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Abstract: Heat loss quantification (HLQ) is an essential step in improving a building’s thermal
performance and optimizing its energy usage. While this problem is well-studied in the literature,
most of the existing studies are either qualitative or minimally driven quantitative studies that rely on
localized building envelope points and are, thus, not suitable for automated solutions in energy audit
applications. This research work is an attempt to fill this gap of knowledge by utilizing intensive
thermal data (on the order of 100,000 plus images) and constitutes a relatively new area of analysis in
energy audit applications. Specifically, we demonstrate a novel process using deep-learning methods
to segment more than 100,000 thermal images collected from an unmanned aerial system (UAS). To
quantify the heat loss for a building envelope, multiple stages of computations need to be performed:
object detection (using Mask-RCNN/Faster R-CNN), estimating the surface temperature (using two
clustering methods), and finally calculating the overall heat transfer coefficient (e.g., the U-value).
The proposed model was applied to eleven academic campuses across the state of North Dakota. The
preliminary findings indicate that Mask R-CNN outperformed other instance segmentation models
with an mIOU of 73% for facades, 55% for windows, 67% for roofs, 24% for doors, and 11% for HVACs.
Two clustering methods, namely K-means and threshold-based clustering (TBC), were deployed to
estimate surface temperatures with TBC providing consistent estimates across all times of the day
over K-means. Our analysis demonstrated that thermal efficiency not only depended on the accurate
acquisition of thermal images but also relied on other factors, such as the building geometry and
seasonal weather parameters, such as the outside/inside building temperatures, wind, time of day,
and indoor heating/cooling conditions. Finally, the resultant U-values of various building envelopes
were compared with recommendations from the American Society of Heating, Refrigerating, and
Air-conditioning Engineers (ASHRAE) building standards.

Keywords: clustering; heat loss quantification; instance segmentation; Mask R-CNN; deep learning;
mean average precision; thermal imagery; UASs; U-value; ASHRAE

1. Introduction

Heat loss quantification (HLQ) plays a crucial role in reducing the overall energy
consumption for optimal operations in buildings, particularly since its usage has a consid-
erable impact on the environment and a building’s life cycle [1,2]. A key objective of HLQ
is retrofitting existing building envelopes. The first necessary step in the building envelope
optimization process is assessing the actual thermal performance. Indicators, such as the
energy performance or energy use intensity, are used to express this performance.
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The building envelope in-situ measurement depends on factors that are classified into
three main categories: site conditions, building conditions, and operating conditions [3].
The site conditions category refers to the weather conditions under which the tests are
performed. These weather conditions include, but are not limited to, wind velocity, rain,
solar radiation, and humidity, all of which can significantly alter the building’s thermal
performance quantification.

The building condition category refers to the age of the building materials and the
laying of the structural elements used during construction. The operating conditions
category refers to the building’s environmental management, such as heating or cooling,
and air circulation from the opening or closing of windows, and building maintenance,
regardless of whether or not these activities are currently affecting the building envelope.
All of these factors must be monitored and considered carefully during the evaluation of
building heat loss quantification.

Multiple research groups have recently investigated the use of infrared thermography
to measure building envelope parameters in-situ with the thermal transmittance values,
or the amount of heat-flow in one square meter when the temperature difference is one
Kelvin (U-value). Most of these techniques present unique challenges [4]. The in-situ-based
measurement of the U-value, along with the heat flowmeter method (HFM), is not always
possible [5] or accurate [6] due to the assumptions upon which the HFM methods are based,
such as uni-directional heat flow; therefore, it is of crucial importance to develop practical
techniques that quantify the heat loss.

One technique to obtain thermal imagery is by using drones, which creates opportuni-
ties in building assessment and inspections [7–9]. Drones enables fast and safe building
inspections, which are necessary to complete proactive maintenance to mitigate problems
before they become costly. Reducing the costs associated with insurance inspections is
another benefit to building owners and managers. The risks associated with using drones
for roof inspection are low compared to traditional methods, where employees risk injury
as they traverse the building to inspect the structure. Drones are increasingly used for data
collection; however, thermal images captured by drones often contain objects, such as trees
and ground surfaces, all of which can impact the calculation of the U-value calculation [10].
Instance segmentation of the regions of interest, such as the facade of the building or roofs,
is a necessary step after collecting data.

Over the past two decades, several instance segmentation and masking techniques
have been considered using machine learning-based methods, which are the most success-
ful at identifying objects [11,12]. Machine learning applies complex mathematical models
to uncover hidden correlations between the different features in a given data set. There
are two types of machine learning techniques: supervised and unsupervised. Supervised
techniques require specific rules that an expert provides for the machine. These rules
allow the machine to either classify or predict the outputs of the model given an input.
Unsupervised techniques are applied when an expert cannot provide rules because of
the large data sets. These techniques are applied to reveal any hidden correlations that
the expert may not notice. Machine learning techniques require feature selection, which
requires human expertise to determine appropriate features. A recent class of machine
learning, called deep learning, does not require this step and is a new and powerful
technique for computer vision tasks, which has not fully exploited by the heat loss research
community [13,14].

In addition, the current research in heat loss quantification has relied largely on
qualitative bench-top solutions or localized analysis in energy audit building evaluation.
The existing quantitative models used to estimate surface temperature in buildings do not
account for multi-variate uncertainties, such as energy requirement/consumption patterns,
multiple sets of images per building object, time-of-day, seasons, and building material.
There are also inconsistencies in the process of arriving at a reliable and quantifiable U-
values for a building envelope.
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For example, the thermal readings taken from a combination of thermocouple sensors
and a thermal camera are only “raw values” that need to be pre-processed and subjected to
multiple uncertainties (e.g., solar radiance, wind speed, time of the day, and black body
radiation) and, thus, require the need for post-processing stages. In addition, the current
literature does not provide guidance on how to arrive at an optimal and accurate way
to detect building objects through which one can estimate surface temperatures from the
region of interest (ROI) through heat loss metrics. Existing solutions are, therefore, not
reliable for energy audit applications.

The specific research questions our work addresses include:

1. How do we acquire and process thermal images that account for building geometry
uncertainties, such as orientation and angle, seasonal changes, and the influence of
weather parameters on the building envelope?

2. How do we accurately detect various instances of objects, such as walls, roofs, and win-
dows, using data-driven approaches?

3. How do we automatically tag or label images and report them?

Our work covers a comprehensive data-driven approach that examined approximately
100,000 thermal images, and performed object identification to classify objects accurately
using instance segmentation to detect various building envelope structures, such roofs,
walls, doors, windows, and facades. We also created a method for automated tagging,
tracked pixel–pixel surface temperature values and reported the values in quantifiable and
standard U-value estimation units.

There exists hundreds of variations of U-value formulae in the existing literature,
and often they do not use large data but instead single point values. We investigated
all available U-value equations and developed a cumulative U-value formula from three
existing U-value equations. The U-value is a series of heat transfer equations that account
for pixel temperature, outside temperature, wind speed, etc., to develop a quantitative
measure of how that particular object is performing compared to how it should theoretically
be performing. It can be thought of as an extension to the direct thermal readings, but we
account for it from multiple low ceiling thermal images per building object acquired from
small scale aerial systems.

We deployed two clustering methods (e.g., K-means and threshold-based clustering),
which were then developed to estimate the accurate surface temperatures of multiple
instances of an object. Then, using the estimated surface temperature for the region or
envelope, we developed a cumulative U-value (Uc) formula that uses multiple existing
U-value equations from the literature. We empirically verified our Uc as the most accurate
formula when using a benchmark to meet the ASHRAE standard recommendations. Uc
demonstrated relatively lower errors compared to the other U-value equations. The statis-
tical difference of the U-value building envelope computations against ASHRAE varied
between 0 to 30% depending on area size, building type, and material used. Since our
AI model can detect multiple instances of any object with greater accuracy, including the
roof, windows, doors, HVACs, and facades, the model is unique, it fills the research gap of
inaccuracies and provides a quantifiable way to address uncertainties.

Our work adds to the body of knowledge by addressing the lack of automated
solutions in energy audit applications and providing a comprehensive view of the building
envelopes that will result in reliable, quantifiable, and scalable workflows to address
heat loss quantification problems for next-generation building inspection problems. We
determined that the thermal efficiency of a building depends on multiple factors, not
only on the accurate acquisition of thermal images, but on factors such as the building
geometry, season of the year, time of day, indoor heating or cooling conditions, past
historical consumption, and power generation sources. These factors are all influential in
determining the overall assessment of an energy audit evaluation.

