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I M M U N O L O G Y

Spatially resolved immune exhaustion within the 
alloreactive microenvironment predicts liver 
transplant rejection
Arianna Barbetta1†, Brittany Rocque1†, Sarah Bangerth1, Kelly Street2, Carly Weaver3,  
Shefali Chopra4, Janet Kim1, Linda Sher1, Brice Gaudilliere5, Omid Akbari6,7,  
Rohit Kohli3,8, Juliet Emamaullee1,6,8*

Allograft rejection is common following clinical organ transplantation, but defining specific immune subsets me-
diating alloimmunity has been elusive. Calcineurin inhibitor dose escalation, corticosteroids, and/or lymphocyte 
depleting antibodies have remained the primary options for treatment of clinical rejection episodes. Here, we 
developed a highly multiplexed imaging mass cytometry panel to study the immune response in archival biopsies 
from 79 liver transplant (LT) recipients with either no rejection (NR), acute T cell–mediated rejection (TCMR), or 
chronic rejection (CR). This approach generated a spatially resolved proteomic atlas of 461,816 cells (42 pheno-
types) derived from 96 pathologist-selected regions of interest. Our analysis revealed that regulatory (HLADR+ 
Treg) and PD1+ T cell phenotypes (CD4+ and CD8+ subsets), combined with variations in M2 macrophage polariza-
tion, were a unique signature of active TCMR. These data provide insights into the alloimmune microenvironment 
in clinical LT, including identification of potential targets for focused immunotherapy during rejection episodes 
and suggestion of a substantial role for immune exhaustion in TCMR.

INTRODUCTION
T cell–mediated rejection (TCMR) remains the most frequent com-
plication after liver transplantation (LT), occurring within the first 
6 months in up to 35% of adult LT recipients (1–3). While TCMR is 
generally responsive to treatment with pulse corticosteroids, adjust-
ment of maintenance immunosuppression regimens is key for pre-
venting future TCMR episodes (4). Ultimately, up to 10% of patients 
will develop steroid resistance and have recurrent episodes of 
TCMR. The diagnosis of TCMR hinges upon histological examina-
tion of a core biopsy stained with hematoxylin and eosin by a clinical 
pathologist using rejection activity index (RAI), a composite score 
ranging from 0 to 9 based on severity of portal inflammation, bile 
duct inflammation, and venous endotheliitis (5, 6). After its inception 
following a Banff consensus conference in 1995, the RAI has become 
the gold standard to establish the diagnosis of TCMR and guide treat-
ment strategies in clinical LT. There have been minimal changes in the 
RAI since it was first introduced, with additional criteria for antibody-
mediated rejection, a rare entity in LT, in 2016 (6). In parallel, options 
for induction and maintenance immunosuppression as well as treat-
ments for biopsy-proven rejection episodes in LT have not changed 
substantially since the 1990s and rely on therapeutics that cause 

nonspecific suppression of entire leukocyte populations. For instance, 
the two mainstay treatments broadly suppress the T cell compartment 
[calcineurin inhibitors (CNIs)], or they function by globally inhibit-
ing both macrophages and T cells (corticosteroids) (7). Thus, the 
absence of specific targeting for TCMR-associated immune subpopu-
lations in LT results in both suboptimal prevention and treatment of 
TCMR episodes, as well as a variety of unintended, and often severe, 
adverse medication side effects.

Improving our understanding of the complex alloimmune micro-
environment (AME) in clinical LT would enable development of 
focused and personalized immunotherapies, particularly as it relates 
to controlling the alloimmune response during rejection episodes. 
Donor-derived antigen-presenting cells (APCs) presenting allograft 
antigen on both major histocompatibility complex (MHC) I and II 
can activate host CD8+ and CD4+ T cells via the direct pathway, ulti-
mately leading to tissue damage via Fas-FasL or granzyme/perforin 
production and secretion of pro-inflammatory cytokines (8). The in-
direct pathway, which has been implicated in late TCMR, is mediated 
by recipient APCs infiltrating the allograft over time (8). However, 
deeper characterization of graft-infiltrating leukocytes driving TCMR 
in clinical LT is still needed. When compared to experimental heart 
and kidney transplantation, small and large animal models of LT are 
more technically demanding while offering a lower threshold for tol-
erance induction and thus less opportunity to recapitulate alloimmu-
nity in clinical TCMR (9). Moreover, most preclinical animal models 
focus on preventing alloimmunity at the time of transplant with re-
sultant tolerance induction, rather than reversing a post-transplant 
rejection episode, which is the more common clinical scenario. Ex-
amination of clinical samples has been limited by the tiny amount of 
tissue available from a core needle biopsy specimen. The INTERLIVER 
study examined over 200 clinical LT biopsies using bulk tissue micro-
arrays and archetypal analysis, and differentially expressed (DE) 
genes involving both effector T cell and injury-related pathways were 
identified in the small subset of biopsies with TCMR. Supervised and 
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unsupervised molecular classifiers based on the top 30 DE genes had 
only a modest ability to predict histological TCMR [area under the 
curve (AUC) of 0.57 and 0.70, respectively] (10). A more recent histo-
logic study analyzing post-LT biopsies demonstrated that CD8+ T 
cells form an immune synapse with APCs, with an association be-
tween segregation of CD3- and CD45-positive cells, immunosuppres-
sion weaning failure, and development of TCMR (11). Thus, key 
features driving the intrahepatic alloimmune response during active 
rejection episodes, including composition and phenotype of alloreac-
tive T cell subpopulations and interactions between innate and adap-
tive cells, remain elusive.

CD4+CD25+FoxP3+ regulatory T cells (Tregs) have been a central 
focus in both experimental and clinical LT (12). Despite substantial 
evidence that Tregs are central mediators of rejection and immune tol-
erance, clinical trials designed to expand Treg either via therapeutic 
intervention or cellular therapies have not yet resulted in positive 
clinical outcomes (13). The programmed death 1 (PD1) pathway has 
also emerged as an important physiologic immune checkpoint to 
maintain peripheral T cell tolerance and regulate adaptive immune 
responses particularly during chronic antigen exposure (14). PD1 can 
be expressed on both B and T cell populations, including Tregs upon 
activation, with constant high expression levels following sustained 
antigen exposure. The PD1 pathway antagonizes T cell receptor (TCR) 
engagement and CD28 costimulation signals, attenuating down-
stream cytokine production, proliferation, cell metabolism, and sur-
vival; thus, ultimately moderating T cell activity (15, 16). The role of 
PD1 signaling in transplantation is not well defined, with prelimi-
nary studies on heart and kidney allografts implicating PD1-related 
signals as markers of allograft rejection (17–22). However, in a recent 
study in clinical LT, flow cytometric analysis failed to demonstrate a 
difference in PD1 expression in allograft-infiltrating T cells isolated 
from liver explant (n = 5), rejection (n = 7), and no-rejection liver 
biopsies (n = 7) (23). Thus, detailed study of the relationship between 
different regulatory and inflammatory immune cell populations is 
critical for defining the important aspects of the AME during rejec-
tion, optimizing identification of predictive biomarkers of TCMR, 
and identifying more focused targets for immunotherapy to treat ac-
tive rejection.

Here, using multiplexed proteomics-based imaging mass cytom-
etry (IMC), we developed a marker panel focused on immune cell 
phenotyping and developed an analysis pipeline that enabled granu-
lar, single-cell characterization of more than 30 discrete immune cell 
types, resulting in a spatially resolved, immune-focused single-cell 
atlas at a resolution that has not previously been achieved using this 
technique. This enabled spatial assessment of the AME in a large 
population of post-LT patients with no rejection (NR), active TCMR, 
and progression to chronic rejection (CR). We defined significant 
cell-cell interactions and identified spatial motifs as well as predicted 
single-cell phenotypes associated with active TCMR. This approach 
revealed that within the AME, the evolution of the immune response 
during active TCMR was associated with intragraft presence of spe-
cific T cell subpopulations expressing PD1. However, PD1+ T cells 
were largely absent in CR, suggesting that these cells may reflect a 
natural attempt by the immune system to counteract the acute allo-
immune inflammatory response and represent potential biomarkers 
unique to TCMR. In addition, the absence of these populations in 
CR might reflect failure of this immune regulatory mechanism in the 
setting of chronic alloimmunity. Furthermore, we showed that lym-
phocytes and macrophages are spatially organized into aggregates, in 

which strong interactions among PD1+ and effector T cells exist, as 
well as between CD8+ T cells and specific macrophage subpopula-
tions. Collectively, our data offer a detailed and spatially conscious 
atlas of immune infiltrates in the liver AME during active TCMR 
episodes that represent putative in situ biomarkers of rejection. Our 
data provide a framework for histologic assessment of complex im-
mune microenvironments at single-cell resolution in archival clinical 
samples, which can inform development of clinical assays improving 
treatment specificity and support the development of targets for im-
munotherapy to resolve clinical rejection episodes.

