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intervention
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Shigetaka Noma8, Keiichi Fukuda9 & Shun Kohsaka9

Acute kidney injury (AKI) after percutaneous coronary intervention (PCI) is associated with a 
significant risk of morbidity and mortality. The traditional risk model provided by the National 
Cardiovascular Data Registry (NCDR) is useful for predicting the preprocedural risk of AKI, although 
the scoring system requires a number of clinical contents. We sought to examine whether machine 
learning (ML) techniques could predict AKI with fewer NCDR-AKI risk model variables within a 
comparable PCI database in Japan. We evaluated 19,222 consecutive patients undergoing PCI 
between 2008 and 2019 in a Japanese multicenter registry. AKI was defined as an absolute or a relative 
increase in serum creatinine of 0.3 mg/dL or 50%. The data were split into training (N = 16,644; 2008–
2017) and testing datasets (N = 2578; 2017–2019). The area under the curve (AUC) was calculated 
using the light gradient boosting model (GBM) with selected variables by Lasso and SHapley Additive 
exPlanations (SHAP) methods among 12 traditional variables, excluding the use of an intra-aortic 
balloon pump, since its use was considered operator-dependent. The incidence of AKI was 9.4% in 
the cohort. Lasso and SHAP methods demonstrated that seven variables (age, eGFR, preprocedural 
hemoglobin, ST-elevation myocardial infarction, non-ST-elevation myocardial infarction/unstable 
angina, heart failure symptoms, and cardiogenic shock) were pertinent. AUC calculated by the light 
GBM with seven variables had a performance similar to that of the conventional logistic regression 
prediction model that included 12 variables (light GBM, AUC [training/testing datasets]: 0.779/0.772; 
logistic regression, AUC [training/testing datasets]: 0.797/0.755). The AKI risk model after PCI using 
ML enabled adequate risk quantification with fewer variables. ML techniques may aid in enhancing the 
international use of validated risk models.
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CPA	� Cardiopulmonary arrest
IABP	� Intra-aortic balloon pump

Acute kidney injury (AKI) is a common non-cardiovascular complication of percutaneous coronary interven-
tion (PCI) and is associated with a significantly increased risk of morbidity and mortality during and after 
hospitalization1–3. An use of established prediction model to estimate the risk of AKI after PCI may improve 
clinical decisions to avoid AKI with adequate hydration and reduction of contrast volume2,4. Numerous AKI 
prediction models for PCI have been investigated in a variety of countries and regions5–8, albeit only a few of these 
models have been externally and internationally validated. The National Cardiovascular Data Registry (NCDR)-
AKI risk scoring system is widely utilized and has been cross-validated in the Japanese registry internationally 
despite the differences in patient characteristics, including race9–11. Briefly, Tsai et al. developed the NCDR-AKI 
risk model in 2014 through a logistic regression model with 12 preprocedural variables9, splitting the data into 
70% of the derivation cohort and 30% of the validation cohort with C-statistics of 0.72, and 0.71, respectively. 
This model was shown to be the preferable prediction model compared to other traditional AKI risk models12.

However, their traditional approach included transforming continuous variables into categorical variables 
when calculating risk scores. They also selected 12 variables via traditional stepwise selection, and further sim-
plification of the model (e.g. reducing the number of variables) was not feasible since it likely reduces the overall 
predictability of the model. Recently developed machine learning (ML) methods may be able to enhance the 
performance of risk prediction. They allow nonlinear associations and are better suited for extracting additional 
information from continuous variables13,14. To date, AKI prediction models that limit covariates with ML, espe-
cially the light gradient boosting model (GBM), have been scarcely studied. The light GBM is conceived to reduce 
calculation time, which attracts attention because it might be suitable for the creation of prediction calculators 
on the website15. In addition, it also allows missing values for a prediction model, which is more advantageous 
than a conventional logistic regression model.

We sought to investigate whether ML-derived prediction models could predict AKI adequately or enhance 
risk predictions with fewer variables selected via least absolute shrinkage and selection operator (Lasso) and 
SHapely Additive exPlanations (SHAP) using covariates within a comparable PCI database in Japan. The AKI 
risk model using ML could be widely implemented if the number of variables could be successfully reduced 
without decreasing the model’s predictability. Further, ML may serve to be a useful tool when considering the 
application of risk model to patients in different geographical regions.