In this paper, we demonstrated that thermal imagery to quantify heat loss combined
with the recent advances in deep learning theory has many advantages, such as remote
sensing, flexibility, and minimizing injury risks. To the best of our knowledge, the pro-
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posed approach is the first of its kind. U-values for different building blocks were analyzed
and compared to the American Society of Heating, Refrigerating, and Air-conditioning En-
gineers (ASHRAE) building standards. This approach will allow stakeholders to overcome
the challenges of traditional heat loss quantification methods. This work expounds upon
previous publications [4,15] with the following new subject material,

• A large thermal image data repository (∼100,000 images) of multiple university
buildings was collected using a UAS and manually annotated to highlight objects of
interest, such as facades, walls, trees, roofs, and windows.

• Multiple models for object detection, such as Mask R-CNN, Fast R-CNN, and Faster
R-CNN, were trained on several backbone types and validated with metrics, such
as average precision (AP) and intersection-over-union (IoU), through a data-driven
three-layered framework.

• Two clustering schemes were tested to estimate surface temperature readings and
identify hotspot regions reliably. Quantified surface temperature observations were
used to compute the U-values of objects and validated with the ASHRAE standards.

The relationship between the indoors and HLQ is essential; however, this is out of the
scope of this paper since our main focus is to provide a heat loss estimation using thermal
imagery of the buildings from the outside and from which the heat loss is determined.

The rest of this paper is organized as follows: Section 2 presents state-of-the-art
techniques for object detection and instance segmentation. We devoted a specific section
for this and did not integrate it as subsection of the introduction so as to not interrupt the
flow of the paper as this section provides an in-depth review of the recent advances in deep
learning and computer vision. This section provides also useful knowledge that can help in
developing novel computer vision techniques. Section 3 describes the methodology used
in this paper to quantify the heat loss. We describe the training and testing methodology
of several computer vision techniques as well as the analytical formulas used to calculate
U-values through a three-layered framework. Section 3 also describes the clustering
techniques applied to detect hotspot regions within thermal images. Section 4 presents
the evaluation metrics and examples of the obtained results, which includes the results of
instance segmentation, clustering analyses, heat loss quantification using U-values, and a
qualitative and quantitative uncertainty analysis. Section 5 summarizes the paper, presents
our conclusions, and suggests future research work.

2. Related Work on Computer Vision and Image Clustering

In this section, we provide an overview of the recent advances in computer vision and
the state-of-the-art algorithms for object detection and segmentation. This section provides
also some related work on image clustering and the detection of hotspots.

2.1. Object Detection and Instance Segmentation: The State of the Art

Computer vision can be classified into either object detection or segmentation. Object
detection is more specific than classification in that it must draw a bounding box (BB)
around every object identified [16]. If an object detected has been identified completely,
including all pixels, it is considered a segmentation. Segmentation methods can be further
divided into semantic, instance, and panoptic. All pixels belonging to all objects of the same
class are classified as one image segment in semantic segmentation. Instance segmentation
classifies each instance as a segment even if the image is formed of objects of the same class.

Panoptic segmentation combines both instance segmentation and semantic segmen-
tation by assigning class labels to each unique object segmentation. Object detection and
segmentation has been performed in the past by using traditional techniques, such as
histogram gradients. Deep learning in computer vision is gaining popularity, as it has
been recognized as an effective technique compared to traditional methods [17]. Table 1
summarizes the popular machine learning models used to perform computer vision tasks,
with a brief discussion on their performances.
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Table 1. State-of-the-art computer vision techniques.

Computer Vision Task Model Structure/Backbone Metrics Comments

R-CNN [18,19] Selective Search Algorithm +
SVM

mAP of 62% on PASCAL
VOC 2012

Slow because of the high
number of region proposals

(2000) (47 s/test image)

Fast R-CNN [20] Selective Search Algorithm +
FCs

mAP of 39.3%@0.5 on MS
COCO and 66% on PASCAL

VOC 2012

“Fast compared with R-CNN
0.32 s/testing image Fast

R-CNN trains the very deep
VGG16 network 9 × faster

than R-CNN, is 213 × faster
at test-time”

Detection

Faster R-CNN [21–23] Region Proposal Network +
ROI pooling + FCs

mAP of 42.7% on MS COCO
and mAP of 78.8% PASCAL

VOC 2012

Remove Selective Search
Algorithm

SSD ResNet101 + FCs mAP of 31.2% Runs at 125 ms

Real-Time Object Detection YOLO [24,25] Single Regression from image
pixel to class BB (Darknet-53)

YOLOv3-320 mAP of 28.2%,
YOLOv3-416 mAP of 31%,
and YOLOv3-608 mAP of

33%”

Support real-time (up to
45 FPS for YOLOv3-320)

DeconvNet [26]
ConvNet (VGG-16)
concatenated with

DeconvNet

mAP of 70% on PASCAL
VOC 2012

FCN [27]
FCN introduces the skip

connection to fuse feature
layers of different scales

Graph-FCN achieves mIoU of
65.91% on PASCAL VOC

Dataset and FCN-32 achieves
mIoU of 36.64% on
PASCAL-Context None

Semantic Segmentation
ParsNet [28] Improved FCN

ParseNet Baseline achieves
mIoU of 67.3% on PASCAL
VOC Dataset and ParseNet
achieves mIoU of 69.8% on

PASCAL VOC Dataset

Deeplab [29]

Atrous Convolution for
Dense Feature Extraction +

Atrous Spatial Pyramid
Pooling + Fully-Connected
Conditional Random Fields

DeepLab achives mIoU of
64.96% on PASCAL VOC

2012 and DeepLab-LargeFOV
achieves mIoU of 65.82% on

PASCAL VOC 2012

Objective function is
optimized in all layers with
respect to weights by SGD

standards. Imagenet classifier
is replaced with classifier
equaling number of target

classes in last layer.

Instance Segmentation

EncNet [30] ResNet + Context Encoding
Module

mIoU of 52.6% on
PASCAL-Context Dataset

Introduces very little extra
computation to original FCN
network. Context Encoder is

light weight.

Mask R-CNN [20,31,32] RPN + ROIAlign + Mask +
ResNet101

mAP of 39.8% and 63.1% on
MS COCO for keypoints &

mask

Replaces ROI pooling with
ROIAlign in Faster R-CNN
architecture and includes

FCN for segmentation

Panoptic Segmentation Machine panoptic
segmentation [33]

Unified semantic
segmentation and instance

segmentation

PQth of 54%, 79.4%, 67.8% on
Cityscape

Unique evaluation
methodology

Applying a classifier, such as a convolutional neural network (CNN), for detecting the
presence of an object within each region of interest by splitting the images is an incomplete
approach for deep learning. CNN, concatenated with a classifier, such as fully-connected
layers (FCs), cannot be used for the number of object occurrences in each image since the
objects are not the same and, thereby, change the length of the output layer. Region-based
CNN (R-CNN) has been proposed to mitigate this issue. This algorithm extracts region
proposals with approximately 2000 regions using a selective search algorithm.

These proposals are then used to form warped regions on which a CNN is applied for
feature extraction. This latter feature extraction is fed to a support vector machine classifier
to classify the regions. Even though R-CNN performs well, it must repeat this process for
all images, each of which requires 2000 processed regions. Each test image requires 47 s to
process; therefore, R-CNN is infeasible even though it performs well. R-CNN achieves an
mAP of 62% on PASCAL-VOC-2012.

A method utilizing a similar approach to R-CNN with some manipulations was
proposed to mitigate the time constraints issue of R-CNN: Fast R-CNN [20]. Fast-R-
CNN generates feature maps from the input images using CNN instead of feeding the
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region proposals to CNN. The region proposals are then identified and processed into
squares. Regions of interest pooling is then applied to reshape the warped regions into a
predetermined size, forming the input for an FC. The output layer of the FCs consists of a
SoftMax classifier alongside a bounding box regressor. Fast R-CNN only required 0.32 s for
testing and 8.75 h for training. R-CNN required 47 s for testing and 84 h for training. Fast
R-CNN achieved an mAP = 39.3@0.5 on MS COCO dataset with 2000 region proposals and
66% on PASCAL-VOC-2012 [20]. Fast R-CNN trained VGG16 networks nine × faster than
R-CNN and was 213 × faster at test-time.

Fast RCNN and R-CNN both use selective search algorithms to determine the regions
of interest (ROI); however, the processing time is a limitation for both methods. Shaoqing
Ren et al. [21] proposed an object detection algorithm similar to Fast RCNN, called Faster
R-CNN, to overcome this limitation. This algorithm consists of a separate network to
predict the region proposals, eliminating the selective search algorithms. Faster R-CNN
with a ResNet101 backbone and FPN to extract the feature maps achieved an mAP = 42.7%
with 300 regions when tested on the MS-COCO dataset and 78.8% mAP on the PASCAL-
VOC-2007 test set.