RESULTS
Part I: Major cell types and proportions in liver allografts 
during active rejection episodes
We applied IMC to 24 distinct NR liver core biopsies, 41 distinct bi-
opsies with proven TCMR, and 14 distinct CR samples using our 
customized analysis pipeline (Fig. 1A). By segmenting the acquired 
96 multiplexed images using clinically diagnostic regions of interest 
(ROIs) selected by a specialist liver pathologist, we generated a 
single-cell atlas of the AME containing a total of 461,816 cells 
(average 4811 ± 2291 cell per ROI), which were then classified into 
10 main cell populations or “metaclusters.” We evaluated raw image 
signals (fig.  S1A), post-segmentation dimensionality reduction [t-
distributed stochastic neighbor embedding (t-SNE)] of individual 
markers (fig. S1B), immune metaclusters by patient (fig. S1, C and 
D), and difference in mean fold change expression of all markers 
among the three clinical groups (fig. S1, E and F). We first projected 
metaclusters onto tissue sections, separating out non-immune meta-
clusters (hepatocytes, cholangiocytes, and endothelial cells) and im-
mune metaclusters (CD4+ T cells, CD8+ T cells, macrophages, 
monocytes, neutrophils, B cells, and plasma cells) (Fig. 1B). We then 
quantified the number of cells within each metacluster and evaluated 
scaled marker expression of lineage markers (Fig. 1C). Hepatocytes 
were the most common non-immune cell type, representing 62.6% 
of all cells identified, while macrophages were the most common im-
mune cell type, representing 9.9% of all cells identified. Rare popula-
tions were also identified, including cholangiocytes (1.8% of all cells) 
and B cells (1% of all cells). Next, t-SNE was used to visualize differ-
ences in cell metaclusters between clinical groups (Fig. 1D). Propor-
tions of immune and non-immune populations were examined and 
compared between clinical groups. By looking at the expression of 
Ki67 and HLADR (human leukocyte antigen–DR) within non-
immune cell populations, we identified three different subclusters of 
hepatocytes (fig.  S2, A to D), cholangiocytes (fig.  S2, F to I), and 
endothelial cells (fig. S2, K to O). Proliferating hepatocytes (Ki67+ 
hepatocytes) and HLADR+ hepatocytes presented a different distri-
bution across the three groups, with a greater proportion of prolifer-
ating hepatocytes in TCMR (P < 0.01) and HLADR+ hepatocytes in 
both TCMR and CR when compared to NR (P < 0.01) (fig. S2, D and 
E). Similarly, the percentage of HLADR+ cholangiocytes differed 
across the three clinical groups, with a greater percentage of HLADR+ 
cholangiocytes in both TCMR and CR compared to NR (P = 0.01; 
fig. S2, I and J). While MHC II molecules are constitutively expressed 
on human cholangiocytes, the inflammatory state of several diseases 
including primary biliary cirrhosis, primary sclerosing cholangitis, 
graft-versus-host disease, and even liver TCMR has been associated 
with MHC II overexpression on cholangiocytes, which may function 
as APCs in the liver (24, 25).
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Fig. 1. Single-cell proteomic atlas of the global cellular composition in liver allografts using IMC. (A) Schematic figure of IMC workflow starting with case selection 
of biopsies including 96 specimens from 79 patients across clinical groups (NR, n = 24; T cell–mediated rejection, n = 41; and CR, n = 14). Tissue specimens were stained 
with our 22-marker IMC panel, and images were acquired. Images were preprocessed and segmented to generate masks and a single-cell expression matrix dataset. 
Downstream phenotypic analysis using a semi-supervised clustering approach and spatial analysis was performed on the dataset (461,816 cells). (B) Representative visu-
alization of cell masks colored by cell population in non-immune and immune populations in TCMR. Scale bars, 190 μm. Cell population or metacluster colors from the 
legend are consistent throughout the figure. (C) Heatmap showing scaled marker expression within our 10 major metaclusters with purple bars with relative proportion 
of which clinical group contributed to the metacluster. Gray bars depict total cell number and percent composition of that population across the entire dataset. (D) t-SNE 
visualization showing cell metaclusters (excluding hepatocytes for ease of visualizing the less abundant metaclusters) by clinical group. (E) Boxplots representing the 
relative proportions of metaclusters across clinical groups with statistical comparison of each population as a proportion of that cell type per patient. TCMR and CR 
showed a greater proportion of immune cells compared to NR. Among the three clinical groups, different cell proportions were observed in CD4+ and CD8+ T cells, B cells, 
monocytes, and plasma cells compartments. UV, ultraviolet; m/z, mass/charge ratio; ROI, region of interest; NS, not significant.
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Within immune metaclusters, there was an increase in CD8+ T 
cells between NR and active TCMR as well as NR and CR (P < 0.01), 
with a subtle increase in monocytes from NR to TCMR (P < 0.01; 
Fig.  1E). Despite macrophages being the most common immune 
metacluster, which is consistent with their pivotal role in regulating 
liver immune function, there were no differences in abundance be-
tween clinical groups (Fig. 1E and fig. S1D) (26, 27).

We performed a subanalysis on TCMR to determine whether de-
mographics and immunosuppression history are correlated with cell-
​type proportions or not (table S1). Demographic variables analyzed 
were sex, race/ethnicity, and etiology. No difference was detected 
when analyzing metacluster cell proportions by demographics or im-
munosuppression history.
Evaluation of T cell and macrophage subpopulations in active 
TCMR shows expansion of exhausted phenotypes
Most antibodies available for use in IMC performed on human tissue 
were developed for studies related to cancer biology (28). After a com-
prehensive review, we developed a customized immune-focused IMC 
panel using a set of available markers able to holistically capture all 
the immune phenotypes involved in both inflammation and rejec-
tion pathophysiology (28). To uncover the various cell subpopula-
tions and potentially important cell phenotypes within metaclusters, 
we then developed a semi-supervised clustering approach based on 
additional immune phenotype and functional markers within the 
CD4+, CD8+, B cell, macrophage, and monocyte immune metaclus-
ters identified using multiplexed IMC.

CD4+  T cells. Within the CD4+ T cell compartment, nine total 
phenotypic subclusters were identified (Fig. 2, A to C, and fig. S3A). 
We initially stratified CD4+ T cells by CD3 expression, resulting in a 
CD3LowCD4+ T cell subset and a CD3HighCD4+ T cell subset. Varia-
tions in CD3 expression within the CD4+ T cell compartment have 
been described, with low levels corresponding to resident memory 
CD4+ T cells and high levels associated with an activated state (29, 
30). The resident memory CD4+ T cell subset was more abundant 
in NR, while CD3HighCD4+ T cells were more abundant in TCMR 
and CR (Fig. 2, D to F, and fig. S3, B and C). Compared to NR, active 
TCMR had a greater proportion of CD3highCD4+ T cells, naïve CD4+ 
T cells, and activated CD4+ T cells, which is consistent with acute 
alloreactivity (Fig. 2F). Tregs were identified as CD3+CD4+FoxP3+ T 
cells (31). While their overall frequency was rare, we observed a con-
comitant increase in regulatory cell types, including HLADR+ Tregs 
and PD1+CD4+ T cells, in the TCMR group when compared to NR, 
suggesting that their expansion counters effector alloreactive T cell 
activity (Fig. 2F). We also determined that the CD3highCD4+ T cell 
subset represented most of the CD4+ T cells in CR, with a significant 
decrease in resident memory CD4+ T cells and higher proportion 
of activated T cells when compared to NR (Fig. 2F). Unlike active 
TCMR, there was no expansion of the regulatory HLADR+ Treg or 
PD1+CD4+ T cell populations in CR. The frequency of these two cell 
populations was similar between NR and CR as well as between TCMR 
and CR. To understand the trajectory of CD4+ T cells in the AME, 
pseudotime reconstruction was performed, which has been performed 
by other groups using IMC (Fig. 2G) (32–35). This provides further 
evidence that NR is primarily associated with resident memory CD4+ 
T cells and suggests that CD4+ T cell subpopulations increased dur-
ing TCMR and CR originate and proliferate from circulating CD4+ 
T cells (Fig. 2G). These data also suggest that the expanded Treg and 
PD1+CD4+ T cells observed in TCMR represent late-stage effector 
cells unique to this phase of alloimmunity.