Methods
The Japanese Cardiovascular Database-Keio Inter-hospital Cardiovascular Studies (JCD-KiCS) registry is a large 
prospective multicenter cohort study that collects consecutive clinical background and outcome data on patients 
undergoing PCI. Prior reports have clarified the data collection procedures and audit processes for the JCD-
KiCS10,16–18. Before the launch of the JCD, information on the study objectives, its social significance, and an 
abstract were provided to register this clinical trial with the University Hospital Medical Information Network. 
This Network is recognized by the International Committee of Medical Journal Editors as an acceptable registry, 
according to a statement issued in September 2004 (UMIN R000005598). Written informed consent was obtained 
from each patient before inclusion in the study.

The data entered were assessed for completeness and internal consistency. Quality assurance was achieved 
through automatic system validation, reporting of data completeness, and education of dedicated clinical research 
coordinators specifically trained for this PCI registry. The senior study coordinator and extensive on-site auditing 
by the investigator (S.K.) ensured appropriate registration of each patient. The present study was approved by the 
institutional review board Committee of Keio University (Reference Number: 20080073) and was conducted in 
accordance with the principles of the Declaration of Helsinki.

In addition, the JCD-KiCS previously validated the NCDR-AKI risk model10. The majority of the clinical 
variables included in the JCD-KiCS were defined according to the NCDR, sponsored by the American College 
of Cardiology11. In the JCD-KiCS registry, 15 hospitals from Tokyo, Tochigi, Saitama, Chiba, and Kanagawa 
Prefectures in the Kanto area were included4. Twelve of the 15 participating hospitals were large tertiary-care 
referral centers (≥ 200 beds), while three were mid-sized satellite hospitals (< 200 beds). The average annual case 
volume was approximately 228 between 2011 and 2013 at these 15 hospitals. After 2013, only four high-volume 
centers were included (the average case volume was 479).

Patients on chronic dialysis (N = 1124) and those with missing data on AKI after PCI (N = 3342) were 
excluded. In addition, those with missing data on the date when PCI was performed (N = 474) were also excluded 
because we split the data into training and testing datasets based on the date of PCI (Fig. 1). In this retrospective 
study, we evaluated 19,222 consecutive patients undergoing PCI between September 2008 and March 2019 using 
the JCD-KiCS registry. AKI was defined as an absolute increase of 0.3 mg/dL or a relative increase of 50% in 
serum creatinine10. New induction of dialysis was also considered as AKI given its severity12. In the JCD-KiCS 
registry, the post-procedural creatinine value was defined as the highest value within 30 days after the index pro-
cedure. Congruent with the NCDR definition, if more than one post-procedural creatinine level was measured, 
the highest value was used to determine the incidence of AKI. This timing of peak creatinine was congruent 
with that reported in previous studies10.

PCI-related complications were defined as a composite endpoint that included severe flow-limiting coronary 
dissection or coronary perforation, myocardial infarction after PCI, cardiogenic shock or heart failure, cerebral 
bleeding or stroke, and other bleeding complications. Bleeding complications were defined as those requiring 
transfusion, prolonging hospital stay, and/or causing a decrease in hemoglobin of > 3.0 g/dl19. When present, 
bleeding complications were classified by the site of bleeding, as follows: puncture-site bleeding, including 
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external bleeding; or a hematoma > 10 cm for femoral, > 5 cm for brachial, or > 2 cm for radial access sites; retro-
peritoneal bleeding; gastrointestinal bleeding; genitourinary bleeding; or other types of bleeding. This definition 
of bleeding complications was consistent with the definition of grade 3 (A to C) bleeding from the Bleeding 
Academic Research Consortium20. Our definitions of complications were consistent with the NCDR CathPCI 
registry, and additional information on data elements and definitions is available on their website (http://​www.​
ncdr.​com/​webnc​dr/​cathp​ci/).

Continuous variables were expressed as mean and standard deviation or median (interquartile range), as 
appropriate for the data distribution, with categorical variables expressed as percentages. The change from base-
line in continuous variables was evaluated using Student’s t-test or the Mann–Whitney U test, as appropriate for 
the data distribution, with the chi-squared or Fisher’s exact test used for categorical variables.

