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Lumbar disc herniation is among the common phenotypes of degenerative lumbar

spine diseases, significantly affecting patients’ quality of life. The practice pattern is

diverse. Choosing conservative measures or surgical treatments is still controversial in

some areas. For those who have failed conservative treatment, surgery with or without

instrumentation is recommended, causing significant expenditures and frustrating

complications, that should not be ignored. In the article, we performed a literature

review and summarized the evidence by subheadings to unravel the cons of surgical

intervention for lumbar disc herniation. There are tetrad critical issues about surgical

treatment of lumbar disc herniation, i.e., favorable natural history, insufficient evidence

in a recommendation of fusion surgery for patients, metallosis, and implant removal.

Firstly, accumulating evidence reveals immune privilege and auto-immunity hallmarks of

human lumbar discs within the closed niche. Progenitor cells within human discs further

expand the capacity with the endogenous repair. Clinical watchful follow-up studies with

repeated diagnostic imaging reveal spontaneous resolution for lumbar disc herniation,

even calcified tissues. Secondly, emerging evidence indicates long-term complications

of lumbar fusion, such as adjacent segment disease, pseudarthrosis, implant failure,

and sagittal spinal imbalance, which get increasing attention. Thirdly, systemic and local

reactions (metallosis) for metal instrumentation have been noted with long-term health

concerns and toxicity. Fourthly, the indications and timing for spinal implant removal

have not reached a consensus. Other challenging issues include postoperative lumbar

stiffness. The review provided evidence from a negative perspective for surgeons and

patients who attempt to choose surgical treatment. Collectively, the emerging underlying

evidence questions the benefits of traditional surgery for patients with lumbar disc

herniation. Therefore, the long-term effects of surgery should be closely observed.

Surgical decisions should be made prudently for each patient.
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INTRODUCTION

As one of the most burdensome health issues globally, low back
pain (LBP) causes vast expenditures in treatment and sick leave
from work (1). According to the Global Burden of Disease Study
2013, LBP is one of the most common musculoskeletal diseases
amongst 301 acute and chronic diseases and injuries based on
data from 188 countries during 1990–2013 (2). Degenerative
diseases of the intervertebral discs, such as lumbar disc herniation
(LDH,MeSH: intervertebral disc displacement), represent part of
the most common causes of LBP (3). The prevalence of LDH is
2% in the general population (4) and 1.42% in adolescents (5),
according to SweSpine. Except for the presence of cauda equina
syndrome, plegia, and sensory-motoric deficits, controversy still
exists regarding the indications for surgical intervention.

Whether to choose conservative measures or surgical
treatments is still controversial for LDH in some areas (6). The
traditional surgical procedures of LDH are various according to
the disease, including pure decompression, decompression with
non-instrumented fusion, decompression with instrumented
fusion, minimally invasive decompression with fusion,
decompression associated with a dynamic stabilization system,
etc. Patients with isolated herniated lumbar discs causing
radiculopathy are recommended to undergo the primary
disc excision operation, such as open discectomy, endoscopic
discectomy, or laminectomy in the guideline. Lumbar spinal
fusion is not recommended as a routine treatment for these
patients. However, lumbar spinal fusion is recommended for
patients with herniated discs who have severe degenerative
changes or obvious intersegmental instability caused by the
herniated discs. Besides, reoperative discectomy and fusion is
a potential treatment option in patients with recurrent disc
herniations associated with significant deformity, instability, or
chronic axial low back pain (7). Reoperative discectomy and
fusion are believed superior in minimizing mechanical instability
and recurrence compared to reoperative discectomy for the
recurrent cases (8).

A retrospective study consisting of 18,590 patients with
LDH who underwent surgical treatment showed that open
discectomy was the most common procedure (68.9%) in the
primary operation, followed by endoscopic discectomy (16.1%),
laminectomy (7.9%), fusion (3.9%), and nucleolysis (3.2%) (9).
Although pure decompression is themost recommended surgical
procedure for the purely herniated with neurological symptoms,
the reoperation rates were considerably high, with 18.6, 13.8,
and 12.4% after laminectomy, open discectomy, and endoscopic
discectomy, respectively (9). As a matter of fact, removing part of
the lumbar disc might induce a secondary complex situation that
can bring spinal instability (10). And it turns out an initial lumbar

Abbreviations: NP, nucleus pulposus; AF, annulus fibrosus; ASD, adjacent

segment disease; CEP, cartilage endplate; FADD, Fas-associated death domain

containing protein; FasL, Fas ligand; IDD, intervertebral disc degeneration;

LBP, low back pain; LDH, lumbar disc herniation; lncRNA, long noncoding

RNA; miRNA, microRNA; MMP, metalloproteinase; MRI, magnetic resonance

imaging; NASS, North American Spine Society; ncRNA, noncoding RNA; RCTs,

randomized controlled trials.

discectomy for the patients with LDH is statistically associated
with an increased likelihood of lumbar fusion in the future (11).