CD8+ T cells. Subclustering of the CD8+ T cell compartment iden-
tified five unique CD8+ T cell subsets, including CD45+CD3+CD8+ 
(“CD3+CD8+ T cells”), Ki67+CD45+CD3+CD8+ (“proliferating 
CD8+ T cells”), GranzymeB+CD45+CD3+CD8+ (“cytotoxic T cells”), 
PD1+CD45+CD3+CD8+ (“PD1+CD8+ T cells”), and PD1+CD28+C
D45+CD3+CD8+ (“PD1+CD28+CD8+ T cells”) (Fig. 3, A to C, and 
fig. S3D). Although the overall CD8+ T cell proportion differed be-
tween clinical groups (Fig. 1E), the CD3+CD8+ T cell subgroup was the 
most abundant subset in each patient and across each cohort (Fig. 3, 
D and E). Active TCMR showed a higher overall frequency of CD8+ T 
cells when compared to both NR and CR (P < 0.01; Fig. 1E), and this 
was predominately related to an increased frequency of proliferating 
CD8+ T cells, supporting the concept of effector CD8+ T cell expansion 
during acute alloimmunity (Fig. 3, D to F). Cytotoxic T cells were rare 
and showed no differences across clinical groups within the CD8+ T 
cell compartment (Fig. 3F). Similar to what was observed for CD4+ 
T cells, TCMR tissue exhibited a greater enrichment of PD1+CD8+ T 
cells when compared to NR and CR (P < 0.05) (Fig. 3F). Pseudotime 
analysis to evaluate CD8+ T cell trajectory revealed two divergent paths 
of the abundant CD3+CD8+ T cells, into either the PD1+ phenotype or 
the Ki67+ proliferating CD8+ phenotype (Fig. 3G). This suggests that 
this population has its own terminally differentiated function including 
counteract the alloimmune inflammatory response in the attempt to 
restore the homeostasis.

Macrophages. Among the immune metaclusters, macrophages were 
the most abundant cell type (fig. S1D) in all clinical groups, which 
highlights their key role in liver homeostasis, disease, and injury pro-
cesses (26, 27). Macrophages can participate in robust infiltration of the 
AME during severe rejection episodes; however, their role has rarely 
been investigated in TCMR and CR in clinical LT (36, 37). We have 
previously shown that CR is characterized by a discrete macrophage 
phenotype absent in NR (37). Thus, to obtain a detailed representation 
of the macrophages complexity and heterogenous activity in LT, we 
first divided macrophages M1 and M2 based on their expression of 
CD163 (fig. S4A) (38). We were not able to identify a discrete protein 
marker for Kupffer cells, which limited our ability to further differen-
tiate these tissue specific macrophages within our macrophage meta-
cluster. The overall distribution of M1 and M2 and ratio of M2:M1 
macrophages did not differ between NR, active TCMR, and CR (fig. S4, 
B to D) (38). Even when classified into M1 and M2 phenotypes, mac-
rophages remain extremely plastic in vivo, and the role of different 
subsets of activated M2 macrophages in solid organ transplantation 
is yet to be fully understood (39). In addition, it has been described 
that M2 macrophages are crucial in the development of chronic allo-
graft rejection promoting allograft fibrosis and chronic allograft vas-
culopathy in heart and kidney transplants (40, 41). Thus, we sought 
to further characterize these two macrophages population and relate 
them to the three different alloreactive states. Subclustering revealed 
four M1 [“M1” (CD68+CD163Lo), “CD11b+ M1” (CD11b+CD68+CD-
163Lo), CD16+ M1 (CD16+CD68+CD163Lo), and “proliferating M1” 
(Ki67+CD68+CD163Lo)] and five M2 macrophage subtypes [“M2” 
(CD68+CD163Hi), “CD11b+M2” (CD11b+CD68+CD163Hi), CD16+ 
M2 (CD16+CD68+CD163Hi), “proliferating M2” (Ki67+CD68+C-
D163Hi), and “HLADR+ M2” (HLADR+CD68+CD163Hi); Fig. 4, A 
to C, and fig. S4E]. Consistent with the activation of an inflammatory 
process, a greater percentage of proliferating M1 macrophages was 
observed in TCMR compared to NR and CR (Fig. 4F). We found one 
M1 and one M2 macrophage subset each expressing CD16, which 
has been associated with heart transplant rejection (40). Both NR and 
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Fig. 2. Active TCMR is uniquely characterized by expansion of Treg and PD1+CD4+ T cells. (A) Visualization of cell masks colored by metaclusters on representative TCMR 
tissue section. Scale bar, 180 μm. (B) Plot of the same TCMR tissue section with yellow coloring indicating location of CD4+ T cells within the representative core biopsy. Scale 
bar, 180 μm. (C) Zoom panel highlighting CD4+ T cells colored by cell subpopulation (see color key legend). Subpopulations were identified using unsupervised clustering 
within the CD4+ T cell metacluster, which comprised 24,864 cells, using expression values from markers CD28, CD16, CD11b, CD45, CD4, PD1, FoxP3, Ki67, CD3, and 
HLADR. Nine unique subpopulations emerged from this analysis: Resident memory CD4+ T cells, CD3+CD4+ T cells, activated (HLADRhi) CD4+ T cells, CD16+CD4+ T cells, 
naïve CD4+ T cells, HLADR+CD4+ Tregs, HLADR−CD4+ Tregs, PD1+CD4+ T cells, and proliferating (Ki67+) CD4+ T cells. (D) tSNE visualizations showing CD4+ T cell subpopula-
tions by clinical group. (E) Stacked bar plot representing cell subpopulation proportions within individual patients by clinical group. (F) Boxplots showing CD4+ cell sub-
population percent per patient as a fraction of the CD4+ T cell population. Resident memory CD4+ T cells represented the most abundant phenotype observed in NR 
(P < 0.01); CD3+CD4+ T cells were the predominant phenotype detected in both TCMR and CR groups (P < 0.01), which presented a greater proportion of activated CD4+ T 
cells for both versus NR (P < 0.01); TCMR showed a greater proportion of naïve CD4+ and PD1+ T cells (P = 0.03) as well as HLADR+ Tregs (P < 0.01) compared to NR. (G) Pseu-
dotemporal trajectory analysis of the CD4+ compartment with uniform manifold approximation and projection (UMAP) of cell populations. The leftmost panel shows UMAP 
plot with cell subpopulations, and second panel shows the predicted temporal trajectory (black line, bottom to top). The rightmost panel depicts the density of CD4+ T cells 
(y axis) from each clinical group across pseudotime (x axis). PD1+CD4+ T cells and Tregs represent late-stage effector CD4+ populations specific to TCMR.
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Fig. 3. CD8+ T cell profile in active TCMR highlights simultaneous increases in cell proliferation and PD1+ subpopulations. (A) Representative TCMR image with 
metaclusters projected onto the mask outline of core biopsy ROI. Scale bar, 190 μm. (B) TCMR mask image now highlighting CD8+ T cells only in orange. Scale bar, 190 μm. 
(C) Zoom panel of CD8+ T cells colored by cell subpopulation (see color key). Similar as with CD4+ T cells, the CD8+ compartment was categorized into subpopulations 
using unsupervised clustering with the following markers: CD28, CD16, CD11b, CD45, CD8, PD1, FoxP3, Ki67, CD3, HLADR, and Granzyme B. Five unique subpopulations 
were identified from the parent CD8+ population comprising 30,488 total cells: CD3+CD8+ T cells, proliferating (Ki67+) T cells, cytotoxic T cells, PD1+CD8+ T cells, and 
PD1+CD28+ T cells. (D) tSNE of CD8+ T cell subpopulations. (E) Stacked bar plot showing individual CD8+ T cell subpopulations by patient and clinical group. (F) Boxplots 
depicting CD8+ T cell subpopulations as a percent of total CD8+ T cell population and compared across clinical group. Different distribution in CD3+CD8+ T cells, proliferat-
ing, and PD1+CD8+ T cells subpopulation was observed across the three clinical groups, with a greater proportion of proliferating and PD1+CD8+ T cells in TCMR. (G) Left-
most panel with pseudotime UMAP plot of CD8+ T cell subpopulations and middle panel showing dual trajectory starting at the darker portion of the graph and moving 
to the lower left of the plot. Plot of density of CD8+ T cells (y axis) in each clinical group across pseudotime (x axis). Stimulation of CD3+CD8+ T cells results in the maturation 
of two distinct phenotypes represented by a proliferating CD8+ T cells and a distinct PD1+CD8+ T cell subpopulation.
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Fig. 4. Both active TCMR and CR are characterized by increased proportion of HLADR+ M2 macrophages with concurrent decreases in CD16+ M1 and M2 macro-
phages. (A) Cell mask visualization on TCMR tissue section colored by metacluster. Scale bar, 190 μm. (B) TCMR tissue section again with cell mask outlines and colored 
blue to show location of the macrophage metacluster cells within the tissue. Scale bar, 190 μm. (C) Zoom panel of macrophage subpopulations (see color key legend). The 
macrophage metacluster was composed of 45,927 total cells within the entire dataset, and subpopulations were identified by first differentiating M1 (CD163Lo) from M2 
(CD163hi) and then performing unsupervised clustering based on expression of CD16, CD11b, CD45, FoxP3, CD163, CD68, Ki67, and HLADR. Nine distinct subpopulations 
emerged from this analysis including generic M1 and M2 populations, proliferating (Ki67+) M1 macrophages, proliferating (Ki67+) M2 macrophages, CD11b+ M1 macro-
phages, CD11b+ M2 macrophages, CD16+ M1 macrophages, CD16+ M2 macrophages, and HLADR+ M2 macrophages. (D) tSNE plot of macrophage subpopulations sepa-
rated by clinical group. (E) Stacked bar plot of individual macrophage subpopulations by patient and clinical group. (F) Boxplots showing macrophage subpopulations as 
a percent of the overall macrophage population per patient. A greater proportion of proliferating M1 macrophages was observed in TCMR compared to NR and CR; TCMR 
and NR had a greater proportion of CD16+ M1 macrophages compared to CR; NR showed a greater cell percentage of CD16+ M2 macrophages compared to TCMR and 
CR; HLADR+ M2 macrophages were more abundant in both TCMR and CR compared to NR.
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TCMR exhibited a greater percentage of CD16+ M1 macrophages when 
compared with CR (P < 0.01; Fig. 4F). The CD16+ M2 macrophage 
subcluster was most abundant in NR and was progressively depleted 
from TCMR to CR (P < 0.01; Fig. 4F). These cells might represent a 
population of regulatory and anti-inflammatory macrophages (M2b), 
capable of interleukin-10 (IL-10) secretion (Fig. 4F) (42, 43). A sub-
population of HLADR+ M2 macrophages showed the opposing pattern 
to CD16+ M2 cells and was more abundant in both TCMR and CR 
than NR (P < 0.01; Fig. 4F). These HLADR+ M2 macrophages might 
represent a different activation state compared with the generic M2 
macrophage subpopulations or suggest a unique specialization of those 
cells such as for antigen presentation.