To construct the ML model, we initially identified the important variables associated with AKI after PCI 
using Lasso through logistic regression. Lasso selects variables by shrinking the coefficients of less important 
variables from logistic regression to zero21. The twelve variables used for the NCDR-AKI risk model (defined 
as the NCDR variables) were included in the Lasso model9: age (< 50, 50–59, 60–69, 70–79, 80–89, and > 90), 
chronic kidney disease (estimated glomerular filtration rate [eGFR] [mL/min./1.73 m2], 60<, 45–60, 30–45, 
< 30), previous heart failure, diabetes mellitus, cerebrovascular disease, heart failure at admission, cardiogenic 
shock (CS) at admission, cardiopulmonary arrest (CPA) at admission, use of intra-aortic balloon pump (IABP), 
ST-elevation myocardial infarction, non-ST-elevation myocardial infarction/unstable angina, and preprocedural 
hemoglobin (< 10 g/dL). In addition, we constructed the SHAP approach to select the important variables with 
the light GBM using the 12 NCDR variables. This approach explains the models at the level of individual patients 
based on the sum of the numeric computed credit (SHAP) values of each feature22,23. Categorical variables (age, 
eGFR, and preprocedural hemoglobin) were entered as continuous variables in the Lasso and SHAP models.

After the selection of important variables, the data were split into training and testing datasets: before March 
31, 2017 (N = 16,644, 86.6%) and after April 1, 2017 (N = 2578, 13.4%), respectively, to validate the data in recent 
years, which is considered an effective model for the current practice (Fig. 1, Supplemental Table 1). Subsequently, 
a light GBM model using a stratified K-fold cross-validation method was applied to the training dataset (K = 5)24. 
The light GBM was designed to be accurate, efficient, and fast, which are advantages in handling large-scale data22. 
In comparison to the logistic regression model, the light GBM used “NaN” to represent missing values and were 
dealt with separately from zero, as missing values were interpreted as containing information22. Hyperparameter 
optimization was performed using an implementation called “Optuna”25. Categorical variables were entered as 
continuous variables to leverage ML techniques15,24. We used the area under the curve (AUC) to evaluate the 
different models, and the AUC was calculated for the training and testing datasets. Furthermore, we analyzed two 
versions of light GBM models, with IABP, since the discretion of its use was considered operator-dependent, and 
the benefit of IABP has been considered reduced over the past years during this study period. Additionally, new 
mechanical circulatory support devices such as Impella (Abiomed, MA, USA) are emerging, but their benefits 
remain unproven26,27. Although the NCDR-AKI risk model included IABP9, we also selected the pertinent vari-
ables with SHAP and Lasso without IABP and analyzed the AKI risk model using the light GBM without IABP.

Figure 1.   Patients’ flow chart. PCI: percutaneous coronary intervention, JCD-KiCS: Japanese Cardiovascular 
Database-Keio Inter-hospital Cardiovascular Studies.

http://www.ncdr.com/webncdr/cathpci/
http://www.ncdr.com/webncdr/cathpci/
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A multivariate logistic regression model was constructed to predict the incidence of AKI using the 12 NCDR 
variables. The training and testing datasets were split as well, and the AUCs calculated in training using strati-
fied K-fold cross-validation method were applied to the training dataset (K = 5) and testing datasets. We used a 
grid search strategy to identify the best tuning hyperparameters28. We also used the Standard Scaler to improve 
the predictability29. We performed an imputation for the missing data using the library of IterativeImputer in 
Python for logistic regression models because a logistic regression model does not allow missing values. AUCs 
were used to evaluate the different models. As a sensitivity analysis, we analyzed categorical variables instead of 
continuous variables for light GBM models in concordance with the NCDR-AKI risk model.

All statistical calculations and analyses were performed using R (version 3.6.2, R Foundation for Statistical 
Computing, Vienna, Austria) and Python 3.7 (Python Software Foundation Delaware, USA). Statistical signifi-
cance was set at P < 0.05. Finally, we created a web-based calculator to predict the risk of AKI after PCI.