The selection of treatment strategy for LDH should be based
on the severity of the disease and the patient’s overall condition
(12). Whether to choose non-surgical or surgical treatment and
which surgical procedure is selected depends on the severity of
symptoms and the clinical-pathological correlate. However, the
decision-making of treatment strategy is partially preference-
sensitive, depending on the surgeon’s preference, which is
influenced by the doctors’ experience and patients’ expectations.

Although surgical treatment has been demonstrated as an
effective treatment strategy with the advantages, such as rapid
symptoms relief, increased stability, facilitated bone healing, and
restored alignment, several disadvantages or complications in
the long term have also been noted (13). These complications,
i.e., adjacent segment degeneration, metallosis, and additional
ionizing radiation exposure, have been widely reported in the
last two decades. There is accumulating evidence that questions
the benefits of traditional surgery for patients with LDH (14,
15). Given that the pros of surgical treatment have been well-
documented in the literature, we will emphasize the cons from
four aspects in the current review.

NATURAL HISTORY ISSUE OF LDH

Immune Privilege of NP
Closed Niche
Physiologically, the human lumbar disc comprises three subparts,
i.e., the sandwiched central nucleus pulposus (NP), peripheral
annulus fibrosus (AF), and adjacent cartilage endplates. The
local environment of NP cells is similar to a closed niche (16)
(Figure 1). Furthermore, the disc belongs to one of the largest
avascular structures in the human body. The blood vessels and
innervations terminate in the outer layer of AF of the healthy
disc (17). The closest distance from the center of NP to the blood
supply is as far as 7–8mm (18). The nutrition of NP mainly
derives from the osmosis of cartilage endplate and AF (18, 19).
Therefore, human NP in the disc remains untouched from the
immune system, being the physiologic basis of human discs as
immune-privileged organs.

FasL-Fas Network as Underlying Mechanisms of NP

Immune-Privilege
FasL (Fas ligand, CD178) localizes in humanNP cells strategically
as a death factor, which can bind with Fas (CD95, death receptor)
of invasive immune cells and endothelial cells (20, 21). The
binding of FasL to Fas induces apoptosis (22) of the invasive
immune cells, maintaining the immune-privilege characteristic
of the intact human NP (23). It has been reported that the cells’
morphological alterations and chromosomal DNA degradation
in apoptosis occur within a few hours in vitro (24).

Breakdown of the Immune Privilege and Disc

Degeneration
Kaneyama et al. (25) found a significant decrease of FasL
expression in the degenerated discs compared with the non-
degenerate discs, implying the potential protective role of FasL
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FIGURE 1 | Schematic diagram of the normal lumbar disc within the scope of

the vertebral body. (A) Transverse view of normal lumbar disc. (B) Sagittal view

of lumbar disc and adjacent vertebral bodies. (C) Coronary view of lumbar disc

and adjacent vertebral bodies. The border of the central nucleus pulposus and

surrounding AF is clear.

against degeneration. Fas and FasL’s expression on stabbed-disc
cells is significantly higher than those in normal disc cells (26).
When the physiological barrier is damaged, an autoimmune
reaction is evoked. Immune cells expressing with FasL bind
with NP cells expressing with Fas, which induces the NP cells
apoptosis. At the same time, up-regulated FasL in NP co-
expressing with Fas induces apoptosis of disc cells via the
paracrine pathway. Deregulated FasL and Fas contributing to the
abnormal apoptosis of NP cells may be possible pathogenesis of
intervertebral disc degeneration (IDD).

