
and TbpB (6, 7), while 55 proteins were less abundant, including the superoxide
dismutase SodA (8) and the nitrate reductase subunit NarJ. This data set will act as the
primary proteomic resource for studying the response to iron restriction in M. catarrha-
lis and facilitate study of this important human otopathogen.

Data availability. The SWATH mass spectrometry proteomics data and processed

differential abundance analysis have been deposited in the ProteomeXchange Consor-
tium via the PRIDE (9) partner repository with the data set identifier PXD017206.
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