The previous regions-based detection algorithms perform predictions multiple times
for various regions within each single image, which is a time-consuming task; therefore,
You Only Look Once (YOLO) has been proposed [24]. YOLO models the detection task as a
regression problem instead of using a region proposal. Each image is divided into several
grids with two defined bounding boxes, increasing the speed of the detection algorithm.
For instance, YOLOv3-320 processed images in real-time at 45 frames per second using
Darknet-53 as a backbone, achieving an mAP = 28.2%, while YOLOv3-416 achieved an
mAP = 31%, and YOLOv3-608 achieved an mAP = 33%. YOLO can achieve real-time
object detection; however, it has several limitations, such as the loss function, which treats
the errors induced by small and large bounding boxes equally.

The authors of [27] created the first Fully Convolutional Network (FCN) trained end-
to-end for image segmentation used in semantic segmentation. Many variants of FCN have
been proposed, such as Graph-FCN, which achieved an mIOU = 65.91% on Pascal-VOC
Dataset and an mIOU = 36.64% with FCN-32s on a PASCAL-Context dataset

The authors of [28] proposed an improvement of the model FCN, called ParseNet.
This model improves upon FCN by allowing for global context inclusion in semantic
segmentation. Relying on the largest receptive field of the FCN network is not sufficient
for providing global context, and the largest empirical receptive field is not sufficient for
global capture. ParseNet Baseline and ParseNet trained on the VOC2012 test set achieved a
67.3% and 69.8% mIOU, respectively.

The authors of [26] developed DeconvNet, a convolutional neural network (VGG-16)
concatenated with a deconvolutional neural network (DNN) for semantic segmentation.
The CNN-VGG-16 consists of the pooling needed to generate feature maps from the region
in which the proposals are fed, which are then fed to the DNN. The DNN then performs
the unpooling to determine the pixel-wise probabilities belonging to each class. The model
was evaluated on PASCAL-VOC-2012 and was compared to the state-of-art segmentation
algorithms. This model achieved a mean average precision of 69.6%, and some of its
variants achieved a mean average precision of around 70%.

The authors of [34] proposed U-Net, a convolutional network for image segmentation,
which is built on FCN. U-Net is composed of two paths or two sides: contractive and
expansive. The contractive side has an FCN-like architecture extracting feature maps, while
the expansive path spatially localizes patterns in the image subject to segmentation. U-Net
was the winner of the of the EM segmentation challenge in 2015 and also the ISBI cell
tracking challenge of 2015, with an IoU of 0.9203 for the “PhC-U373” dataset and an IoU
of 0.7756 for the “DIC-HeLa” dataset.

The authors of [35] proposed DeepLabv3: which improved DeepLab by combining the
parallel and cascade modules found within the atrous convolutions. The ResNet architec-
ture was modified to maintain higher resolution feature maps within the same convolution.
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Mask R-CNN can efficiently detect objects while simultaneously generating a high-
quality segmentation mask for each instance [36]. A CNN network was added to the model
parallel to the object detection task to determine the mask or the pixels belonging to the
objects. Mask-RCNN does not support real-time analysis and is made up of two blocks.
The first block, or backbone, deals with generating region proposals, while the second
block, the ROI classifier and Bounding Box Regressor, classifies the regions proposals and
generates the bounding boxes and masks.

The backbone consists of a standard convolutional network, typically ResNet50 or
RestNet101, which serves as a feature extractor. As the features passing through the
backbone network, the images are converted from 1024× 1024× 3 (RGB) to a feature map
of shape of 32× 32× 2048. The new feature map serves as the input for the second block.

Mask R-CNN uses a Feature Pyramid Network (FPN) as an extension that can improve
the standard feature extraction. FPN enables access to both lower and higher-level features.
The Region Proposal Network (RPN), a type of lightweight neural network, scans over
the backbone feature map once it is generated. The regions over which the RPN scans are
performed are called anchors; for each anchor, the RPN generates an anchor class consisting
of either a foreground class or a background class. The foreground class identifies whether
or not there is an object in that box. The background class is the Bounding Box Refinement,
which is a foreground anchor. This foreground might not be centered perfectly over
the object, and thus, to refine the anchor box, the RPN estimates a change in the box’s
coordinates, also referred to as delta (∆).

The second block of Mask R-CNN runs on the regions of interest proposed by the
RPN. The bounding box refinement step in the RPN causes different sizes for the ROI
boxes that must be adjusted to the same size; therefore, ROI Align, a new feature of Mask
R-CNN, is used to create a fixed input for the ROI classifier. The stride is not quantized in
ROI align, and bi-linear interpolation is considered, while Faster R-CNN uses a quantized
stride. The RPN classifier generates two outputs for each ROI: the specific class of the ROI
object and the bounding box refinement.

The bounding box refinement works further to refine the location and size of the
box to encapsulate the ROI object. The last step of Mask R-CNN is the generation of
segmentation masks. The segmentation mask branch consists of a convolutional network,
which utilizes the positive regions selected by the ROI classifier and generates a mask.
The full architecture along with the output at each step, is illustrated in Figure 1.

Figure 1. Illustration of the Mask R-CNN architecture with an input image at each stage of detection.

The authors of [30] developed a model, called the Context Encoding Network (EncNet)
for instance segmentation. This model is built upon of two building blocks: the first of
which consists of a CNN with different backbones, also called ResNet, to generate the
feature maps. The output of this last CNN layer is fed into the second block, which is
a context encoding module. The Context Encoding Module’s outputs are then reshaped
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and processed by a dilated convolution strategy while simultaneously minimizing binary
cross-entropy losses and a final pixel-wise loss. The proposed EncNet with Resnet101
achieved an mIOU of 52.6% on the PASCAL-Context dataset.

The authors of [33] proposed panoptic segmentation to unify semantic segmentation
and instance segmentation. To accomplish panoptic segmentation, the authors proposed a
new quality metric to evaluate the overall segmentation. The evaluation metric can then be
written as the product of two terms: the segmentation quality (SQ) and one recognition
quality (RQ). Machine panoptic segmentation on instance segmentation with Mask RCNN
+ COCO achieved PQTh = 54.0, 79.4, 67.8 on the Cityscape dataset, and the PSPNet
multi-scale achieved a PQSt = 66.6, SQSt = 82.2 and RQSt = 79.3.

2.2. Image Clustering: The State of the Art

Image segmentation techniques have been used to identify, classify, and process
regions of interest within colored and red-green-blue (RGB) images and, more recently,
within infrared (IR) images. Table 2 provides a brief summary of image clustering methods
and their performances.

The authors in [37] used a hybrid approach in their 2016 segmentation paper, that
deploys the K-means and the Density Based Spatial Clustering of Application with Noise
(DBSCAN) segmentation approaches to identify ’hotspot’ regions within IR images of
photo voltaic (PV) arrays. Image pixel color values were first normalized and then pre-
processed using the K-means method to segment the image into discrete regions of colors.
This method creates distinct silhouettes of the various color profiles within the image.
DBSCAN was then applied to obtain the pixel regions, which are above a set threshold of
saturation in the hue–saturation–value (HSV) color palette.

Table 2. State-of-the-art image clustering techniques.

Clustering Method Performance Reference

K-means/DBSCAN
K = 15 was optimal for accuracy and computation time.
Further segmentation by DBSCAN yielded 136 clusters

for precision.
[37]

K-means/Threshold
K = 4 was optimal and yielded a 99.7% accuracy rate in

hotspot detection for an ensemble ML model called
Voting (Naive Bayes + REPTree).

[38]

Dual Clustering Scheme Precision and recall produced averages of 80% and
58.3% respectively for 10 sets of images. [39]

IFS/Fuzzy C-means Average segmentation and Dice scores of 99% for
varying levels of noise corrupted images. [40]

IP-MS
Average of 1.4 s per sample image in contrast to 2.3 s
from the K-means algorithm. Higher accuracy than

K-means in terms of blue color intensity representations.
[41]

DEMP-k (Directly Estimated
Misclassification Probabilities)

Tested on digit recognition gives correct classification
(CP) = 0.843, adjusted Rand Index(AR) = 708 and

computing time (τ) = 27.03 s
[42]

Hajela et al. [38] used a 2D spatio-temporal analysis to detect and cluster regions
of crimes, which were identified as hotspots. K-means was the primary approach used
to classify different regions within a dataset that contained (x, y) co-ordinates, times,
and dates for the events in each image. The number of instances of these K-means clusters
were calculated and passed through a threshold to discretely obtain regions of hotspots
within an image. This threshold was set based on the number of instances of each cluster
and the total number of clusters. When combined with ensemble machine learning models,
the use of clustering indicated a marked increase in the accuracy of crime prediction across
various crime categories, such as vandalism, bribery, and extortion.
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Another dual clustering method was introduced by Tamilkodi and colleagues [39],
where the authors utilized a two-part process to cluster pixels within an image. The RGB
query image was pre-processed to gray-scale. A histogram analysis performed based on
the intensity or the brightness values of the gray scale image followed. This histogram
serves as a one-dimensional space for a K-means based approach to cluster pixels; however,
the novelty in this approach is the calculation of two-dimensional gradient with vectors
that to point to higher intensity value pixels. This approach also processes these pixels as
black or white based on a threshold ‘H’. This method was tested on a set of 1000 images
from the Signal and Image Processing Institute (SIPI) and divided into ten groups based
on similar content, such as dinosaurs, houses, oceans, horses, and others. Outcomes of
80% and 58.3% for the average precision and recall metrics, respectively, were produced by
this method.