Emerging evidence indicates that various physiologic and
pathologic processes are regulated by the coding (mRNAs)-
non-coding RNA (ncRNA) network. Types of ncRNAs, such as
microRNA (miRNA) and long non-coding RNA (lncRNA), are
involved in various physiologic and pathologic processes in IDD,
which were reported previously. We found that several miRNAs
are differentially expressed in degenerative NP, including the
down-regulated miR-155. Further investigation revealed that
miR-155 plays a regulatory role in FasL-Fas apoptotic signaling
pathway. Deregulated miR-155 increases the expression level
of Fas-associated death domain-containing protein (FADD)
and caspase-3, promoting Fas-mediated apoptosis in IDD (27).
Following that, a lncRNA-mRNA microarray analysis of human
NP was conducted in 2014 (28). Up-regulated expression of
enhancer-like lncRNA RP11-296A18.3 was observed, inducing
the overexpression of Fas-associated protein factor-1 which
induces the Fas-mediated apoptosis of NP cells at last.

Subsequently, Cui et al. indicated that another lncRNA, MAGI2-
AS3, is down-regulated in IDD, which is inversely related to
the FasL level in NP cells (29). Decrease expression of lncRNA
MAGI2-AS3 may promote FasL expression and trigger the FasL-
Fas apoptotic signaling pathway, resulting in the apoptosis of NP
cells.We addressed the Fas-FasL interacting network betweenNP,
immune cells, and certain modulation factors (21), organizing
global researchers for a hot topic issue on IDD (30).

Endogenous Repair Basis
During the regeneration process of various organs, endogenous
repair exists, including liver, gut, skin, muscle, kidney, and bone
(31). Each organ has a specific capacity for endogenous repair.
Accumulating evidence indicates that endogenous repair exists
in the human disc, with progenitor cells as crucial contributors
(32, 33). In 2007, Risbud et al. (34) first identified human NP
and AF cells expressing specific stem cell types of surface markers
from degenerative discs. Moreover, these cells can differentiate
into chondrogenic, osteogenic, and adipogenic lineages. After
that, multiple lines from in vivo and in vitro studies indicated
the existence of progenitor cells in human intervertebral discs.
Intervertebral disc cells expressing Tie 2 represent a subtype
progenitor cell group with discogenic differentiation potential
and enhanced regeneration (35).

Besides these basic lines of evidence, various clinical
factors contribute to the disruption of the barrier, including
trauma/microtrauma during daily life, aging/pathologic
alterations (such as scoliosis) with cartilage endplate (CEP)
degeneration, iatrogenic, congenital factors, and/or vertebral
endplate morphology (36).

Emerging Etiology Evidence of LDH
Clinical Evidence of Spontaneous Resorption of

Herniated Intervertebral Discs
Cribb et al. reported a dramatic regression of massive herniation
in 14/15 patients after an average 24 months follow-up
(range: 5–56 months) (37). Compared with bulges and focal
protrusions, broad-based herniation and sequestrations improve
more (38). Not only massive soft herniation but large calcified
disc herniation could be absorbed as well (39). Other spinal
herniation, such as cervical/thoracic disc herniationwith/without
calcification, has also been reported with spontaneous resolution
(40, 41).

Repeated MRIs revealed the shrinkage of herniated discs
gradually, with 76% or more absorbed in 1 year (Figure 2).
Moreover, Panagopoulos et al. summarized 12 studies in a
systematic review (42). Amongst 901 middle-aged LDH patients,
15% to 93% were partially or entirely relieved by 1 year with
repeated MRI observations. Zhong et al. conducted a meta-
analysis with 11 cohort studies and revealed that the overall
incidence of spontaneous regression in LDHpatients was 66.66%,
with a regional difference (43).

Clinical symptoms, such as sciatica and motor and sensory
deficits, can gradually improve in non-surgical treatment LDH
cases (44, 45). However, changes in the size of herniated
intervertebral discs on MRI are not significantly correlated with
the development of clinical symptoms. For instance, sciatica
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FIGURE 2 | Repeated MRIs of a typical case with spontaneous resolution. A

39-year-old male patient presented with low back pain and sciatica. MRI

indicates lumbar disc herniation at L5/S1 [(A,C) red arrows]. One year later,

repeated MRI indicates herniation resolution [(B,D) red arrows].

is influenced by multiple factors. Not only the relief of the
mechanical compression but also the decreased severity of the
inflammatory or chemical irritation contribute to the alleviation
of the clinical symptoms (46).