Monocytes. Within the monocyte metacluster, which repre-
sented 1.4% of all cells identified, we defined four phenotypes: 
classical (CD11b+CD16+), nonclassical (CD11b+CD16−), inter-
mediate (CD11b+CD16+HLADR+), and activated monocytes 
(CD11b+CD16−HLADR+) (fig. S5, A to D). Classical monocytes 
represented the most abundant subset across all clinical groups 
(fig. S5, E and F), and the comparison of percentage across the 
three clinical groups showed that intermediate monocytes com-
prised a greater proportion of the monocyte metacluster in NR 
compared with TCMR and CR (P < 0.01; fig. S5G).

B cells and plasma cells. B cells represented the smallest metaclus-
ter in the overall dataset (4881 or 1% of all cells identified; Fig. 1C). 
Comparison of three B cell subpopulations identified (B cells, PD1+ 
B cells, and proliferating B cells) did not highlight any difference in 
the frequency of PD1+ B cells and proliferating B cells across clinical 
groups (fig. S6G). Last, the small fraction of plasma cells identified, 
representing 1.2% of all cells in the dataset, showed a higher propor-
tion in TCMR than CR (P < 0.01; Fig. 1E).

Part II: Evaluation of spatial relationships and multicellular 
functional motifs that define specific pathogenic immune 
cell subsets involved in active TCMR and CR
First, we examined the spatial data layer from our single-cell pro-
teomic IMC atlas of liver transplant alloimmunity to assess pairwise 
relationships between discrete immune subpopulations within each 
clinical group using both neighborhood and correlation analysis to 
characterize the statistical probabilities of cell-to-cell interactions 
(Fig. 5). Overall, a greater number of significant cellular interactions, 
either via avoidance or attraction, were observed in TCMR when 
compared to NR and CR (Fig. 5, A to D). The AME in active TCMR 
was characterized by CD3+CD8+ T cells showing attraction to APCs 
including proliferating and M1 macrophages, classical monocytes, 
HLADR+ M2 macrophages, and B cells, as well as CD3+CD4+ T cells, 
supporting the concept of complex multicellular interactions charac-
terizing this pro-inflammatory state (Fig. 5C). Neighborhood analysis 
revealed the presence of PD1+ T cells (PD1+CD4+, PD1+CD28+CD8+, 
and PD1+CD8+ T cells) and Tregs in the vicinity of effector T cells, 
which established a greater number of positive interactions when 
compared to NR, suggesting that a close cross-talk between those two 
ends of the spectrum T cell phenotypes occurs in TCMR (Fig. 5, A 
and C). Conversely, resident memory CD4+ T cells showed no 
contact or avoidance with exhausted phenotypes in NR and TCMR, 
respectively (Fig.  5, A to C). In CR, HLADR+ M2 macrophages 
surrounded HLADR+ hepatocytes and M1 macrophages, while re-
ciprocal strong interaction between CD16+ M2 macrophages and 
M2 macrophages was observed, likely representing a niche in which 
further differentiation of M2 macrophages occurs (Fig.  5D). These 

results are not affected by cell-type abundance. The greater presence 
of a particular cell type does not necessarily correlate to that cell type 
having a greater chance of interacting with other cell types. Hepato-
cytes, the most abundant cell type, showed a strong avoidance with 
most other cell types, regardless of clinical group. On the other hand, 
cytotoxic T cells (cluster 21) and PD1+CD28+CD8+ T cells (cluster 23) 
showed an increase in interaction strength in TCMR despite being 
somewhat less abundant compared to NR.

Because of the relationship of the RAI score for TCMR to en-
dothelial inflammation, we evaluated the distributions of distance 
to endothelial cells and each immune subpopulation across clini-
cal groups (Fig. 5E). Most pro-inflammatory subpopulations in-
cluding CD3+CD4+ and CD3+CD8+ T cells, proliferating and 
cytotoxic CD8+ T cells, and classical monocytes resided near 
CD31+ endothelial cells, while resident memory CD4+ T cells, 
CD16+ M1 macrophages, and CD16+ M2 macrophages were dis-
tributed throughout the tissue (Fig. 5E). Looking at TCMR alone, 
we sought to analyze how RAI score and subscores may affect cell 
proportion differences and spatial distribution. Despite observing 
heterogeneity in the RAI score and its various subscores across 
patients (fig. S7, A to D), we observed no difference in metacluster 
cell proportion (P > 0.05). Looking at subcluster cell proportions, 
the only significant difference was found when comparing the 
cholangiocyte subcluster (P  =  0.03), stratified by venous score. 
No differences were found when comparing CD4+ T cell, CD8+ T 
cell, macrophage, monocyte, B cell, hepatocyte, endothelial cell, 
and the remaining cholangiocyte subcluster cell proportions 
(P > 0.05). When evaluating the distribution of distance to endo-
thelial cells and each immune subpopulation, we observe no vi-
sual difference across RAI score and portal score (fig. S7, E and F). 
These outputs correlate with our neighborhood analysis, in which 
we observe no significant differences in these structural markers 
across clinical group (Fig. 5C).