Results
The patients’ mean age was 68.5 ± 11.3 years; the total AKI incidence was 9.4% (N = 1800). The baseline character-
istics and in-hospital outcomes of patients with AKI versus those without AKI are shown in Tables 1 and 2. The 
patients with AKI had a significantly higher incidence of acute presentations, such as heart failure at admission, 
CS, cardiopulmonary arrest, ST-elevation myocardial infarction, and use of IABP (Table 1). Moreover, patients 
with AKI had significantly higher in-hospital mortality, transfusion, and procedural complications, including 
bleeding complications (Table 2).

In the selection of pertinent variables, the Lasso method demonstrated that age, eGFR, preprocedural hemo-
globin, ST-elevation myocardial infarction, non-ST-elevation myocardial infarction/unstable angina, heart failure 
symptoms at admission, use of IABP, and CS were important for predicting the risk of AKI after PCI. SHAP also 
demonstrated that these variables, except for CS, were also important (Fig. 2). After removing IABP from the 
12 NCDR variables, the Lasso method demonstrated that age, eGFR, preprocedural hemoglobin, ST-elevation 
myocardial infarction, non-ST-elevation myocardial infarction/unstable angina, heart failure symptoms at admis-
sion, and CS and CPA were important predictors of the risk of AKI after PCI. SHAP also demonstrated that these 
features, except for CPA, were also important.

According to SHAP, we selected age, eGFR, preprocedural hemoglobin, ST-elevation myocardial infarction, 
non-ST-elevation myocardial infarction/unstable angina, and heart failure symptoms at admission as six basic 
variables. We subsequently added IABP or CS to these six variables. We also analyzed six variables + IABP + CS, 
or six variables + CS + CPA with the light GBM, according to the variables selected using the Lasso method.

Table 1.   Baseline characteristics of all patients. ±: SD, AKI: acute kidney injury, eGFR: estimated glomerular 
filtration rate, PCI: percutaneous coronary intervention UA/NSTEMI: unstable angina/non ST-elevation 
myocardial infarction.

Patients without AKI
N = 17,422 (%)

Patients with AKI
N = 1800 (%) P value

Age 68.2 (11.2) 71.1 (12.0) < 0.001

Male 13101 (79.5) 1300 (76.8) 0.011

Creatinine value (mg/dl) 0.99 ± 0.85 1.38 ± 1.29 < 0.001

eGFR (mL/min./1.73 m2) 64.6 ± 19.5 54.7 ± 26.3 < 0.001

Baseline Hemoglobin (g/dl) 13.5 ± 2.0 12.8 ± 2.6 < 0.001

Previous myocardial infarction 3863 (23.5) 293 (17.4) < 0.001

Previous heart failure 1386 (8.4) 243 (14.4) < 0.001

Diabetes mellitus 6708 (41.0) 762 (45.6) < 0.001

Cerebrovascular disease 1372 (8.3) 209 (12.4) < 0.001

Peripheral artery disease 1335 (8.1) 173 (10.3) 0.002

Chronic lung disease 532 (3.2) 63 (3.7) 0.26

Hypertension 12,083 (73.5) 1323 (78.4) < 0.001

Dyslipidemia 10,849 (66.1) 968 (57.5) < 0.001

Previous PCI 6291 (38.1) 348 (20.6) < 0.001

Previous coronary bypass 780 (4.7) 85 (5.0) 0.51

Heart failure on admission 1672 (9.6) 517 (28.7) < 0.001

Cardiogenic shock on admission 548 (3.1) 327 (18.2) < 0.001

Cardiopulmonary arrest
on admission 348 (2.0) 217 (12.1) < 0.001

Radial artery approach 9310 (53.6) 577 (32.1) < 0.001

Intra-aortic balloon pump 906 (5.2) 519 (28.8) < 0.001

ST-elevation myocardial infarction 3673 (21.2) 915 (51.2) < 0.001

UA/NSTEMI 3989 (23.0) 410 (22.9) 0.98
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Notably, the AUC calculated by the light GBM with six basic variables with IABP or CS had a performance 
similar to that of the conventional logistic regression prediction model that included 12 variables (light GBM 
by six variables + IABP, AUC [training/testing datasets]: 0.790/0.784 (receiver operating characteristic (ROC) 
curves: Fig. 3A,B); light GBM by six variables + CS, AUC [training/testing datasets]: 0.779/0.772 (ROC curves: 
Fig. 4A,B); logistic regression, AUC [training/testing datasets]: 0.797/0.755 (ROC curves: Fig. 5A,B). The results 

Table 2.   in-hospital mortality and complications. AKI: Acute kidney injury.