Autoimmune Response and Inflammation Cascade

Underlying the Spontaneous Resorption of Herniated

Intervertebral Discs
Human intervertebral discs, particularly NP, belong to immune-
privileged sites. The initial immune-privileged scenarios change
dramatically when NP protrudes out from the closed niche
(Figure 3). The herniated tissue is recognized as a foreign
antigen by the autoimmune system, attracting immune cells
and auto-antibodies, triggering an autoimmune response, and
inflammation cascade (47).

In 1965, Bobechko and Hirsh revealed that an autoimmune
response is induced whenNP of rabbits is exposed to the systemic
circulation, giving rise to the auto-antibodies production in
lymph nodes (48). Subsequently, a high level of IgG and IgM
was found in herniated human intervertebral discs (49, 50).
Satoh et al. indicated that the antigen-antibody complexes exist
particularly in the pericellular space of NP cells rather than
the NP cell membrane. This implied that the newly produced
substances are surrounding the NP cell, such as polysaccharides,
are playing roles of auto-antigen in the immune response (51).
Later, evidence of several studies suggested that not only humoral
immune response but cellular immune response also exists in
the autoimmune response to the herniated substance. Geiss et al.

FIGURE 3 | Schematic diagram of contained herniated lumbar disc with

transverse (A) and sagittal views (B). Under multiple factors, the nucleus

pulposus protrudes toward posterior and lateral direction with AF fibers

ruptured to a certain extent.

reported that activated T and B cells infiltration is observed
in autologous porcine NP exposed to the autoimmune system
(52), including IL-4-producing Th2 cells, which participate
in the humoral immune system response (53). By using the
immunohistochemical analyses, Ikeda et al. (54) and Park et al.
(55) found that a small number of T cells and many macrophages
are infiltrating the herniated NP tissue. Murai et al. indicated that
macrophages and NK cells are the early immune responder after
the exposure, then are the T and B cells (56).

Neovascularization has been widely reported contributing to
the resorption mechanism. With many newly formed vessels
around the disc fragments, granulation tissue was observed on
the herniated NP tissue (57). Several inflammatory factors or
cytokines, such as tumor necrosis factor–α, midkine, vascular
endothelial growth factor, and fibroblast growth factor 2, have
been identified as the inducer of angiogenesis (45, 58–62).
Macrophages migrate through the newly formed vessels and
converge around the disc fragments (58, 63, 64). The infiltrating
macrophages produce high levels of matrix metalloproteinase
(MMP), including MMP-3 and MMP-7 (65). Cells from
herniated discs undergo autoself-induced apoptosis progress
via autocrine or paracrine Fas-FasL mechanisms (55). A high
level of matrix enzyme degrades the aggrecan and collagen in
the herniated material. Finally, the fragment of the tissue and
apoptotic cells is absorbed by the macrophages and disc cells via
phagocytosis (65–67).

The Hypothesis of the Spontaneous Regression in

LDH Natural History
There are three hypotheses to explain the mechanism of
spontaneous resorption in LDH. The first hypothesis is the
dehydration and shrinkage of the herniated material (68). The
second mechanism is supposed that the herniated disc, which is
elastic and not separated from the main part in the intervertebral
disc space, retracts back to the central place gradually (69). The
third is the mechanism mentioned in the previous segment.
The herniated disc is identified as a foreign antigen, inducing
an autoimmune response and inflammatory cascade. Then, the
matrix substance and apoptotic cells are degraded and absorbed
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by the macrophages via phagocytosis (52). It is supposed that
all of the three mechanisms contribute to the spontaneous
resorption process (70).

NON-SURGICAL TREATMENT—THE
FOREMOST OPTION FOR LDH PATIENTS
WITHOUT SERIOUS SYMPTOMS

LDH is treated with surgical or non-surgical measures. Non-
surgical treatments of LDH include various methods, such as
bed rest, lumbar supports, physical therapy, spinal manipulation,
oral analgesics, muscle relaxants, epidural steroid injections,
and behavioral therapy (71). Except for the presence of cauda
equina syndrome and neurologic impairment, controversy still
exists regarding the indications for surgical intervention. North
American Spine Society’s (NASS) clinical guideline for LDH with
radiculopathy indicated that the evidence in a recommendation
for urgent surgery is insufficient for LDH patients with motor
deficits (72). Several prospective controlled studies suggested
that patients undergoing non-surgical treatment should only
switch to surgical treatment with exacerbated symptoms (73,
74). Either surgical or conservative measures are suggested
effective both in the short and long term for patients with
less severe symptoms (72). The recommendation of Danish
national clinical guidelines of recent onset lumbar nerve root
compression advised at least 12 weeks of a conservative
treatment to LDH patients before being considered for operation
unless ongoing severe symptoms such as severe pain and
disability (75). However, the North American Spine Society’s
(NASS) clinical guideline for LDH with radiculopathy suggested
that LDH patients whose symptoms are severe enough to
warrant surgery seek surgical intervention in 6 months.
They indicated that earlier surgery (within 6 months to
1 year) is related to faster recovery and better long-term
outcomes (72).