To evaluate higher-order spatial motifs as potential functional 
units associated with liver allograft pathology, we performed cel-
lular neighborhood (CN) analysis (44, 45). Cells were clustered 
into nine CNs (Fig.  6) based on aggregated values of their 10 
nearest neighboring cells. These CNs represent spatial structures 
formed by cells and their spatial relationship to neighboring 
cells. These were labeled according to the unique cell types in 
each cluster as shown in the heatmap in Fig.  6A: hepatocytes, 
vasculature, granulocyte enriched, activated macrophages, CD8 
enriched, CD16+ T helper enriched, T helper enriched, B cell and 
monocyte enriched, and bile ducts (Fig. 6, A to C). We then visu-
alized and compared the proportions of these CNs across clinical 
groups (Fig. 6, B to D). For the non-immune predominant CNs 
(hepatocyte, vascular, and bile duct), there were few differences 
between clinical groups except for a slightly smaller proportion 
of the hepatocyte CN in TCMR (likely a direct consequence of 
the increase of immune cell enriched CNs in TCMR; Fig.  6D). 
The CD8-enriched CN (which included HLADR+ Treg and both 
PD1+CD8+ T cell subpopulations) was expanded in active TCMR 
when compared with NR and CR (P <  0.001 and P <  0.01, re-
spectively). In addition, the “B cell and monocyte” CN was most 
abundant in TCMR and was also expanded in CR compared to 
NR (P < 0.001). Conversely, the CD16+ T helper–enriched CN 
was more abundant in NR when compared with TCMR and CR 
(P  <  0.001), suggesting that this CN could be a marker of al-
lograft tissue homeostasis (Fig. 6D).
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Fig. 5. Spatial relationship analysis between immune cell subsets across clinical groups shows increased interactions in exhaustion phenotype (Treg, PD1+, 
leukocytes) and proliferating cell types in active TCMR. (A) Spatial correlation network visualization showing attractions (red line) and avoidances (blue line) across cell 
subpopulations and colored by the metacluster that the subpopulation is derived from. The line thickness represents the strength of the degree of attraction, or avoid-
ance between the cell subpopulations and the size of the circle represents the size of the subpopulation. For ease of visualization, the CD11b+ monocyte/macrophage, 
PD1+, proliferating, and Treg populations are grouped in phenotype clusters (gray circle highlights). Lymphocytes exhibiting an exhausted phenotype (clusters number 17, 
22, 23, and 39) showed a greater number of interactions in TCMR compared to NR and CR. (B to D) Heatmap showing pairwise spatial interaction between subclusters in 
NR (B), TCMR (C), and CR (D). (E) Plot of spatial distance of subcluster populations to endothelium.
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Fig. 6. Spatial profiling of liver allograft biopsies uncovers eight higher-order CN motifs that are differentially abundant across clinical groups, including a unique 
CD8-enriched CN containing exhaustion phenotype subsets that is strongly associated with active TCMR. (A) Heatmap showing composition of CN clusters. From the 
35 identified cell populations and subpopulations in our dataset, we obtained nine distinct CNs or spatial motifs that are found within our dataset which include: Hepatocyte, 
vasculature, granulocyte enriched, activated macrophages, CD8 enriched, CD16+ T helper enriched, T helper enriched, B cell and monocyte enriched, and bile duct. (B) Donut 
plots showing proportions of CNs by clinical group. TCMR has the largest proportion of CD8 enriched and B cell and monocyte enriched CNs. NR has the proportion of CD16+ 
T helper–enriched CN. (C) Visualization of CNs projected onto representative biopsy specimens from NR, TCMR, and CR. (D) Boxplots depicting the percent makeup of CNs 
compared between clinical groups. Difference in percentage distribution was reported for CD8 enriched, which presented a greater percentage in TCMR compared to NR and 
CR; CD16 T helper–enriched CN presented a higher percentage in NR compared to TCMR and CR, and no difference was observed between TCMR and NR; the percentage of 
B cell and monocytes enriched CN was higher in TCMR compared to NR and CR, while CR showed a greater proportion compared to NR.



Barbetta et al., Sci. Adv. 10, eadm8841 (2024)     12 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

11 of 18

Part III: Confirmation of presence of exhaustion markers in 
liver AME during active TCMR using bulk RNA sequencing
Our single-cell atlas across the spectrum of rejection in LT identi-
fied several unique cell types increased during active TCMR, in-
cluding Tregs, PD1+CD4+ T cells, PD1+CD8+ T cells, and HLADR+ 
M2 macrophages. To confirm the presence of cells with this phe-
notype and obtain further evidence about their functional status, 
including whether the identified PD1+ T cells represent a termi-
nally differentiated, activated CD4+ or CD8+ T cell versus an 
exhausted effector T cell population, we performed bulk tran-
scriptomic analysis on subsequent sections of formalin-fixed 
paraffin-embedded (FFPE) biopsies using the nCounter platform 
(46). Eight samples, comprising the most representative four 
TCMR and four NR cases based on cellular composition in IMC, 
were selected for this analysis. A group of 23 genes defining T cell 
phenotypes including helper function, exhaustion, and cytotoxic 
activity are highlighted in Fig.  7A. By comparing DE genes be-
tween NR and TCMR, we identified an overall up-regulation of 
genes typically associated with cytotoxic activity as well as up-
regulation of PDCD1 (programmed cell death 1 or PD1) gene ex-
pression in TCMR samples, which is consistent with the higher 
percentage of PD1+CD4+ and CD8+ T cells identified in our IMC 
dataset (Fig. 7A). We also observed increased DE of PDCD1LG1 
(Programmed cell death-ligand 1 or PD-L1), PDCD1LG2, CTLA4 
(cytotoxic T-lymphocyte–associated protein 4), LAG3 (lympho-
cyte activating 3), and CD160 (CD160 antigen) genes in TCMR 
compared to NR, confirming up-regulation of both ligands for 
PD1 and other T cell exhaustion markers (Fig. 7A). A group of 
18 genes which differentiate the diverse macrophage polariza-
tion in M1, M2a, M2b, and M2c are shown in the heatmap in 
Fig.  7B. Genes for both pro-inflammatory cytokines such as 
CXCL9 and CXCL10, mainly expressed by M1 macrophages, and 
anti-inflammatory cytokines including IL-10, CCL22 (C-C motif 
chemokine ligand 22), and CCL24, mostly associated with M2 
macrophage polarization, were up-regulated in active TCMR 
when compared to NR. We have not yet identified a reliable natu-
ral killer (NK) marker for IMC in liver tissue, so we evaluated 
markers of NK cells including IL21R (interleukin 21 receptor), 
XCL1 (X-C motif chemokine ligand 1), and NCR1 (natural cyto-
toxicity triggering receptor 1), which were up-regulated in TCMR 
samples (Fig. 7B). We also identified an overall up-regulation of 
several genes associated with neutrophils, B cells, mast cells, and 
dendritic cells (fig. S8A). Because we performed our analysis on a 
subset of cases from our IMC cohorts, we sought to validate these 
results using publicly available data that includes six cases of 
biopsy-proven active TCMR in clinical LT (31). This confirmed 
our bulk RNA sequencing (RNA-seq) analysis, demonstrating 
similar up-regulation of DE genes (fig. S8B). After observing that 
PD1+ T cell expansion in active TCMR was supported by both 
IMC (proteomic) and RNA-seq assays, we have begun to expand 
our IMC panel with inclusion of both ligands for PD1, PDL1, and 
PDL2 (Fig. 7C). A pilot experiment performed on three represen-
tative cases of active TCMR and NR confirmed expression of 
PDL1 and PDL2 at a protein level on the surface of both M1 and 
M2 macrophages (Fig.  7C). In addition, both PD1+CD4+ and 
CD8+ T cells were proximal to macrophages expressing either 
PDL1 or PDL2, suggesting a close interaction among those im-
mune phenotypes and a key role for PD1 pathway in the mecha-
nism of active TCMR (Fig. 7C, right).

Part IV: Use of machine learning techniques to select which 
cell types in the AME are most strongly associated with 
active TCMR to guide biomarker and therapeutic 
target development
The analysis of the AME in NR, active TCMR, and CR identified 41 
potential features of which 14 immune and 5 non-immune differed in 
patients who developed TCMR from NR, 9 immune and 4 non-
immune features distinguished TCMR from CR, and 10 immune and 
1 non-immune features separated out NR from CR, thereby high-
lighting complex network of different cell phenotypes specific for 
those three AMEs. To determine whether these immune phenotypes 
could predict patient outcomes, LASSO (least absolute shrinkage and 
selection operator) regression was applied to the entire dataset. To im-
prove model robustness, fivefold cross-validation (CV) was used to 
determine model parameters, and a 5000 iterative bootstrapping tech-
nique was used to perform feature selection by determining feature 
importance based on frequency. To ensure that predicted results and 
model performance are derived from patients not included when 
training the model, internal CV was performed using repeated ran-
dom subsampling (1000 iterations of randomly splitting the data into 
training and validation sets); performance metrics were averaged, and 
the median prediction of each patient was used for further model 
evaluation. Examination of the most important features, which 
present a frequency ≥  50%, revealed that eight cell subpopulations 
contributed the most in generating a model that can accurately 
differentiate active TCMR versus NR (means  ±  SD; accuracy of 
0.89 ± 0.07 and AUC of 0.96 ± 0.04), demonstrating a high correla-
tion between median prediction and actual clinical outcome (Spear-
man correlation coefficient R = 0.77, P = 7.206 × 10−10) (Fig. 8, A to 
C, and fig. S9A). The highest-ranking immune phenotype was resi-
dent memory CD4+ T cells, which was a predictor of NR, correspond-
ing to pairwise analysis and thus demonstrating that this immune 
subset was strongly associated with NR (as shown in Fig. 2). In addi-
tion, intermediate monocytes, cholangiocytes, and CD16+ M2 mac-
rophages were predictors of NR. On the other hand, PD1+CD4+ T 
cells, HLADR+ M2 macrophages, nonclassical monocytes, and prolif-
erating hepatocytes were positive predictors of active TCMR (Fig. 8B). 
Application of this modeling approach to differentiate TCMR from 
CR resulted in nine highly ranked features that can accurately distinguish 
these two alloimmune states, with a high sensitivity, specificity, and 
accuracy, and a mean AUC of 0.96 ± 0.04 (Spearman correlation coeffi-
cient between prediction and actual outcome of 0.82, P  =  1.782 × 
10−9) (Fig. 8, D and F). Among these features, proliferating and CD16+ 
M1 macrophages, proliferating and PD1+ CD8+ T cells, plasma cells, 
and CD3+ and CD16+ CD4+ T cells predicted TCMR, while the 
CD3+CD8+ T cell phenotype was a predictor of CR (Fig. 8E and fig. S9B). 
Modeling for differentiating NR from CR was also highly sensitive 
and specific; however, the sample size for this comparison (38 samples 
total) may be too small to generate a conclusion (fig.  S9). Overall, 
these results indicate that rare but specific cell subpopulations identi-
fied in the present study potentially harbor high value as biomarker 
and therapeutic targets to treat active TCMR and CR in clinical LT.