The authors in [40] utilized a clustering method based on Intuitionistic Fuzzy Set (IFS)
theory and Fuzzy C-means (FCM) to segment images generated with magnetic resonance
imaging (MRI). The C-means algorithm does not perform well with noise; therefore, the In-
tuitionistic Fuzzy C-means with Spatial Neighborhood Information (IFCMSNI) method
proposed by the authors was used to preserve valuable spatial information through a
’spatial neighborhood information’ equation. The outcomes of this method were tested
with a gray image MRI dataset with varying levels of noise through metrics, such as
the dice score (DS) and the average segmentation accuracy (ASA), which was provided
with ground truth data. These metrics indicated a significant improvement over existing
methods, such as the Modified Intutionistic Fuzzy C-means (MIFCM) and Fuzzy Local
Information C-means (FLICM), in the presence of Rician noise.

The authors in [42] introduced DEMP-k (Directly Estimated Misclassification Probabili-
ties), which is a combination of the HoSC-K-means (Homoscedastic Spherical Components)
and hierarchical linkage functions, thereby increasing the speed and performance of the
algorithm. Their work proposed a framework for hierarchical merging based on pair-
wise overlap between components, this was further applied to the K-means algorithm.
The model produced the results in Table 2 when tested on a digit recognition dataset.

A novel approach, called the Iterative Partitioning-Mean Shift (IP-MS) was introduced
by Naik and colleagues [41], where the number of centroids chosen for each cluster and
the number of iterations are key parameters for image segmentation. The image was
pre-processed by reducing the noise, transforming the RGB image to a LAB color space,
and normalizing the pixel values. The clustering algorithms then classified each pixel by
finding the minimum Euclidean distance between pixels for each centroid and calculating
the mean distance value for each cluster. Once the mean equals the number of centroids
specified by the algorithm, convergence is reached, or the algorithm has successfully
executed. The results of this algorithm indicated a marked performance increase in the
accuracy and computation time when compared to the K-means algorithm.

3. Methodology

In this section, the methodology for data preparation, preprocessing, and evaluation is
described. First, we start by describing the data-driven three layered framework to provide
the complete picture of the process, then we discuss the building block data preparation.
Second, we present K-means and Threshold-Based Clustering for hotspot detection. Last,
we describe the U-value analysis using four formulae.

3.1. Data-Driven Three-Layered Framework

Infrared thermal imagery is promising due to its extensive features, high performance
abilities, and relatively lower cost. The thermal images must be pre-processed and auto-
mated before any meaningful information is collected. The image pre-processing includes
the removal of unwanted background objects and the detection of inspected elements,
such as windows, doors, walls, and other features. The current published research that ad-
dresses the terms of automating the methods for background removal, object detection, and
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U-value estimation is limited [43–45]. We, therefore, propose a fully automated three-layer
framework for the U-value estimation of a building and its elements. Figure 2 illustrates a
data-driven approach for the thermal performance assessment of building envelopes.

The raw thermal imagery captured from various sources, such as aerial or ground
measurements, is stored in a data repository or database layer. The images are fed into a
pre-processing and automation layer, where a series of background elimination steps are
completed, and the critical features from the thermal images are extracted (refer Figure 2).
The different building elements, such as doors, roofs, facades, beams, and windows, are
annotated and used for training machine learning models on object detection. The heat loss
U-values for building envelopes and elements are quantified in the evaluation layer, while
influential parameters, such as the emissivity and reflected temperature, are analyzed.

Figure 2. Data-driven approach for thermal performance [4].

3.2. Dataset Preparation

The number of objects in the dataset are not distributed equally due to the nature
and context of the dataset itself. The frequency of HVACs and doors are far lower when
compared to windows and facades for any given building, causing lower detection limit
discrepancies for these respective objects. Two tactics were employed to remedy this issue:
(1) Each dataset had several augmentation techniques applied to them. These included
random color shifts, multiplying the dataset with copies of itself, horizontal and vertical
flips, Gaussian blur, and contrast and brightness. The augmentation resulted in the original
dataset increasing by a factor of six, on average. (2) Once augmented, datasets were
combined based on campus buildings.

This technique drastically increased the objects with low occurrences, and allowed the
model to learn and identify these objects more accurately. Each training dataset is listed in
Table 3, and a total of four datasets were created for training. Datasets 1 through 3 consisted
of images taken at the Museum of Art and Twamley buildings on the UND campus.
Dataset 4 consisted of a combination of the Minot State, Wahpeton State, and Bismarck
State campuses. The number of augmented instances of facades, windows, roofs, HVACs,
and doors are listed in each column of Table 3. The total number of images used was 42,439.

Table 3. Dataset breakdowns.

Datasets # of
Facades

# of
Windows # of Roofs # of

HVACs
# of

Doors
Total

Images

Dataset 1 2060 1109 634 343 100 2562
Dataset 2 10,190 13,987 1894 0 126 10,971
Dataset 3 2576 5207 492 2085 282 2541
Dataset 4 26,217 18,684 11,747 1616 6448 26152

Test Dataset 207 176 95 38 43 213
Total 41,250 39,163 14,862 4082 6999 42,439

3.3. Thermal Hotspot Detection via Clustering Techniques
3.3.1. Threshold-Based Clustering (TBC)

Once the window- or facade-only pixels were obtained for a particular image, they
were classified as areas of interest and passed through a threshold to obtain hotspot
relevance. The initial testing of this approach applied the use of a static threshold based
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on percentiles; however, this approach was discontinued due to its inability to adapt and
identify hotspots under extreme variations in the input surface temperatures. Figure 3
illustrates a flowchart for the two clustering algorithms.

Figure 3. Flowchart of thermal image clustering using K-means and Threshold-Based Clustering.

Threshold-Based Clustering is based on the objects’ mean temperature (µ) and stan-
dard deviation (σ), considering object temperatures of >= 2σ and processing the pixels
corresponding to those temperatures. The following piece-wise functions can be repre-
sented, mathematically, as

Ix,y =


1, i f tx,y >= 2σ + µ[To]

0, i f tx,y < 2σ + µ[To]

(1)

(R̂, Ĝ, B̂)pixel
x,y =


(255, 0, 0)pixel

x,y , i f Ix,y = 1

(R, G, B)pixel
x,y , i f Ix,y = 0

(2)

where Ix,y is the Identity Matrix that holds hotspot (binary 1) and non-hotspot (binary 0)
pixels, tx,y is the pixel at co-ordinates (x, y), and To is the set of all pixels within an object

of interest, such as the walls or windows. (R̂, Ĝ, B̂)pixel
x,y represents the RGB pixels at

co-ordinates (x, y) that are colored red for a detected hotspot and unchanged if not.
The thresholds on surface temperature were evaluated using Infrared Camera Inc. (ICI)

thermal imaging software. These thresholds are visually intuitive: when looking at the raw
thermal image, the regions of longer wavelengths in the visible light spectrum, represented
in red, are the areas with a greater density of pixels denoting a higher temperature. The user
can identify these regions as hotspots and use a shaping tool to draw boundaries for
segregating the image into hotspot sections. This activity is a tedious and inaccurate
process that yields only the maximum, minimum, and average temperatures. These
regions are identified on a granular level using TBC, where each pixel is analyzed for
its suitability as a hotspot. Hotspot regions are higher temperatures, and due to heat
dissipation, are considered regions of significance when estimating U-values.

3.3.2. Hotspot Detection Using K-Means

K-means is a common data mining approach to group ‘N’ observations into ‘K’ clus-
ters with the nearest mean, or centroid of a cluster, by minimizing the squared Euclidean
distances. We evaluated groupings of surface temperature observations from the captured
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thermal images, which were each divided into ‘K’ clusters based on different colors formed
by the combinations of color channels. The surface temperature observations were com-
pared with TBC for the reliability of the clustering method. This method was created using
the Scikit-learn Library [46].