Although surgery is effective for LDH patients with
radiculopathy in the short term, the surgical complication, repeat
operation, and symptomatic recurrent LDH are unavoidable
frustrating issues for part of them. A meta-analysis including
34,639 surgical cases of LDH revealed that the overall incidence
of complications is 2.7%, while 2.1% of the patients had repeat
operations within 3 months (76). Consistently, another study
conducted in the US revealed that the average reoperation rate
for LDH patients is 1.9% at 90 days, 6.4% at 1 year, and 13.8% at
4 years. Decompressions without fusion account for the majority
of re-operative procedures (73%), while fusion with or without
decompression nearly makes up for the rest (25.7%) (77). Apart
from the undesirable operational effect, symptomatic recurrent
LDH is another cause of reoperation. A small part of patients
(5–15%) experience unfavorable events, and 4% to 6% undergo
surgery in 2 years (78–81).

Although the surgical intervention has the advantages, i.e.,
rapid relief of symptoms and faster recovery of neurological
deficits in the short term (13), several randomized controlled
trials (RCTs) showed that the difference between conservative
and surgical treatment in LDH patients with radiculopathy is

non-significant 1 year later after diagnosis (82). Considering
that spontaneous resorption of herniated discs commonly exists
in the natural history of LDH, symptoms in a proportion of
the patients will resolve on their own. Parts of the patients
with LDH, particularly those without serious symptoms, are
likely to benefit from the conservative treatment. Part of the
patients’ clinical symptoms will be alleviated or even completely
disappear in a short time (83). Therefore, we suggested that
non-surgical treatment is the foremost recommended measure
for LDH patients without serious symptoms, such as cauda
equina syndrome and motor deficits, which may achieve the
same clinical outcomes and avoid various discomfort caused by
the operation.

A Long-Term Complication of Lumbar
Fusion
In the US, the annual incidence of spinal fusion surgeries has
increased over 600% from the 1990s to 2011. Nowadays, 450
000 spinal fusion cases are performed yearly (84). The national
trend has been persistent during different observational periods
(85). Whereas, spinal fusion with instrumentation increases
healthcare expenditures, a surge of serious complications
associated with the fusion has been observed as well. Increased
local stress and compensatory motion on the non-operated
adjacent levels after fusion procedure were both reported, giving
rise to many problems, such as adjacent segment diseases
(ASD) (86).

Adjacent Segment Disease
ASD was defined as presenting a new clinical symptomatic
degenerative disease corresponding to an adjacent level following
spinal fusion at an index segment (87). ASD was represented by
a series of pathological changes at the adjacent segments, such
as disc height loss, disc herniation, canal stenosis, osteophyte
formation, spondylolisthesis, and scoliosis (88). The incidence
of ASD has been reported to vary from 4 to 45.7% of patients
undergoing mono-segmental and multi-level fusion (88–91).
Strikingly, multiple-repeated ASD following posterior lumbar
interbody fusion of a single segment has been reported (92). Four
patients among 1,112 consecutive patients developed multiple-
repeated ASD with multiple repeated surgeries, even fusion
upper to T1.