DISCUSSION
Our study provides a comprehensive single-cell, spatially resolved 
analysis of the AME in clinical LT, revealing the complexity of alloim-
munity in solid organ transplant recipients. We have developed an 
immune-focused IMC panel, clustering algorithm, and analysis 



Barbetta et al., Sci. Adv. 10, eadm8841 (2024)     12 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

12 of 18

Fig. 7. In depth molecular characterization of tissue using bulk RNA-seq confirms the exhaustion signature associated with active TCMR. (A) Sequential FFPE tis-
sue sections obtained from a subgroup of most representative four NR and four TCMR FFPE of cellular compositions observed for each clinical group using IMC were ana-
lyzed using nCounter bulk RNA-seq. The heatmap visualizes the scaled expression of genes corresponding to generic T cells, T helper 1 (TH1), cytotoxic, and exhausted 
phenotypes in both NR and TCMR. Activated, cytotoxic, and exhausted T cell genes showed a greater expression in active TCMR when compared to NR. (B) Heatmap of 
scaled expression values of macrophage and NK-related genes including M1, M2a, M2b, and M2c phenotypes along with NK-associated genes. Genes belonging to both 
M1 and M2 polarized macrophages showed a greater expression in active TCMR than NR; similarly, NK-associated gene expression was higher in TCMR. (C) To confirm bulk 
RNA-seq data, TCMR sections were examined for PD1, PDL1, and PDL2 (left) protein expression using IMC. The middle and zoomed in panel on the right show cell mask 
outlines colored blue for PD1+CD4+ T cells, yellow for PD1+CD8+ T cells, red for PDL1+CD68+ macrophages, and green for PDL2+CD68+ macrophages. This visually con-
firms the presence of exhausted phenotype T cells and their interaction with macrophages expressing PDL1 and PDL2 ligands in active TCMR.
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pipeline that enables high-resolution, highly multiplexed analysis in 
the immune microenvironment in human tissue. Unlike the cancer 
tumor microenvironment, which has remarkable phenotypic vari-
ability between patients and even within the same specimen, our 
analysis confirms central tenants of transplant immunology, namely, 
that the pathologic features within the AME are similar across indi-
viduals despite differences in patient demographics, underlying etiol-
ogy of liver disease, features of the donor organ, and timing of 
rejection episodes. Thus, study of the AME offers an ideal application 
and proof of concept for further development of spatial proteomics 
immunologic analyses using archival biopsy specimens, particularly 
with expansion of T cell and macrophage/monocyte lineage markers 
as they become available. Exploration of discrete immune subpopula-
tions within the AME of core needle liver biopsies has identified spe-
cific immune subsets of T lymphocytes expressing PD1 molecules 
that are enriched in active TCMR and largely absent in CR, with con-
firmation using RNA-seq, providing insights into the underpinnings 
and evolution of liver allograft rejection. Last, these data were 

harnessed to create a predictive model of TCMR and CR using a sub-
set of cell types, which offers new targets for biomarker development 
and therapeutic targets in patients with active TCMR. Specifically, our 
data suggest that deeper investigation of exhaustion markers in the 
blood could offer diagnostic value both for identification of subclini-
cal TCMR episodes and tracking resolution following treatment. 
Furthermore, our data support the exploration of targeted immuno-
therapies designed to promote immune exhaustion as therapeutic 
strategies to treat post-transplant rejection episodes in clinical LT.

Single-cell analysis of the AME has uncovered substantial complex-
ity in allograft rejection, involving at least 32 distinct immune subpop-
ulations. Nearly all prior studies of LT rejection have focused on one or 
few immune cell types (47, 48). In active TCMR, our data demonstrate 
that diverse cell populations contribute to the underlying pathophysi-
ology. It is increasingly recognized that spatial context is important to 
completely describe disease phenotypes and that these multiplexed 
spatial techniques will have important clinical implications (49). A 
recent study in clinical LT examined immune cell type pairs at high 

Fig. 8. Identification of cellular features in liver allograft biopsies that are highly predictive for discriminating active TCMR from NR and CR. (A) Bootstrapping 
using LASSO regression identified the top highly ranked features which are predictive of NR versus TCMR. (B) On the basis of the model, identified cell subpopulations well 
suited for distinguishing TCMR from NR include proliferating hepatocytes, PD1+CD4+ T cells, nonclassical monocytes, and HLADR+ M2 macrophages. Positive coefficient 
indicates that an increase of that cell subpopulation increases the likelihood of TCMR, while negative coefficient indicates that an increase of that cell subpopulation de-
creases the likelihood of TCMR, thus increasing the likelihood of NR. (C) Evaluation metrics for predictive model built using highly ranked cell subpopulations identified in 
A. The model shows a sensitivity of 0.89 ± 0.09, specificity of 0.88 ± 0.13, accuracy of 0.89 ± 0.07, and AUC of 0.96 ± 0.04 (means ± SD). Spearman correlation coefficient 
between median predicted and actual outcomes R = 0.77; P value = 7.206 × 10−10 (Wilcoxon rank-sum test). (D) Bootstrapping using LASSO regression model identified 
the top highly ranked features, which are predictive of TCMR versus CR. (E) On the basis of the model, identified subpopulations well suited for distinguishing TCMR from 
CR include proliferating M1 macrophages, proliferating CD8+ T cells, plasma cells, PD1+CD8+ T cells, cholangiocytes, CD3+CD4+ T cells, CD16+ M1 macrophages, and 
CD16+CD4+ T cells. Positive coefficient indicates that an increase of that cell subpopulation increases the likelihood of CR, while negative coefficient indicates that an in-
crease of that cell subpopulation decreases the likelihood of CR, thus increasing the likelihood of TCMR. (F) Evaluation metrics for predictive model built using highly 
ranked cell subpopulations identified in (D). The model shows a sensitivity of 0.93 ± 0.13, specificity of 0.92 ± 0.08, accuracy of 0.92 ± 0.07, and AUC of 0.96 ± 0.06 
(means ± SD). Spearman correlation coefficient between median predicted and actual outcomes R = 0.82; P value = 1.7827 × 10−9 (Wilcoxon rank-sum test). ROC, re-
ceiver operating characteristic.
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resolution to evaluate immune synapse formation and used these data 
to predict likelihood of immunosuppression weaning success (11). 
Visual assessment of TCMR tissue suggest that immune cells might 
be grouped into inflammatory tertiary lymphoid organs (iTLOs) 
(Figs. 2A, 3A, and 4A, and figs. S5A and S6A). iTLOs have been de-
scribed in allograft rejection after solid organ transplantation (50–52). 
In humans, iTLOs composed of a variable proportion of T and B cells, 
macrophages, and high endothelial venules have been characterized 
during recurrent acute rejection in both cardiac and renal allografts 
(53–55). Also, we observed a similar small but higher proportion of B 
cells in the TCMR group when compared to NR or CR (Fig. 1E). Our 
antibody panel does not currently include markers that would allow 
the identification of regulatory B cells such as CD24 or IL-10. We will 
consider adding these markers in our next panel, recognizing that this 
is a very rare population overall but potentially interesting to further 
clarify the alloimmune response in LT. These data, together with our 
results, suggest that further characterization of important features of 
the AME will provide valuable insights into predicting clinical out-
comes, including response to treatment, with greater precision than is 
currently possible.

Arising from the complex microenvironment was a central theme 
of PD1 pathway involvement and a cellular milieu with features of 
immune exhaustion during active TCMR episodes post-LT. Our 
study design captures clinical specimens before initiation of treat-
ment, the mainstay of which are CNIs, which are designed to indis-
criminately prevent T cell proliferation and come with potentially 
severe side effects. Fortunately, the immune system has physiologic 
mechanisms to dampen this immune response through PD-L1, a 
molecule that when knocked out in mice results in auto-immunity, 
and is also important in chronic inflammatory states (15, 56, 57). 
Our results show PD1+CD4+ T cells and PD1+CD8+ T cells are ex-
panded in TCMR and spatially interacting with other CD4+ and CD8+ 
subpopulations, as well as HLADR+ M2 macrophages. We also show 
that PD1+ T cells and macrophages expressing both PD1 ligands 
were present in TCMR. Predictive modeling classified PD1+CD4+ 
T cells as a feature distinguishing TCMR from NR, while PD1+CD8+ 
T cells were identified as a feature distinguishing TCMR from CR. Together, 
these data indicate that immune exhaustion may be a key process in 
active TCMR in clinical LT and suggest further investigation of the 
PD1 pathway to elucidate its role in the pathophysiology of TCMR.