Patients without AKI
N = 17,422 (%)

Patients with AKI
N = 1800 (%) P value

In-hospital mortality 145 (0.8) 275 (15.3) < 0.001

All complications 1173 (6.8) 630 (35.3) < 0.001

Coronary Dissection 134 (0.8) 34 (1.9) < 0.001

Coronary Perforation 121 (0.7) 32 (1.8) < 0.001

Myocardial infarction 228 (1.3) 64 (3.6) < 0.001

Cardiogenic shock 186 (1.1) 178 (9.9) < 0.001

Heart failure 188 (1.1) 181 (10.1) < 0.001

Cerebral infarction 48 (0.3) 36 (2.0) < 0.001

Intracranial hemorrhage 6 (0.03) 13 (0.7) < 0.001

Cardiac tamponade 27 (0.2) 36 (2.0) < 0.001

Hemodialysis 0 (0.0) 210 (11.7) < 0.001

Transfusion 274 (1.6) 264 (14.7) < 0.001

Bleeding all 373 (2.1) 244 (13.6) < 0.001

Puncture site bleeding 104 (0.6) 62 (3.4) < 0.001

Puncture site hematoma 107 (0.6) 31 (1.7) < 0.001

Peritoneal bleeding 14 (0.1) 10 (0.6) < 0.001

Gastrointestinal bleeding 31 (0.2) 43 (2.4) < 0.001

Genitourinary bleeding 12 (0.1) 10 (0.6) < 0.001

Other bleeding 141 (0.8) 129 (7.2) < 0.001

Figure 2.   SHAP model to estimate important variables with the light gradient boosting model using the 12 
NCDR variables. The features are sorted in descending order by Shapley values. Abbreviations: CS: cardiogenic 
shock; CPA: cardiopulmonary arrest; DM: diabetes mellitus, Hb: hemoglobin; HF: heart failure, IABP: intra-
aortic balloon pump; STEMI: ST-elevation myocardial infarction; UA/NSTEMI: unstable angina/non-ST 
elevation myocardial infarction.
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of the other versions of the selected variables are presented in Table 3. As a sensitivity analysis, we used categori-
cal variables instead of continuous variables for the light GBM, which revealed low AUC scores in the testing 
datasets (Table 3).

Figure 6 shows the calibration plots with the light GBM using the seven variables without IABP (including 
CS but not CPA), which demonstrates concordance between the probability predicted by the light GBM and the 
probability actually observed. The calculator on the website created with this model is at the website for clinical 
use (https://​risk-​model.​herok​uapp.​com/​kics). The sample screen is shown in Fig. 7.

Discussion
The salient findings of our study are as follows (Fig. 6): (1) seven important variables (with IABP or CS) among 
the 12 NCDR variables were found to predict AKI after PCI, and (2) ML enabled adequate quantification of 
its risk with fewer clinical variables. (3) Using categorical variables in the conventional NCDR-AKI risk model 
may decrease the predictability in the testing dataset. ML techniques may aid in better selecting high-risk AKI 
patients, and in promoting the international use of traditional risk prediction models.

The traditional scoring system using the NCDR-AKI risk model is an effective in estimating the risk of AKI 
after PCI9,10. We used the definition of AKI as serum creatinine by ≥ 0.3 mg/dl or an increase to ≥ 50% since this 
definition is the most optimal to predict short-term and long-term adverse mortality as well as the NCDR-AKI 
risk model9,12,30,31. Additionally, we did not include contrast volume according to the NCDR-AKI risk model 
because the causes of AKI are multifactorial such as contrast or hemodynamically instability and pre-operative 
assessment the risk of AKI is paramount to decrease the amount of contrast volume. The enhanced ML risk 
prediction has been shown to enhance risk predictions even in the patients with the lowest and highest risks. 
However, these traditional risk scoring system requires, at most, 25 clinical variables13. Although these risk 
models are relatively effective in risk predictions, a number of variables needs to be entered and could be a bur-
den for clinicians especially emergent cases such as ST elevation myocardial infarction or cardiogenic shock32. 
To overcome this problem, we constructed the ML risk model using the light GBM with the JCD-KiCS registry 
to provide the risk of AKI with seven variables comparable to the NCDR-AKI risk model with the 12 variables. 
Although the more complete risk model would be better with a certain amount of variables, there is a barrier to 