The etiology, incidence rate, and treatment strategies for
ASD remain undefined. Risk factors of ASD include obesity,
natural degeneration with aging, increased stress in intra-
disc, preoperative disc degeneration, intraoperative superior
facet joint violation, fusion at more than four levels, adjacent
cranial segment, the upper shift of lumbar motion center,
and decreased sacral slope (87, 88, 93–95). The incidence
rate of ASD varies in terms of studied patient samples,
follow-up time frame, the number of fusion segments, fusion
techniques (180 or 360 degrees), and patients’ age (87, 94).
Regarding treatment strategies, a systematic review and meta-
analysis indicated little available evidence addressing the optimal
treatment options for patients with ASD for stenosis with or
without instability (96).
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Adjacent segment degeneration in the radiograph is the
initial stage of ASD, referring to the degeneration of adjacent
levels in diagnostic imaging (such as MRI) without clinical
symptoms. Several researchers investigated the prevalence of
radiographic adjacent segment degeneration and reported that
the incidence is ranged from 9 to 27% in the lumbar
spine (97, 98). A considerable proportion of the patients
underwent an additional operation in the next few years. A
series of risk factors were revealed in the published paper
for the adjacent segment degeneration, which is similar to
ASD (99). A systematic review indicated that the difference
among the fusion procedures results in the variation of
incidence in adjacent segment degeneration (99). Both aspects
have been suggested as the key factors to avoid adjacent
segment degeneration, including the reservation of posterior
elements in the fusion procedure and perioperative treatment
of osteoporosis.

Other Complications Associated With
Fusion Surgery
A systematic review of the literature of lumbar fusion for
degenerative disorders, including 160 studies, revealed that the
overall complication rate of lumbar fusion procedure is 14%
(100). Apart fromASD, other long-term complications associated
with fusion surgery, such as pseudarthrosis, implant failure,
and sagittal spinal imbalance, were also widely reported in
the literature (101, 102). The overall fusion rate for patients
undergoing lumbar fusion procedures was reported as 88.5%
(100). Smoking, metabolic disorders, surgical instrumentation
and technique, and fusion location have been demonstrated
as the risk factors for pseudarthrosis (103, 104). In addition
to this, osteopenia and osteoporosis have been suggested as
another risk factor for pseudarthrosis, and implant failure, such
as screw loosening (105, 106). Post-operative back pain was
reported in the patients undergoing lumbar fusion procedures.
In-depth investigation showed that poor post-operative spinal
sagittal alignment is related to prolonged back pain (107). Apart
from that, the sagittal spinal imbalance was also associated with
the body imbalance, which induces falls (108). The causes of
sagittal imbalance are multifactorial, including pseudarthrosis at
the lumbosacral junction, adjacent segment disease, and high
pelvic incidence (109). The restoration or correction of sagittal
alignment is important to the patients’ surgical outcome and
quality of life.

METALLOSIS ISSUE

Metal Debris and Elevated ion Level in
Arthroplasty
Due to electrochemical corrosion and/or mechanical wear,
surgical metallic implants have gained increasing attention
in recent years. As early as 1973, Coleman et al. (110)
presented the first line of evidence on a raised level of
cobalt and chromium in the blood and urine of patients
with metallic total hip replacements. Submicrometer metal
particles within macrophages in the liver and/or the spleen were

observed in patients undergoing primary and revision total hip
arthroplasty (111).

The elevated level of systemic metal particles accumulating
in the end organs, such as the heart (112), liver (111), and
spleen (111), resulting in systemic metal toxicity, such as cobalt
toxicity (113–116), even causing death (117). Apart from that,
intracellular phagocytosis of particulate debris by macrophages
can trigger the release of proinflammatory cytokines in the
surrounding tissue, inducing aseptic fibrosis, local necrosis,
or loosening of a device secondary to metal corrosion (118).
Such type of metal debris staining complication is termed
metallosis (119). Metallosis is a potentially fatal complication
originally found in patients after arthroplasty, which is generally
associated with metal or non-metallic implant wear (120). By
analyzing whole blood metal and ion levels in 185 patients
undergoing bilateral Birmingham Hip Resurfacing, Matharu
et al. (121) proposed that the optimal threshold was 5.5 µg/L
for distinguishing patients with and without adverse reactions
metal debris.

Systemic and Local Reactions Related to
Spinal Metallic Implants
Joint prostheses and spinal instrumentation have different
biomechanical effects on the human body. Regardless of
corrosion mechanisms, mechanical wear is the predominating
reason for the metallosis after arthroplasty, whereas fretting wear
is the primary cause for metallosis after spinal instrumentation
(119). It is generally speculated that the inevitable micromotion
at the metal-metal junctions may lead to fretting corrosion
and production of the particulate metallic debris after spinal
instrumentation. Spinal metallic implants are currently made
of titanium alloy, containing 90% titanium, 6% aluminum, and
4% vanadium. Other metal components exist in spinal implants
containing niobium. It is widely reported that Ti6Al4V is highly
susceptible to fretting corrosion due to a mixed microstructure
when the titania passivation layer is disrupted (122). In contrast
to these findings, a long-term test showed that the titanium and
cobalt chrome constructs are more resistant to fretting corrosion
than stainless steel (123).