Dysregulated exhaustion states are increasingly recognized as 
pathways that cancer cells manipulate to mediate immune escape, 
leading to development of immune checkpoint inhibitor therapies to 
enhance antitumor adaptive immune responses. Our data suggest 
the opposite therapeutic approach could be explored to counteract 
pro-inflammatory responses during acute TCMR via augmentation 
of physiologic exhaustion. Prior work using PD-1 agonists in other 
pro-inflammatory states, including neutrophilic asthma, has demon-
strated that therapies designed to promote T cell exhaustion can 
mitigate inflammation, suggesting that application of these drugs 
that are already in clinical development to clinical LT rejection may 
offer a treatment paradigm for this common post-transplant entity in 
the modern era (16). Given that infection continues to be a leading 
cause of mortality in the LT population, development of more fo-
cused immunotherapies has the potential to offer a lower risk option 
when compared to corticosteroids or anti-thymocyte globulin, which 
require escalation of infection prophylaxis.

Presently, and for the past 60 years, pathologic detection of al-
lograft rejection has been conducted using hematoxylin and eosin 

staining. The Banff RAI is then used to characterize rejection by eval-
uation of portal and/or perivenular inflammatory (immune) infil-
trates (58). Our study suggests that spatial relationships between 
immune cells and cholangiocytes or endothelial cells may be less im-
portant mechanistically, which is something to consider as the Banff 
criteria for TCMR in LT are re-evaluated in the future (Fig. 5E and 
fig. S7, E and F). Rather, investigation into the presence or absence of 
certain immune subpopulations may better inform important consid-
erations of TCMR such as steroid-resistant disease, a disease that of-
ten progresses to CR and drives late graft failure. Future studies using 
IMC to study the AME through TCMR and following treatment to 
detect features associated with response and treatment resistance, 
combined with predictive modeling, may bring value in this regard. A 
recent study used IMC combined with deep learning to predict lung 
adenocarcinoma progression and patient survival after surgery 
with high accuracy (59). Harnessing multiplexed data together with 
emerging artificial intelligence tools such as deep learning may have 
profound diagnostic and prognostic value, both in clinical practice 
and in monitoring responses to treatment in clinical trials. A major 
benefit of IMC is its application to archival FFPE samples from a small 
core biopsy, which represents the most easily accessible and available 
specimen in clinical settings. In addition, compared to current spatial 
transcriptomic and bulk RNA-seq platforms, IMC provides true 
single-cell resolution of the examined tissue while capturing rare cell 
types. Furthermore, proteomics-based platforms such as IMC more 
accurately reflect single-cell phenotypes, given that RNA is not always 
linearly correlated with protein translation (60). A strength of our 
study involves examination of clinically diagnostic periportal areas 
selected by a specialist pathologist, resulting in more than 5000 cells 
per ROI. This is comparable to cell counts obtained from single-cell 
RNA-seq experiments in human liver, but our data represent the most 
clinically relevant diagnostic area with spatial coordinates, rather than 
a random set of 5000 cells obtained from tissue that might be subject 
to potential bias caused by tissue dissociation and processing tech-
niques necessary to create a single-cell suspension (61). It would be 
ideal to perform complementary functional assays on immune cells 
isolated from fresh liver biopsy tissue. Unfortunately, it is impossible 
to capture enough rare populations from a fresh biopsy with current 
technologies. In future work, we plan to expand our IMC panel with 
activation/exhaustion markers as they become available to under-
stand the phenotype of these rare populations in more detail. Ulti-
mately, it is possible that highly multiplexed immunohistochemistry 
such as IMC could be applied to identify individual patients who may 
benefit from more focused therapeutic regimens to achieve more per-
sonalized management.

Our analysis is limited by being unable to conduct complementary 
single-cell transcriptomics or cell culture–based assays as our study 
was performed on a retrospective set of tissue FFPE specimens col-
lected during routine clinical care. Furthermore, there is the possibility 
of cell classification errors within our IMC dataset, particularly within 
the hepatocyte metacluster that was classified based on exclusion of 
other cell types. To minimize this risk, we conducted an extensive re-
view of all annotated tissue specimens alongside raw marker expres-
sions to ensure that tissue labeling was optimized. Treg populations 
were classified using established markers (CD3+CD4+FoxP3+ T cells), 
but we acknowledge that these markers may not fully capture all hu-
man Treg and will continue to refine our panel with additional markers 
including CD25 and CD127, which will improve the characterization 
of this cell phenotype (31). Because of the unexpected importance 
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of PD1+  T cell phenotypes in our results, our IMC dataset lacked 
additional exhaustion markers, which will be incorporated for future 
studies. Also, IMC is expensive when compared to traditional immu-
nohistochemistry and requires antibody validation and accurate ti-
tration to provide biologically meaningful results. However, when 
compared to more costly spatial transcriptomics platforms (e.g., Visi-
um or GeoMX), none offer the same capacity for single-cell resolution 
in archival FFPE core needle biopsies. We also acknowledge that com-
bination of protein and RNA probes can provide more information on 
cellular states (62). Our patient sample size was somewhat limiting for 
our results, particularly with predictive modeling in CR; however, our 
analyses support our study being adequately powered for the evalua-
tion of important cell subpopulations and in the modeling of active 
TCMR. Last, mixed pathologies could make biopsy interpretation dif-
ficult and acknowledge that prospective validation with a larger data-
set is the next step. We are encouraged by data from the INTERLIVER 
clinical rejection assays that are based on microarray data from a 
smaller cohort of TCMR than ours and do not differentiate immuno-
suppression regimen or underlying diagnosis (10). In that study, they 
were able to differentiate “acute dysfunction–NR” from TCMR. Because 
our approach has true single-cell resolution with the addition of a spa-
tial data layer, it is possible that IMC may offer a more precise approach 
to differentiate mixed pathology in future studies.

Here, we provide a detailed and spatially resolved atlas of clinical 
liver allograft rejection. Highly multiplexed IMC-based analyses un-
covered unique features of the AME and predictive features of rejec-
tion states. We further identified a cellular milieu with unique 
features of immune exhaustion in active TCMR, suggesting the PD-1 
pathway as a potentially therapeutic target in liver allograft rejection. 
This work provides a conceptual framework for investigation of in-
flammatory processes in immunologically complex histological dis-
eases of the liver using clinical samples.

MATERIALS AND METHODS
This study was approved by the Health Science Campus Institu-
tional Review board of the University of Southern California (HS-
18-00708) and, due to the retrospective nature of this study, was 
considered exempt from requiring consent for research analysis of 
archival specimens.

Patients
LT recipients were retrospectively identified using our institutional 
transplant database. Patients >18 years at the time of transplant who 
underwent biopsy of their liver allograft to rule out suspected TCMR 
or patients with CR undergoing retransplantation between January 
2000 and December 2021 met inclusion criteria. Patients were ex-
cluded if the histologic diagnosis was associated with reactivation or 
concurrent viral infection (i.e., hepatitis C or cytomegalovirus), ana-
tomic causes of graft dysfunction (i.e., vascular stenoses and/or biliary 
strictures), or advanced fibrosis (bridging fibrosis based on Trichrome 
staining). All biopsies were performed before initiation of treatment 
of rejection. Cases were reviewed by a pathologist with expertise in 
LT to prioritize selection of patients with RAI ≥ 4 for the TCMR group 
[n = 41 patients, 58 ROIs, median RAI of 5, and interquartile range 
(IQR) of 5 to 6)]. LT recipients who did not have evidence of rejection 
on their biopsy (RAI = 0) were selected for the NR group (n = 24). 
The CR patients (n = 14) were identified at the time of retransplant 
for CR with histologic confirmation of CR in the explant.

Clinical data and demographics
Demographics and clinical parameters were obtained via comprehen-
sive chart review and included age, sex, ethnicity, race, age at trans-
plant, serum biochemistries, immunosuppression regimens, and all 
biopsy data including indication for biopsy, timing of biopsy in rela-
tion to LT, and pathology reports. Relevant demographic variables are 
summarized for the cohort in table S2. For consistency, RAI score and 
detailed breakdown of subscores were independently performed by a 
liver-specialized pathologist. This review showed close agreement 
with the pathologic evaluation performed at the time of biopsy.