Figure 3.   (A, B) ROC curve with training datasets using the light GBM with age, eGFR, preprocedural 
hemoglobin, ST-elevation myocardial infarction, non-ST elevation myocardial infarction/unstable angina, heart 
failure symptoms at admission and intra-aortic balloon pump. Abbreviations: GFR, glomerular filtration rate; 
GBM, gradient boosting model; ROC, receiver operating characteristic.

https://risk-model.herokuapp.com/kics
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its adoption in the current practice despite the potential capacity of electronic health records and its real-time 
automatic risk calculation33. In this regard, we created a convenient risk calculator with seven variables in the 
website, which promotes the adoption into the contemporary medicine. In addition, our study has demonstrated 
that the risk scores can be validated and shared across different regions by applying the ML based-methods10. 
The study process was possible since JCD-KiCS was developed in line with NCDR CathPCI coding dictionary 
(version 4.0) and future studies are needed whether the concept can be expanded to other the cardiovascular 
conditions.

To elucidate the important features among the 12 NCDR variables, we selected them through the Lasso and 
SHAP methods, which are widely used to select variables24,34. We also applied the light GBM which has been 
developed recently as an ML method, but it generally reduces calculation time and might reduce the burden 
on the website15. It is known that using continuous variables that are suitable for light GBM may enhance 
predictability in the testing dataset13. In addition, it also allows missing values for prediction, which is more 
advantageous than the conventional logistic regression model. For example, the previous study demonstrated 
the usefulness of light GBM to build an accurate risk prediction for asthma exacerbation with possessing the 
advantage of identifying missing values as a unique entity22. Importantly, our study is unique in that we created 
the calculator on the website to assist interventional cardiologists in identifying high-risk patients for AKI after 
PCI, highlighting the importance of implementing the risk model in physicians.

We analyzed the light GBM with variables without IABP, even though the SHAP or Lasso methods demon-
strated that IABP is a pertinent feature since the use of IABP is operator-dependent, and the benefit of IABP is 
considered to be reduced over the past years26. In 2012, IABP-SHOCKIItrial demonstrated IABP did not reduce 
mortality in patients with CS and following meta-analyses validated the finding26,27,35,36. In addition, the obser-
vational study also confirmed negative impact of IABP in a variety of clinical settings such as CS, ST-elevation 
myocardial infarction, heart failure, left main lesions, or three-vessel disease. Given these data, the indications 
of IABP use became less established during our study period, which extended more than a decade. Therefore, we 

Figure 4.   (A) ROC curve with training datasets using the light GBM with age, eGFR, preprocedural 
hemoglobin, ST-elevation myocardial infarction, non-ST elevation myocardial infarction/unstable angina, 
heart failure symptoms at admission and cardiogenic shock. (B) ROC curve with testing datasets using the light 
GBM age, eGFR, preprocedural hemoglobin, ST-elevation myocardial infarction, non-ST elevation myocardial 
infarction/unstable angina, heart failure symptoms at admission, and cardiogenic shock. Abbreviations: GFR: 
glomerular filtration rate, ROC: receiver operating characteristic.
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generated a model without IABP, which is more universal and feasible in current practice than the conventional 
NCDR-AKI risk model.