In 1999, Wang et al. (124) reported that wear debris is
generated in the tissue surrounding titanium spinal implants
from nine patients undergoing prior lumbar decompression and
fusion procedure and reoperation. Metal levels were higher in
patients with pseudarthrosis than patients with a solid spinal
fusion (30.36µg/g of dry tissue vs. 0.586µg/g of dry tissue). In
2003, Kaisai et al. (125) studiedmetal concentrations in the serum
and hair of 46 patients with titanium alloy spinal implants, using
inductively coupled plasma emission spectroscopy. Accordingly,
they noted that one-third of involved patients exhibited higher
serum or hair metal concentrations following surgery. Titanium
or aluminum may have distant organ accumulation from the
spinal implants. In 2008, Richardson et al. (126) reported
higher serum titanium levels in 30 patients with titanium
alloy spinal instrumentation prospectively in comparison with
controls (2.6 vs. 0.71 µg/L), using high resolution inductively
coupled plasma-mass spectrometry [HR-ICP-MS, detection limit
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for titanium as 0.25µg/L (ppm)]. Instrumented spinal fusion can
result in abnormally elevated serum titanium, aluminum, and
niobium levels in pediatric patients undergoing instrumented
spinal arthrodesis to correct scoliosis and kyphosis (127–129).
A systematic review concerning the concentration of metal ions
following multi-level spinal fusion, which includes 18 studies and
encompasses 653 patients, showed that metal ions are elevated
after instrumented spinal fusion, notably Cr levels from stainless
steel implants, and Ti from titanium implants (130). Moreover,
serum metal ion levels correlate positively with fusion segments
and numbers of spinal implants.

The Harmful Effect of Metallosis After
Spinal Implantation
Accumulating evidence has unraveled local and systemic
reactions to metal spinal implants. Metal particulate debris
deposited in the soft tissue surrounding spinal implants was
shown to activate a macrophage response that triggers the
release of proinflammatory cytokines, leading to mild chronic
inflammation, and stimulating the formation of the metal debris
granuloma (131). The chronic inflammation irritated by the
metal debris was suggested to be associated with the late operative
site pain, which is eliminated until the implant is removed
(132). Several researchers reported that the intraspinal extradural
granuloma resulting from the foreign body reaction to the
metallic wear debris contributes to the compression of the
neurological elements and neurological symptoms mimicking
the lumbar spinal stenosis (133–135). Moreover, metal debris
has been shown to induce the mature osteoclast precursor
and apoptosis of osteoblast, increase the peri-prosthetic bone
resorption, and inhibit osteogenesis. These effects result in
implant debris-related osteolysis, aseptic fibrosis, local necrosis,
or implant loosening (136–140).

Metal debris has also been displayed to stimulate the
immune system to induce a series of type IV delayed-type
IV hypersensitivity responses (141, 142). These immunogenic
reactions are presented as anorexia, fatigue (143), severe
dermatitis (144), urticarial (145), and vasculitis (145). In
addition, much evidence indicates that degraded metal particles
from spinal metallic implants can enter the systemic blood
circulation and deposit in the heart, liver, and spleen. The average
level of serum titanium is similar to that of patients undergoing
arthroplasty. Although a few findings have been reported, the
long-term impact of elevated serum metal concentrations on
patients with a spinal implant is not entirely clear. Furthermore,
there has been no established threshold above which metal
concentrations will be toxic after the spinal instrumented surgery.
Removing the spinal implantation at the right time may be a
method to avoid metallosis.

SPINAL IMPLANT REMOVAL

The latest updated guidelines (NG59) drafted by the National
Institute for Health and Care Excellence in the UK (https://www.
nice.org.uk/guidance/ng59) states that fusion for non-specific
low back pain should be strictly used only for RCTs (146). The
guidelines reflect those lessons obtained from clinical practice

and reports. There have been no established indications for
spinal implant removal until now. Therefore, whether to proceed
depends on the surgeon’s preference.