Imaging mass cytometry
Sections from FFPE tissue blocks obtained and stored at room tem-
perature as part of clinical standard of care during liver biopsy or 
transplant (4 μm) were selected by the pathologist to identify 1 mm2 
ROIs for IMC acquisition focusing on periportal regions of the biop-
sies most representative of what was examined for clinical assessment 
of RAI. The SC2 Core Facility at Children’s Hospital–Los Angeles per-
formed all staining and image acquisition for this study. Slides were 
stained using a custom 22-marker antibody panel. Structural markers 
included two nuclear intercalator dyes, collagen, CD31 (vascular en-
dothelium), and CK7 (bile ducts). Immune lineage markers included 
CD3, CD4, CD8, CD20, CD68, and CD11b, and functional or pheno-
typic markers included CD279 (PD1), FoxP3, Ki67, and Granzyme B 
among others (table  S3). IMC staining was performed using tech-
niques described previously (37). Ninety-six ROIs (average of 1.2 ROI 
per patient) were ablated using the Hyperion Imaging System (Stan-
dard Biotools) at a power range of 3.5 to 4.5 with a laser frequency at 
200 Hz. Data were supplied as .txt and .mcd files for use in segmenta-
tion and downstream analyses.

Image preprocessing and segmentation
Preprocessing steps were completed using the MATLAB package 
MAUI (MBI Analysis User Interface) (63). CD68 was used as the ba-
sis for channel spillover correction, and noise removal and channel 
aggregate removal steps were implemented individually on each 
channel. Pre-processing was conducted in three batches by clinical 
outcome (NR, TCMR, and CR) to account for staining background 
and noise differences between disease states. Cell segmentation was 
performed using Mesmer (DeepCell) and following the Bodenmiller 
Steinbock pipeline (45). Image preprocessing was performed in 
MATLAB (version R2022b) and Python (version 3.10.8).

Single-cell phenotyping
Cell segmentation outputs were loaded into R (version 4.2.2) to per-
form downstream analysis. Patient ID and clinical group identifiers 
were added to the single-cell experiment object (64). Data were 
arcsin-transformed using a cofactor of 5 and standardized by chan-
nel to account for differences in signal intensities.

Metaclusters were identified using a supervised clustering approach 
outlined in table S4. Labeling accuracy was verified by reviewing con-
current metacluster label and channel expression on tissue sections. 
Masks were used to visualize cell labels (“cytomapper::plotCells”) (65). 
TIFF images were scaled, and channel signals were normalized and 
visualized individually (“cytomapper::plotPixels”). For each patient, 
metacluster proportions were calculated using the overall cell count as 
baseline and statistically compared across clinical groups. Subcluster-
ing was performed on the five most relevant immune metaclusters 
(CD4+ T cells, CD8+ T cells, B cells, macrophages, and monocytes) 
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using a semi-supervised approach. A total of 30 subclusters were iden-
tified, leading to a final 32 immune clusters and 9 non-immune clus-
ters in the overall dataset. Dimensionality reduction was performed 
using t-SNE to visualize meta- and subclusters by clinical outcome 
(66). A t-SNE was also used to visualize possible batch effects between 
patients. Batch correction was performed using the mutual nearest 
neighbor method, but ultimately not used for downstream analysis to 
avoid possibly also eliminating biological differences present in the 
data (67).

Trajectory inference
To investigate whether cell phenotypes identified via IMC represented 
a pseudotemporal evolution of the AME in LT rejection, we performed 
trajectory inference on each metacluster, which has been used by other 
groups working with mass cytometry data (33–35). Trajectories were 
identified by Slingshot, an algorithm that can model branching lin-
eages in single-cell data, based on metacluster-specific dimensionality 
reduction using uniform manifold approximation and projection (32, 
68). To ensure proper orientation of each trajectory, a coarse clustering 
was performed using k-means (k = 2, except for CD8+ T cells, where 
k = 5) and the cluster with the highest proportion of cells from NR 
samples was set as the initial cluster.

Spatial analysis
The k-nearest neighbor approach (k =  10) was used to create the 
cell-cell interaction graph, which was visualized on tissue using 
the “imcRtools::plotSpatial” function (45). Neighborhood analysis 
(“imcRtools::testInteractions”) was implemented on each clinical sub-
set to analyze pairwise interactions between metaclusters and be-
tween subclusters and to compare differences across clinical outcomes 
(45). Cell-cell interactions were calculated using permutation testing 
(1000 permutations, α = 0.01) to determine whether cell types inter-
act more (attraction) or less (avoidance) frequently than random per-
mutations. Graph network analysis using igraph was used to visualize 
subcluster interactions (69).

CN analysis was implemented (“imcRtools::aggregateNeighbors”) 
using the constructed k-nearest neighbor spatial graph (k = 10). Cells 
were reclustered on the basis of the cell types in their direct spatial 
neighborhood to obtain nine CNs. Cell-type abundance of each CN 
was visualized on a heatmap to aid CN annotation. For each patient, 
CN proportions were calculated, visualized, and statistically tested to 
detect any differences across clinical group. CNs were also visualized 
on the tissue to detect any visual differences in spatial composition 
across clinical group.

Because of the spatial relevance of TCMR infiltrates to the vascu-
lar endothelium (based off clinical Banff criteria RAI scoring), the 
median distance of each cell type (meta- and subclusters) to endo-
thelial cells was calculated and compared across clinical groups.

Predictive modeling
LASSO regression was used to build predictive models of NR versus 
TCMR, TCMR versus CR, and NR versus CR. LASSO is a shrinkage 
method that aids in feature selection and avoids overfitting. LASSO 
adds an L1 regularization term (sum of absolute values of the coeffi-
cients) so that the selected coefficients minimize the loss function 
L(β) = ∣∣Y − Xβ∣∣2 + λ1∣∣β∣∣1, where Y is the vector of the binary clini-
cal outcome, X is the feature matrix, β is the vector of coefficients, and 
λ1is the regularization coefficient. A fivefold CV technique was used 
to find the optimal λ1 value. For each comparison, model building 

was done using those cell types found to be statistically significant in 
the pairwise comparisons as input. Bootstrapping, a sampling with 
replacement technique, was implemented to rank the importance of 
all features (5000 iterations). In each iteration, logistic LASSO regres-
sion was implemented on a subset of the data and nonzero coefficients 
were stored. Variable frequency was determined, and variables with 
≥50% frequency were selected for the final model. To evaluate model 
performance, and because we did not have access to an external data-
set for validation, data were cross-validated by repeatedly randomly 
splitting into training and validation sets at a 75:25 ratio (1000 itera-
tions). This ensures the model is evaluated on observations not used 
during training. In each iteration, the model was trained on the train-
ing set using the features identified during bootstrapping. Clinical 
outcome was then predicted on the validation set and stored along-
side performance metrics (sensitivity, specificity, accuracy, and AUC). 
Final model coefficients were obtained by averaging all coefficients. 
Final model performance was calculated using the evaluation metrics 
obtained from all iterations (means ± SD). Receiver operating charac-
teristic (ROC) curve was calculated using the median prediction of 
each patient. Correlation between the median prediction and actual 
clinical outcome was calculated using Spearman correlation, and sig-
nificance was tested using the Wilcoxon rank-sum test.

nCounter transcriptomic analysis
A subset of representative tissue sections from the IMC analysis based 
on cellular composition was selected (four NR and four TCMR), and 
at least five sequential 5-mm FFPE sections per block were combined 
for RNA extraction using the RNeasy Kit (QIAGEN). Extracted RNA 
was quantified using the NanoDrop system (Thermo Fisher Scien-
tific), and 200 ng of total RNA was used for gene expression analysis. 
Samples were processed using the nCounter Nanostring platform 
and the PanCancer Immune Profiling and T cell repertoire panels 
according to the manufacturer’s guidelines (NanoString Technolo-
gies). Raw counts were normalized using internal positive standards 
and housekeeping genes with the nSolver Analysis 4.0 and Advanced 
Analysis 2.0 software (NanoString Technologies). Expression of scaled 
log2 gene counts were visualized using heatmaps to determine expres-
sion differences between NR and TCMR samples. Publicly available 
data from a study of six patients who underwent IL-2 therapy and 
subsequently had rejection episodes within 6 months after treatment 
was used for external validation (31). The fold change in mean gene 
expression between NR and TCMR as well as baseline and 4 weeks 
after treatment was compared to show similarity in gene up-regulation.

Statistical analysis
The Shapiro-Wilk test was used to test for normality. One-way analy-
sis of variance (ANOVA) and two-sample t test were used to analyze 
parametric data. Kruskal-Wallis and two-sample Wilcoxon rank-sum 
tests were used to analyze nonparametric data. All tests were per-
formed as two-sided. P values were corrected for multiple testing us-
ing the Holm method. Number of cells for each meta- and subcluster 
were reported as median [IQR]. A 0.05 P value cutoff was used 
throughout the analysis to determine statistical significance. Boxplots, 
used to visualize proportions, show median (center line) and lower 
and upper quartiles (box limits). Boxplot whiskers represent the min-
imum and maximum values—calculated as 1.5 × IQR (interquartile 
range) away from the box limits—and individual dots represent outli-
ers. Seeds were set to allow for reproducibility. All statistical tests were 
carried out in R (version 4.2.2).
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