Technically, the AUC in the new model was comparable to that of the NCDR-AKI risk model (AUC 0.72)9. 
Better estimation of the AKI incidence before PCI would be beneficial as a foundation for individualized care 
because it could directly lead to increased use of preventive strategies such as adjusting preprocedural hydration 
and the amount of contrast volume, deciding to use an intravascular ultrasound and RenalGuard (RenalGuard 
Solutions, Inc., MA, USA), and management during hospitalization by timely sequential creatinine measurement 
and follow-up after discharge, which might improve patient outcomes3,37,38. In addition, since the incidence of 
AKI varies among physicians, the showing the AKI risk itself before PCI with simple calculation is useful to 
reduce the incidence of AKI and its associated mortality and cost3,39,40. Moreover, the preprocedural risk of AKI 

Figure 5.   (A) ROC curve with training datasets using the logistic regression model with the 12 NCDR 
variables. (B) ROC curve with testing datasets using the logistic regression model with the 12 NCDR variables. 
Abbreviations: ROC: receiver operating characteristic.

Table 3.   Area under the curve in different models. AUC, Area under the curve; CS, cardiogenic shock; CPA, 
cardiopulmonary arrest; GBM, gradient boosting model; IABP, intra-aortic balloon pump.

Model Continuous or categorical IABP CS CPA AUC (training) AUC (testing)

Light GBM

Continuous + − − 0.790 0.784

Continuous − + − 0.779 0.772

Continuous + + − 0.79 0.783

Continuous − + + 0.783 0.775

Categorical + − − 0.795 0.755

Categorical − + − 0.786 0.745

Categorical + + − 0.796 0.759

Categorical − + + 0.789 0.753

Logistic regression Categorial + + + 0.797 0.755
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can enhance the patient consent process and risk/benefit evaluation because revascularization for patients with 
stable coronary artery disease is questionable given the data of recent randomized control trials including the 
patients with chronic kidney disease41,42.

Our study had some limitations. First, we selected our patient cohort from a prospective observational study, 
which was not initially designed for a focused investigation of the association of AKI after PCI. Second, we 
excluded patients whose information on AKI after PCI was missing. Although the creatinine levels in relatively 
stable patients were not consistently assessed, these exclusions could have created a bias in our results. Third, 
unadjusted confounders are unavoidable given its observational cohort study in nature, however, our registry 
collaborated with NCDR CathPCI registry and obtained covariates which are known to be confounders. Fourth, 
although SHAP and Lasso selected important variables, collinearity between the two factors, such as heart fail-
ure and cardiogenic shock, cannot be excluded. However, previous reports from the NCDR CathPCI registry 
used both variables as independent predictors through logistic regression models9,43,44. Fifth, our model should 
be validated using other registries; however, our registry already validated the NCDR registry AKI risk model. 
Because our registry was constructed in line with the ACC NCDR under mutual collaboration, we were able to 
use the variable under an identical coding system and conduct direct comparison; therefore, in a way, this study 
itself is an external validation of the ACC NCDR CA-AKI prediction model using the ML technique10,11. Since 
our registry was constructed in line with NCDR under mutual collaboration, we were able to use the variable 
under identical coding system and conduct direct comparison; therefore, in a way, this study itself is an external 
validation of NCDR AKI prediction model, will application of the ML technique. Finally, the different baseline 
characteristics of the training and testing datasets were shown; however, the incidence of AKI was also differ-
ent, and we demonstrated a similar AUC between the training and testing datasets despite the different patient 
characteristics. Herein, we consider that the consistency of the model over different time intervals is a major 
strength of this study.

Finally, in the JCD-KiCS registry, the data were also extracted from the laboratory values obtained during 
the entire 30-day follow-up period after the indexed procedure, which may have overestimated the incidence of 
AKI. However, peak creatinine levels are often observed three to 5 days after contrast exposure45, which can be 
used to estimate the true incidence of AKI.

Notwithstanding the limitations, the AKI risk model after PCI using ML enabled adequate quantification 
of its risk with fewer clinical variables. Our ML model is meaningful and can replace the conventional NCDR-
AKI risk model, given that uses almost half the number of variables. ML techniques may aid in enhancing the 
international use of validated risk models.

Figure 6.   Calibration plot using the light GBM with age, eGFR, preprocedural hemoglobin, ST-elevation 
myocardial infarction, non-ST elevation myocardial infarction/unstable angina, heart failure symptoms at 
admission, and cardiogenic shock. Abbreviations: GBM: gradient boosting model; eGFR: estimated glomerular 
filtration rate.
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