Even though the application of spinal instrumentation
increased the probability of successful spinal fusion, stress
shielding induced osteoporosis on account of the rigid fixation
and increased the risk of recurrent fracture after implant
removal (106, 147, 148). Acquired spondylolysis has been a well-
recognized stress fracture after posterior lumbar fusion since
1963 (149). Nevertheless, adverse events have been reported
following pedicle screw constructs removal, including pedicle
stress fracture due to iatrogenic weakness of the pedicles
following removal (150, 151), vertebral compression fracture
within a solid lumbar fusion mass (152), or recurrent vertebral
fracture following pedicle screw removal for index burst
fracture (153). Therefore, the surgeon should attach attention
to the implant removal time and method, avoiding implant
removal failure.

OTHER CHALLENGES

Besides those mentioned above existing challenging issues, there
are other questions to be solved, including decreased quality of
life due to lumbar rigidity radiation exposure from perioperative
and follow-up diagnostic imaging. In addition to common
clinical outcome measures for lumbar spine surgery, indicators
have been noted reflecting lumbar rigidity due to the decrease
in kinematic units following lumbar fusion. Sciubba et al. (154)
evaluated the impact of stiffness on activities of daily living
following instrumented total lumbar fusion. The most affected
activities of daily living included dressing or bathing the lower
half of the body and performing personal hygiene functions
after toileting.

By adding instrumentation, patients have to experience
additional ionizing radiation exposure for the orientation of
pedicle screws during surgery with fluoroscopy (155–157)
observations on repeated radiographs for clinical outcome
follow-up. Compared to pure decompression, adding
instrumentation will result in more cumulative radiation
exposure for surgeons, medical staff in operating theaters, and
patients. Importantly, the awareness of such potential harms is
low amongst medical professionals (158) and patients (159, 160).

Residual and recurring back pain after surgery is common
in LDH surgeries. The proportion of patients reporting short-
term (6–24months) and long-term (>24months) recurrent back
pain ranged from 3–34% to 5–36%, respectively in a systematic
literature review (79). Some people who have persistent pain
postoperative are still unclear (161). Severe endplate changes,
such as endplate avulsion, damaged the lumbar stability and
maybe resulted in a higher recurrence rate and residual back
pain (162, 163). LBP has been suggested to be associated
with postural and structural asymmetries. CEP degeneration
accompanied by loss of cellularity results in the asymmetric
loading of the lumbar spine in LDH. Fusion surgery provides
the stabilization and maybe correct asymmetry of the lumbar
spine in part (164). However, the current operation aims
not to solve the imbalance of load, nor can it completely
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FIGURE 4 | Summarizations of the different aspects of the review. There are tetrad critical issues pertaining to surgical treatment of LDH, i.e., favorable natural history,

long-term complications of lumbar fusion, metallosis issue, and spinal implant removal.

solve the problem. Asymmetry of lumbar loading may still be
one of the causes of residual back pain postoperative. The
predictors of residual LBP after decompression included more
severe LBP at baseline, degenerative scoliosis, and Cobb angle
size (165).

As the second most mobile part of the human axis, the
lumbar spine and related LDH have been a hot topic for the
medical community (164). Nevertheless, LBP, most commonly
caused by a herniated disc, is a constant concern (166). For

decades, lumbar discectomy has been done by neurosurgeons
as the general surgical practice to solve the disease (167, 168).

The discovery of X-Ray brought about a shift of paradigm in the
practice of neurosurgery (169). The introduction ofmicrosurgical
techniques led to an essential evolution in lumbar disc surgery
(170). For those who have failed conservative treatment, surgery
is the only option that must be considered. However, while
the operation solves the symptoms, it also brings problems
that can not be ignored. This paper summarizes the cons of
surgical treatment from different perspectives. These summaries
are useful supplements to the present literature, providing a

unique vision for surgeons and patients who attempt to choose
surgical treatment.

CONCLUSIONS

Due to various triggering factors, lumbar surgeries with or
without implementation increase rapidly with great health
expenditures. In the review, we analyzed the tetrad critical
issues about surgical intervention for LDH, i.e., favorable natural
history, long-term complication of lumbar fusion, metallosis,
and implant removal (Figure 4). Based on the limited evidence
available so far, lumbar surgery solves the symptoms for the
patients with LDH and brings a new series of unexpected
problems. Therefore, the long-term effects of surgery should be
closely observed. Surgical decisions should bemade prudently for
each patient.
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