K-means segments an image into different clusters based on colors. This approach is
based on the idea that the colors in a thermal image represent different temperatures regions.
This method can be further divided into two parts: segmentation and hotspot identification.

We calculated the minimum, maximum, and average temperatures for each clus-
ter using the pixel temperature data from the CSVs when using hotspot identification.
The methodology of the clustering phases is further explained in Algorithm 1.

Algorithm 1: Pseudo code for K-means Clustering.
Input: Data vector, the desired number of clusters k;
Result: Set of clusters
1. Assign initial cluster centers randomly from data vectors for p1, p2.... pn.
2. A new pixel is chosen, and the Euclidean Distance is measured

from each centroid;
3. if the pixel is closer to a certain centroid then

it is assigned to that cluster.
end

4. Iterate
(a) Step 3 assign each pixel to the cluster that has the closest mean;
(b) Calculate the new mean using Euclidean Distance for each cluster.
(c) Steps 2 and 3 are iterated 100 times until convergence criteria is met.

5. Output the clusters members with centroids.
6. Find min, max and avg temperature for each cluster.
7. Assign cluster associated to max avg of all

clusters as hotspot.

An image is a 3D vector of colors comprised of combinations of (i.e., Red, Green,
and Blue) with value ranges from 0 −→ 255 for each channel. A cluster is determined
by grouping those pixels with the least Euclidean Distance from the chosen centroid.
Considering two pixels i and j with values (Ri, Gi, Bi) and (Rj, Gj, Bj). The Euclidean
distance Dij between them can be further computed as follows:

Dij =
√
(Ri − Rj)2 + (Gi − Gj)2 + (Bi − Bj)2 (3)

K-means proceeds by selecting random pixels as centroids. This method of initializing
the centroid has been reformed over the years with a better seeding method called K-
means++ as stated by Arthur et al [47]. The main goal for K-means is to reduce the Sum
of Squared Distance for each cluster at every iteration. This is achieved by selecting new
pixels as centroids and calculating the Euclidean distance with their respective cluster
members. Equation (4) shows that, for each cluster from n = 1 to N, a cluster is chosen,
and the Euclidean Distance between a pixel in n and the centroid is calculated. This is
iterated over and over for every cluster n to minimize J by selecting new pixels Pn and
centroids Cn.

Jmin =
N

∑
n=1

∑
Pεn

DCnPn (4)

Computing the K-means for such large datasets raises the question of selecting the
range of clusters. This problem is solved using the Elbow Method [48], which considers
the sum of distances between cluster centers (and their respective cluster members) versus
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the number of clusters. For each dataset, this had to be computed to obtain a range of k
or an optimal number of clusters that are ideal for that data set.

3.4. U-Value Estimation

Various U-value measurement-based methods have been used in the literature to
estimate thermal performance. According to the Stefan–Boltzmann law, the radiative heat
varies with the fourth power of temperature difference [49].

The U-value estimation for the external surface was carried out while considering the
wind velocity using the following equation in [50–52]

U1 =
εσ(T4

se − T4
ae) + 3.805v(Tse − Tae)

Tai − Tae
(5)

where v is the velocity of the external wind, Tse denotes the external surface temperature,
Tai denotes the internal air temperature, and Tae denotes the external air temperature.
The radiative heat component is similar to the Stefan–Boltzmann equation [49] and the
convective term is derived from Jargon’s formula [53].

Fokaides et al. [54] estimated the U-value according to the Stefan–Boltzmann law
as follows.

U2 =
4εσT3

s (Tsi − Tre f l) + αc(Tsi − Tai)

Tai − Tae
(6)

where the wall emissivity and convective heat coefficient is denoted by ε and αc, respectively.
In addition, σ denotes the Stefan–Boltzmann constant and Tin, Tout, Tsi, and Tre f l denote the
internal, external, internal surface, and reflexive wall temperatures respectively. The surface
temperature is denoted by Ts. The mean temperature was introduced in Equation (7) by
Madding et al. [55] to replace the surface temperature in Equation (6) to estimate the
U-values as follows:

U3 =
4εσT3

m(Tsi − Tre f l) + αc(Tsi − Tai)

Tai − Tae
(7)

where Tm =
Ts+Tre f l

2 denotes the mean temperature, and ε and σ denote the emissivity and
Stefan–Boltzmann constant, respectively. In this equation, the reflective temperature is
subtracted from the surface temperature. Spectrum emissivities of 0.75 for the wall and 1.0
for windows were taken. The material for walls was considered to be fire brick, and the
windows were classified to be of a smooth glass material, which had emissivities in the
range of 0.92–0.96 [55–57]; however, for the purposes of this paper, glass was considered to
be a perfect black body (in the context of U-value estimation) as there would be negligible
differences if we use Equation (5) to calculate the U-values. The convective coefficient αc
depends on various factors, including the height of the wall and the temperature difference
shown in Equation (8).

αc = c1
(Tsi − Tai)

L

1
4

(8)

where L is the height of the wall and the value of c1 varies from 1.31 to 1.42. Equation (8)
is obtained from reference [55], where c1 varied from 0.25 to 1.42 depending on the type
of air-flow. When the wall is tall, and the temperature difference is large, the coefficient
can change depending on the type of flow (turbulent or laminar). Figure 4 illustrates the
deviation of the U-value with respect to acceptable c1 values within the range of 0.25 to
1.42. The acceptable range of c1 values was deduced empirically. Several types of objects
and their corresponding U-values were plotted with c1 values varying from 0.25 to 1.42.
These U-values were then converted to BTU/hr ft2◦F first and then to W/m2·K before
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being compared to ASHRAE standards, which allowed us to identify which constants
aligned with the expected values.

We consider Uc as the average of the U-values, calculated previously as

Uc =
U1 + U2 + U3

3
(9)

The IR Flash Pro software was used to extract the temperature information into a CSV
file containing 512 × 640 cells. The building height information was obtained from the
architectural diagram.

Figure 4. Calculated U-values based on variation of c1.

4. Results and Discussion

In this section, examples of results are presented and discussed. We start by presenting
an evaluation of computer vision algorithms for detection and instance segmentation. Then,
we present some examples of results related to clustering and their analysis as well as their
discussion. In the last part, we present the U-value estimation as well as examples of the
obtained results using different formulas.

4.1. Evaluation Metrics

In order to evaluate the performance of deep-learning-based thermal image instance
segmentation, a confusion matrix can be used, and, from this, several other metrics can be
derived. Table 4 shows the confusion matrix and is defined to show the model’s ability to
correctly and incorrectly identify objects.

Table 4. Confusion matrix.

Positive (1) Negative (0)

Positive (1) TP TN
Negative (0) FP FN

One of the popular metrics used for measuring the accuracy of object detection is the
average precision (AP). The average precision computes the AP value for a recall value of 0
to 1. The precision quantifies the percentage of correct predictions. Recall measures how
well the positive values are detected. The mathematical definitions of precision and recall
are as follows:

Precision =
TP

(TP + FP)
(10)
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Recall =
TP

(TP + FN)
(11)

where TP is true positive, FP is false positive, and FN is false negative.
In order to determine true positives, the intersection over union is used (Figure 5).

The IoU measures the area of overlap between the ground truth and prediction boundaries.
Mathematically, the intersection over union is calculated as the ratio of the area of the
overlap to the area of union.

IoU =
Ao

Au
(12)

where Ao and Au are the areas of overlap and union respectively. If the IoU is greater than
the threshold, the detection is considered correct, otherwise, it is a false detection.

Figure 5. Computing the Intersection of Union, IoU, calculated by dividing the area of overlap
between the bounding boxes by the area of union.

The general definition of the average precision is finding the area under the precision–
recall curve. ∫ 1

0
p(t)dt (13)

The interpolated AP is calculated by replacing p(t) in Equation (13) by∫ 1

0
max
r≥t

(r)dt (14)

4.2. Results of Detection and Instance Segmentation Based on Deep Learning

The models were trained on a machine containing an Intel Core i9-9920X with four
Nvidia GeForce RTX 2080 Ti GPU’s. Each card consists of 11 GB GDDR6 memory and
544 tensor cores. Each model was trained on one GPU with different configurations, and the
model with the best metrics was chosen to be trained on by the next dataset. Adjusted
configurations include the batch size, learning rate, and epochs. Table 5 illustrates the
learning rate, number of epochs, and training time for each dataset. For the first three
datasets, we noticed that reducing the learning rate by a factor of ten at each subsequent
training session helped to improve the model accuracy.

This improved model accuracy was due to the first three datasets containing data from
UND campus buildings, which have similar architectures. Dataset four consisted of several
different campuses, and thus a higher learning rate yielded better results. The training time
for each dataset was proportional to the number of images found within them. Dataset four
consisted of three different campuses, since training on each individual campus degraded
the model performance.
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Table 5. Hyper parameters of the best performing model at each training session (Mask R-CNN).

Training Dataset Learning Rate Epochs Training Time

DS1 0.001 75 7 h 35 m
DS2 0.0001 100 30 h 38 m
DS3 0.00001 150 21 h 47 m
DS4 0.0001 200 288 h 35 m

The test dataset was generated with 10 images from each campus. These 70 images
were subsequently deleted from their original datasets to eliminate them from the machine
learning process. Similar augmentation techniques were applied to the test dataset to
increase the size and test the models fitness. After the augmentation process, the size of the
dataset increased to 213 images. The breakdown of dataset is provided in Table 3, which
breaks down each dataset by the number of instances in each class within it along with the
cumulative values.

Table 6 shows the average precision and the mIoU of the three object detection models
and one instance segmentation model. The models were trained on and validated using
thermal images captured by the ICI Mirage 640 camera and the ratio to training verses
testing was 90:10. A total of five classes were identified for the models to train on: Windows,
Facades, Roofs, HVACs, and Doors. The models were evaluated after each training session;
however, the results presented are after the final training session. The Average Precision at
thresholds of 25%, 50%, and 75% were recorded, and the results show that Mask R-CNN
outperformed the other three models for all thresholds. The other three models especially
suffered at the 75% threshold, which indicates that the models are only able to identify a
few objects with high confidence.

The feature maps generated were not adequately able to capture the patterns in this
thermal dataset leading to low confidence in the models. The three object detection models
suffered in estimating the size of objects as well. This is shown in the low mIoU scores
achieved by the models. It is also beneficial to compare the pure object detection models
against themselves. All three object detection models utilized Faster R-CNN with different
backbone architectures.

These models were also evaluated to a similar AP score at all thresholds; however, the
Inception ResNetV2 backbone performed slightly better. This is prevalent in the slightly
higher AP at 0.75. The mIoU of both the Inception ResNetV2 and ResNet 50 were the same
at 0.34; however, the Inception ResNetV2 backbone achieved higher results for windows,
roofs, doors, and HVAC systems while the ResNet 50 model achieved a higher facade
evaluation. Overall, Mask R-CNN achieved an average mIoU of 0.66 with Facade and
Roofs having the highest overlap of 0.73 and 0.67, respectively.

The Mask R-CNN model was selected for two main reasons. When quantifying heat
loss on buildings, the U-value equations are extremely sensitive to small shifts in tempera-
ture and emissivity. This sensitivity required our detection to be precise, with traditional
bounding box detection being insufficient for our purposes. Using bounding boxes allows
for noise to be introduced since the object contour is not calculated. Instance Segmentation
allows us to classify accurate results in greater detail to match ASHRAE standards. Emis-
sivity plays a large role within each of the U-value equations and changes based on the
material composition of the object in question. Based on the classification and composition,
the emissivity value was looked up on multiple infrared emissivity tables.

The Mask R-CNN model also yielded better results (please see Figure 6) when com-
pared to the Faster R-CNN models with different backbones. Both object detection and
instance segmentation models were trained in a similar fashion with varying learning rate
decay for the first three datasets, and higher decay for the fourth dataset. The number
of epochs was held constant for all models. With the introduction of the mask branch,
the Mask R-CNN model took longer to train with more favorable results. We, therefore,
selected the Mask R-CNN model.
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Table 6. The average precision of computer vision algorithms trained and tested on OGI thermal images with three different
threshold values for five classes: windows, facades, roofs, HVACs, and doors.

Classes AP0.25 AP0.5 AP0.75 Intersection Union mIoU

Window 0.39 0.39 0.18 12,648.28 27,679.36 0.45
Facades 0.34 0.31 0.12 39,487.61 118,876.24 0.33

Roof 0.41 0.31 0.07 20,042.73 55,555.64 0.36
HVAC 0.27 0.27 0.09 192.43 1085.39 0.17
Door 0.06 0.06 0 414.12 6955.88 0.05

Faster R-CNN Inception
ResNetV2 0.29 0.27 0.09 15,503,247 44,762,491 0.34

Window 0.26 0.10 0.03 10,011.70 28,303.41 0.35
Facades 0.41 0.32 0.05 29,035.47 126,352.91 0.22

Roof 0.38 0.26 0.13 16,002.26 59,677.54 0.26
HVAC 0.09 0 0 314.15 1927.03 0.16
Door 0.35 0.26 0 674.93 6983.51 0.09

Faster R-CNN Inception V2 0.30 0.19 0.04 11,936,209 47,551,061 0.25

Window 0.28 0.19 0.12 10326.40 29,569.77 0.34
Facades 0.31 0.26 0.07 49,439.15 129,971.74 0.38

Roof 0.42 0.16 0.012 16,804.96 53,316.74 0.31
HVAC 0.23 0 0.012 117.57 1011.42 0.11
Door 0 0 0 411.18 8357.96 0.04

Faster R-CNN ResNet 50 0.25 0.20 0.07 16,422,148 47,334,488 0.34

Window 0.70 0.69 0.44 21,545.78 39,170.45 0.55
Facade 0.81 0.79 0.67 131,982.81 179,617.92 0.73
Roof 0.67 0.67 0.67 53,879.35 80,260.40 0.67

HVAC 0.27 0.27 0.18 508.23 4501.80 0.11
Door 0.67 0.67 0.68 2815.73 11,665.11 0.24

Mask R-CNN 0.62 0.62 0.53 14,961,967 22,380,315 0.66

(a) Example of model inference on the UND Museum
Building. The metrics achieved were 0.67 @ mAP 0.25,
mAP 0.5, and mAP 0.75 with a mIoU of .82

(b) Example of model inference on the Wahpeton State
Building. The metrics achieved were 0.76 @ mAP 0.25,
0.64 @ mAP 0.5, and 0.60 @ mAP 0.75 with a mIoU of 0.65

(c) Example of model inference on the Minot State Build-
ing. The metrics achieved were 0.91 @ mAP 0.25, mAP
0.5, and mAP 0.75 with a mIoU of 0.92

Figure 6. Examples of images of building segmented using Mask-RCNN trained on the heat loss dataset.
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4.3. Clustering Performance

Metrics, such as the Silhouette Coefficient and Davis–Bouldin Index, were evaluated
for K-means. As explained by [58], the Silhouette Coefficient is a popular metric to find
the quality of clustering. It is a measure of how a particular data point or pixel value in
our use case is similar to its own cluster compared to other clusters. The coefficient ranges
from −1 to 1, where a positive value signifies that the clustering was well performed.
Davis et al. [59] introduced the Davis–Bouldin Index. This metric is an average of the
similarity for a cluster to its nearest cluster, which is a ratio of the intra-cluster distance
to the inter-cluster distance. The minimum score is 0, with lower values indicating better
clustering. The Silhouette Coefficient for the Museum of Art and Twamley buildings were
0.71 and 0.68, respectively. The Davis–Bouldin Index for the Museum of Art and Twamley
buildings dataset were 0.81 and 0.75, respectively.

Figure 7 highlights the hotspot regions in discrete red and yellow sub-regions for a
window (Window 1) at the UND Museum of Art and Twamley buildings using the TBC
and K-means approaches, respectively.
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(a) Museum Morning (Raw) (b) Museum Evening (Raw) (c) Twamley Morning (Raw) (d) Twamley Evening (Raw)

(e) Museum Morning (Threshold) (f) Museum Evening (Threshold) (g) Twamley Morning (Threshold) (h) Twamley Evening (Threshold)

(i) Museum Morning (K-means) (j) Museum Evening (K-means) (k) Twamley Morning (K-means) (l) Twamley Evening (K-means)

Figure 7. Raw (a–d) and hotspot (e–l) images for two particular windows of Museum and Twamley over the morning,
afternoon, and evening.

of a 50% split and cannot be used to definitively conclude a consensus. Two other metrics
were considered for comparison and are discussed in the following two paragraphs.

Table 7. Hotspot pixel overlapping (%) for windows and walls.

Object of
Interest Windows Walls

Buildings Museum Twamley Museum Twamley

Duration Threshold K-Means Threshold K-Means Threshold K-Means Threshold K-Means

Morning 88.2% 64.2% 86% 93% 69.8% 76.8% 79% 70%
Evening 82.8% 71.8% 43% 93.4% 71.4% 42.1% 72% 40.4%

Afternoon 77.9% 73.1% 82% 43% 72.8% 64.2% 34% 35%

Figure 8b depicts the minimum, maximum, and average surface temperatures for
six clusters created in the segmentation phase. The cluster with the highest average
temperature (such as cluster 3 Figure 8b) was chosen as the hotspot. Figure 8b shows the
Elbow evaluation for an image from the museum dataset. From the graph in Figure 8,
we can identify the k value for the walls to be somewhere in the range between 3 to 6.
After the seventh cluster, it was evident that there were no such changes in the squared
distance. The K value of six was chosen using the temperature TBC as the ground truth
because of the hotspot evaluation technique involving pixel temperatures. Computing
the K-means to six clusters yielded results with few deviations with respect to Average

Figure 7. Raw (a–d) and hotspot (e–l) images for two particular windows of Museum and Twamley over the morning,
afternoon, and evening.

Table 7 compares the two clustering methods and establishes a comparison metric
(called the overlap) for windows and facades, respectively. The overlap metric is the ratio of
overlapped hotspot pixels or similar pixels identified individually by the Threshold and K-
means approaches to the total number of hotspot pixels identified by each of the clustering
approaches. Keeping a maximum error of 10%, there were five instances when the two
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clustering methods can be considered to be in agreement. However, this is marginally short
of a 50% split and cannot be used to definitively conclude a consensus. Two other metrics
were considered for comparison and are discussed in the following two paragraphs.

Table 7. Hotspot pixel overlapping (%) for windows and walls.

Object of Interest Windows Walls
Buildings Museum Twamley Museum Twamley
Duration Threshold K-Means Threshold K-Means Threshold K-Means Threshold K-Means
Morning 88.2% 64.2% 86% 93% 69.8% 76.8% 79% 70%
Evening 82.8% 71.8% 43% 93.4% 71.4% 42.1% 72% 40.4%

Afternoon 77.9% 73.1% 82% 43% 72.8% 64.2% 34% 35%

Figure 8b depicts the minimum, maximum, and average surface temperatures for
six clusters created in the segmentation phase. The cluster with the highest average
temperature (such as cluster 3 Figure 8b) was chosen as the hotspot. Figure 8b shows the
Elbow evaluation for an image from the museum dataset. From the graph in Figure 8,
we can identify the k value for the walls to be somewhere in the range between 3 to 6.
After the seventh cluster, it was evident that there were no such changes in the squared
distance. The K value of six was chosen using the temperature TBC as the ground truth
because of the hotspot evaluation technique involving pixel temperatures. Computing
the K-means to six clusters yielded results with few deviations with respect to Average
Hotspot Temperature and Density of Hotspot from TBC. A value of K = 5 yielded results
similar to the TBC for the windows. The performances of the clustering techniques across
different parameters are listed in Table 8.

Table 8 compares the results obtained by the clustering approaches based on a fixed
set of five parameters across the morning, afternoon, and evening time periods. The
“Density (Hotspot)” measure is a ratio of the number of hotspot pixels to the total number
of pixels within the entire surface being measured, such as windows or facades. Similarly,
the “Average Temperature (Hotspot)” measure is the average temperature of the hotspot
regions identified by each of the clustering methods. The largest discrepancy can be seen
when comparing the density metric between the two clustering approaches during the
afternoon for Twamley. This discrepancy was caused by the incidence of solar radiation on
Twamley’s surface.

(a) Min, max, and average temperatures for different clusters.

Figure 8. Cont.
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(b) Elbow method evaluation for the images in Dataset 1.

Figure 8. The K-means-optimal cluster evaluation and temperature results.

For a fair comparison, the average hotspot temperatures across different time frames
can be taken into account. The values obtained for these measures are consistent across the
morning (both the buildings), afternoon (museum only), and evening (both the buildings)
time periods with average hotspot temperature differences between 0.01 and 0.48 degrees
Kelvin and can be considered negligible. The afternoon duration for Twamley is not con-
sidered because, as mentioned earlier, a skewing factor was introduced by solar irradiance.
It should also be noted that the temperature values obtained by the sixth cluster from the
K-means approach were the most accurate values for the Museum dataset. Accuracy here
was assessed when the values of the K-means approach were closest to the values from the
TBC as temperature values in the latter were extracted directly from each pixel and, thus,
are taken to be the ground truth.

In order to obtain the U-value for UND’s buildings, the Stephen–Boltzmann constant
σ was replaced by 5.67 × 10−8 Wm−2K−4 in Equation (5) in addition to the spectrum
emissivities mentioned earlier. Tables 9 and 10 show the U-values and related parameters
for UND’s Museum and Twamley buildings). Each of these tables contains the investigated
building elements, number of images considered, min–max–average surface temperature
captured from the thermal images, air temperature obtained from weather data, U1, U2,
U3, and Uc (first obtained in BTU/ft2 h◦F and then converted to W/m2·K and where
Uc =

U1+U2+U3
3 ) using the corresponding equations and ASHRAE standard data.

The thermocouple temperatures obtained from the building surface were through
an Extech 3-channel data logger, which had conductive probes to measure surface tem-
peratures. These probes were secured to the indoor and outdoor surfaces using electrical
tape for average durations of 20–30 s to obtain a steady reading of the surface measured.
Different points on the surface were used, and, if the temperature readings did not differ
too greatly from one another within that time frame, average values were taken.

According to the results obtained from the thermal images, the single-pane window
U-values (Twamley building) were always more than the double-pane window (Museum
building) U-values due to the fact that the double-pane windows consist of an extra layer
of air that acts as an insulation to the heat flow. It can also be observed that the wall
1’s (in Table 9) U1 values are more consistent with the ASHRAE standard while window
1’s U2 and U3 values in Table 10 (highlighted in green) are more consistent with the
ASHRAE standard than U1. As there are many factors that influence U-value estimation
(please see the following subsection on uncertainty analysis), additional testing needs to be
done through rigorous data collection (multiple time frames, precise indoor temperature
readings, varied building types, etc.) to come to accurate conclusions.
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Table 8. Performance of K-means and Threshold-Based Clustering.

Object of Interest Walls Windows
Buildings Museum Twamley Museum Twamley

Morning

No. of Pixels (Object) 197,186 197,186 186,601 186,601 36,167 366,167 17,926 17,926

280.35 K

Density (Hotspot) 3.72 4.71 2.84 4.15 5.18 8.42 3.56 3.39

No. of Pixels (Object) 7241 9266 5340 8165 2022 3560 4383 4098

Avg. Temp (Hotspot) 269.71 270.08 270.09 270.15 268.91 268.8 268.72 268.71

Avg. Temp (Object) 268.48 268.48 268.7 268.7 268.04 268.04 268.17 268.17

Evening

No. of Pixels (Object) 200325 200,325 183,642 183,642 42572 42,572 24,204 24204

273.25 K

Density (Hotspot) 1.89 6.25 1.19 5.15 5.43 7.37 4.31 1.48

No. of Pixels (Object) 3340 12,526 3410 9973 2626 2802 999 417

Avg. Temp (Hotspot) 277.27 276.98 279.24 278.81 274.36 274.32 273.66 274.14

Avg. Temp (Object) 275.48 275.48 276.54 276.54 273.31 273.31 272.21 272.21

Afternoon

No. of Pixels (Object) 202409 202,409 177,711 177,711 138,911 139,811 33,185 33,185

276.25 K

Density (Hotspot) 2.99 5.66 1.19 5.76 4.7 6.22 2.18 7.31

No. of Pixels (Object) 6221 11,560 2026 9984 7023 9900 775 1384

Avg. Temp (Hotspot) 294.28 294.12 308.58 321.25 281.7 281.32 319.68 317.33

Avg. Temp (Object) 283.9 283.9 303.46 303.46 278.86 278.86 304.2 304.2

Table 9. Museum U-value estimation (morning) on 17 March 2020.

Temperature Analysis
Surface Temperature (K) U-Value Analysis (W/m2·K)Building Elements # of Images
Max Min Avg

Thermocouple
Temperature

External Air
Temperature U1 U2 U3 Uc

ASHRAE

Window 1 19 272.39 267.36 268.22 0.73 1.98 1.96 1.53 1.98
Window (all) 321 277.27 266.15 268.5 1.53 3.50 3.46 2.83 1.98

Wall 1 435 278.8 265.85 268.53 1.41 2.59 2.55 2.15 0.48
Roof 11 269.55 266.5 267.25

268.45 K 266.15 K

0.68 3.46 3.4 2.27 0.22

Table 10. Twamley U-value estimation (morning), 17 March 2020.

Temperature Analysis (K)
Surface Temperature U-Value Analysis (W/m2·K)Building Elements # of Images
Max Min Avg

Thermocouple
Temperature

Air
Temperature U1 U2 U3 Uc

ASHRAE

Window 1 150 271 267 268.3

281.05 K 266.15 K

1.13 3.52 3.46 2.66 5.39
Windows (all) 500 279.25 266.83 268.25 1.36 3.46 3.46 2.78 5.39

Wall 1 45 281 266.08 269 1.79 2.61 2.55 2.32 0.48
Roof 11 270.3 266.7 267.4 0.73 3.46 3.46 2.55 0.22

4.4. Factors Contributing to Uncertainties in Thermal Data Capture and Processing

The proposed approach consists of three primary layers: (1) the collection of data
and instance segmentation using deep learning; (2) clustering and hotspot detection; and
(3) U-value estimation. These three layers contribute to the overall uncertainties of the
proposed solution. In the following, we discuss each of these points:

1. Uncertainties associated with image capturing include the following:

• Capturing images of surfaces during the daytime should be planned carefully
since solar irradiance can skew readings from the imaging apparatus [60]. Sun-
light reflecting on external surfaces, such as brick, which is of high emissivity,
will radiate more heat than if the surfaces were under shade. We used images
obtained before sunrise and after sunset; however, the effects of incident sunlight
will still affect the surface for hours after the surface is shaded.

• Surrounding objects, such as metallic surfaces, may reflect high temperatures,
leading to inaccurate surface measurements due to reflecting sunlight [61]. We
minimized this bias, recognizing that the buildings in these datasets are adjacent
to parking lots, which had vehicles with reflective surfaces. These reflections will
influence the thermal readings.
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• Heat and humidity are two atmospheric factors that will influence temperature
readings [62]. In regions where the temperatures and relative humidity fluctuate
quite frequently, measurements must be systematically recorded when there is
acceptable consistency in weather patterns for that day or time.

2. Uncertainties with object detection and instance segmentation: Uncertainty in deep
learning can be classified mainly into two types: epistemic uncertainty and aleatory
uncertainty. Epistemic uncertainty refers to the uncertainty associated with the objects
that the model does not know because the training data was not appropriate. This
type of uncertainty arises due to gaps in data and knowledge. We limited this type
of uncertainty by generating sufficient data as this results in decreasing epistemic
uncertainty. The aleatory uncertainty refers to the type of uncertainty rising from the
stochasticity of the observations. This second type of uncertainty cannot be mitigated
by providing more data to the models. Given the uncertainty in deep learning,
the reading of the data associated with U-value calculation is subsequently uncertain,
and there will be some variability the readings and the overall U-value estimation.
These variabilities are added to other factors discussed in the previous paragraph.

3. Uncertainties with clustering and hotspot detection: The clustering and hotspot detec-
tion are directly related to object detection and instance segmentation and uncertainty
associated with deep learning will propagate and create uncertainties associated with
this part. Apart from these sources of uncertainty, additional sources exist, such as
the observations, background knowledge, the induction principle, and the learning
algorithm used for this unduction principle.

4. Uncertainties with U-value estimation: The formulas used for U-values are approxi-
mations and depend on many factors that are themselves subject to different types of
uncertainties, which can result in different measurements.

Please see Table 11 for quantitative reporting of the precision and average deviation
when considering U-value estimation. Based on the results from our analysis and due to
the high number of sample points for object-wise U-value estimation, unbiased rounding
was used to retain one significant digit after the decimal for precision and error, and two
significant digits after the decimal for the average deviation. For instance, the wall precision
value for Twamley and the error in the wall readings for the Museum were rounded to 15.1%
and 347.9% from 15.08% and 347.91%, respectively. For the purposes of our evaluation,
we specify the definition of precision according to ISO 3534-1 [63] to be “the closeness of
agreement between independent test results obtained under stipulated conditions.”

The error was calculated by considering the % difference between the empirical
observations and the true values (ASHRAE) [64]. This can be considered to be a measure
of accuracy. Following the standard definition for “true value”, the “true value” refers to
values obtained by ASHRAE (which may have had systematic or random uncertainties)
and not the absolute value for the measurand that is devoid of any contributing or biasing
factors. The average deviation (∆Uavg) is calculated using the following formula:

∆Uavg =
3

∑
i=1

|Ui −Uc|
3

(15)

where Ui represents the U-values 1, 2, and 3. The precision is calculated using Equation (16)

Precision =
∆Uavg

Uc
× 100% (16)

As can be seen from Table 11, the average deviation for windows was equal to or
higher than those of walls for both the buildings. This means that the variation of U-values
from their respective average value (Uc) for a given object was lower in the case of walls
than windows. We can infer from this table that the U-value measurements for walls were
much more similar to one another relative to the windows’ U-values.
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Similarly, in terms of accuracy, the U-values obtained for the windows are closer to
the true ASHRAE values. These results also confirm an important result: U-values closer
to one another may not necessarily indicate higher accuracies as can be seen when the
accuracy for walls are considered. Using our methodology for U-value estimation and
when considered relative to windows, it can be said that the measured values for walls are
more precise (lower precision) but much less accurate (higher errors).

Table 11. The error, precision, and deviation for U-value estimations.

Building Object of Interest Error (%) Precision (%) ∆Uavg
ASHRAE
Standard

Twamley
Wall 383.3 15.0 ± 0.35 0.48

Window 48.4 33.3 ± 0.93 5.39

Museum
Wall 347.9 24.5 ± 0.53 0.48

Window 43.0 30.6 ± 0.87 1.98
Window 1 22.7 36.6 ± 0.56 1.98

5. Conclusions

Building thermal performance information is crucial to reducing energy consumption
and to achieving zero energy buildings. Researchers have proposed many methodolo-
gies over the past decades, including statistical approaches, engineering-based methods,
and machine learning. These methods present many limitations; therefore, this study aimed
to enhance the building thermal performance with a more precise heat loss quantification
and to overcome the complexity of engineering methods.

We proposed a novel method using thermal imagery and deep-learning-based in-
stance segmentation combined with analytical methods to compute U-values. We used
thermal images captured by SkySkopes to train the machine learning models. The images
were obtained during several flight rounds duringearly dawn to avoid any non-desirable
reflections and accounted for several variables, such as the angle and distance to walls.
The images obtained were annotated and archived using cloud storage. Several classes
were defined, such as the facades of buildings, trees, and windows, after which Mask
R-CNN was trained and tested.

The confusion matrix and AP were computed to evaluate the performance of the
machine learning algorithms. The results indicated that the model trained on augmented
datasets achieved total average precision values as high as 79% for facades, 69% for
windows, and 67% for roofs. The heat loss calculation was also used to quantify the desired
values. We proposed clustering and hotspot detection methods to identify the primary
regions of heat loss in the facades and windows of the buildings.

Three measures were used to compare the clustering schemes. The overlap metric
indicated a 50% agreement between the methods; however, we explored the average
hotspot temperature metric to obtain a definitive conclusion. A maximum difference of 0.48
degrees was observed for the average hotspot temperature metric on surfaces not affected
by sunlight and, thus, was effectively used to confirm our results. This information can be
leveraged to make appropriate decisions related to building design and maintenance.

The analysis led to the following conclusions: (1) the proposed data driven approach
provided an automatic and reliable process for energy audit applications; (2) our results
are broadly consistent with the American Society of Heating, Refrigerating, and Air-
conditioning Engineers building standards; (3) this research generated new information on
the dependency of thermal efficiency, which relies on many factors, including the thermal
images acquisition process, building geometry, and indoor heating or cooling conditions;
and (4) the findings of this research and the quantitative and qualitative uncertainty
analyses will provide a significant starting point for discussion and further research in the
area of automated processes for energy audit applications.
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Future work will include re-working Mask R-CNN to analyze more than thermal
images and with datasets consisting of more balanced classes. Further studies should in-
vestigate the possible effects of the building typologies on the meteorological performances
of the proposed method.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
IoU Intersection over union
ROI Region of interest
YOLO You Only Look Once
OGI Optical gas imaging
FLIR Forward looking infrared
HVAC Heating, ventilation, and air conditioning
R− CNN Regions based Convolutional neural network
Mask R− CNN Region neural network
AP Average precision
MAP Mean average precision
TP True positive
FP False positive
TN True negative
FN False negative
U1 U-value using formula (1)
U2 U-value using formula (2)
U3 U-value using formula (3)
Uc average U-value of U1, U2, and U3
ε Wall emissivity
σ Stephen–Boltzmann constant: 5.6703 × 10−8 W ×m−2 K−4

Ts Surface temperature
αc convective heat coefficient
Tai Constant
Tin Internal wall temperature
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Tout External wall temperature
Tre f Reflexive wall temperature
c1 Convective heat coefficient constant
L Height of the wall

ASHRAE
American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE)
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