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Recent advances in the acquisition of large-scale datasets of transmission electron microscope images have
allowed researchers to determine the number and the distribution of subcellular ultrastructures at both the
cellular level and the tissue level. For this purpose, it would be very useful to have a computer-assisted system
to detect the structures of interest, such as organelles. Using our original image recognition framework
CARTA (Clustering-Aided Rapid Training Agent), combined with procedures to highlight and enlarge
regions of interest on the image, we have developed a successful method for the semi-automatic detection of
plant organelles including mitochondria, amyloplasts, chloroplasts, etioplasts, and Golgi stacks in
transmission electron microscope images. Our proposed semi-automatic detection system will be helpful
for labelling organelles in the interpretation and/or quantitative analysis of large-scale electron microscope
imaging data.

T
ransmission electron microscopy (TEM) is a crucial technique to survey the nanolandscapes of intracellular
structures such as the cytoskeleton or endomembrane systems. For successful TEM analyses, researchers
must have advanced knowledge about various aspects of specimen preparation including sample fixation,

resin embedding, ultrathin sectioning, and electron staining. Because these technical procedures affect the quality
of the final images, TEM operators must be knowledgeable and experienced to acquire high quality images, and to
interpret such images. For beginners, therefore, it can be difficult to analyse TEM images, for example, to label
biological structures inside cells. Recent progress in TEM equipment and image processing techniques has
enabled the acquisition of large-scale TEM image datasets. Analyses of images in such datasets can provide
information about cellular changes on the tissue- and ultrastructural-levels1,2. Large-scale TEM images are
expected to be shared using a database system. Like other commonly used web mapping services, a searchable
database of zoomable TEM images may allow researchers to explore the inside of cells in the near future. When
establishing such a large-scale TEM image database, labelling or annotation of the intracellular structures is an
essential step. Of course, TEM experts are able to complete this step, but it would be very laborious, and manual
curation may not be sufficient to annotate all of the features in large image databases. For example, manual
curation was reported to be insufficient for annotation of genes in genomic databases3. Computer-assisted
labelling would substantially lighten the load of TEM experts. In this context, we propose that our biomedical
image evaluation framework known as CARTA (Clustering-Aided Rapid Training Agent)4 might prove helpful
for the semi-automatic detection of intracellular structures in large-scale TEM images. CARTA, which comprises
an active learning algorithm combined with a self-organizing map, was developed for bioimage classification.
This framework is useful for combining and optimizing image feature selection techniques to classify biological
features or structures in an image4. Here, we report the image analysis framework for CARTA-based semi-
automatic detection of organelles in TEM images.

Results
Workflow of semi-automatic organelle detection. In this study, we analysed TEM images of plant tissues, but
similar biomedical images can be efficiently collected by the user-interactive system of CARTA4. Organelles could
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be detected semi-automatically by analysing a collection of similar
subdivided regions of TEM images. First, many square regions of
interest, designated as ‘windows’ in this study, were placed at random
locations covering the entire TEM image (Fig. 1A, Setting windows).
The window size can be arbitrarily defined, but we recommend that
the size is comparable to that of the target. In all of the examples
shown in this report (Fig. 2, 3, 4, 5 and 6), the original TEM image
size was 2000 3 2000 pixels, there were 2000 windows, and each
window was 50 3 50 pixels. The following procedures to collect
similar windows are basically those laid out in the CARTA frame-
work4. An original set of 296 image features (KBI features; http://
hasezawa.ib.k.u-tokyo.ac.jp/zp/Kbi/KbiFeatures02)4 was extracted
from the windows (Fig. 1A, Extracting features). Then, cluster
analyses of the windows in the self-organizing map were
performed based on the randomly selected features (Fig. 1A, SOM
clustering). The self-organizing map, referred to as the ‘initial tiled
map’ in this study, serves as the interface for users to manually search

for target organelles. The node number of the map can be defined by
the user, but 20 3 20 was used in this study (Fig. 2B). The initial tiled
map summarizes the distribution of windows based on the features,
and shows representative windows at the lattice node (Supple-
mentary Fig. S1). Users can easily find the representative windows
containing the targets without laborious visual inspection of the
whole image (Fig. 1B, User selects target window nodes). If there is
insufficient representation of the target in the windows in the tiled
map, the user can improve the map by manually assigning targets
(Fig. 1B, Assigned by user). ‘Feature combination’ is automatically
and optimally selected to improve the clustering results through
iterative clustering. In this study, 20 features were selected from
the feature set (Supplementary Table S1–5). This process is re-
peated until the user is satisfied with the map. After interactive
assignment and iterative clustering, the user can select the target
window nodes in the map, thereby detecting targets in the original
TEM image (Fig. 1B, Original image with detected windows).

Figure 1 | Workflow of semi-automatic detection of organelles in TEM images. (A) Scheme of setting randomly located windows and summarizing

window distribution based on features. To summarize data from window images in the CARTA framework, a self-organizing map, designated as the

initial tiled map, was used4. A part of a tobacco cultured cell TEM image (see also Figure 2) was shown as an example. (B) User interaction to improve the

tiled map and detect target organelles. The tiled map can be improved to assemble target organelle windows by repeated manual assignment (handwritten

red circles) during iterative clustering. After this improvement, organelles can be semi-automatically detected via the user’s selection of representative

target window nodes in the map (red rectangles). Stars in the tiled map indicate number of hidden windows at each node (See also Supplementary

Fig. S1.).
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Figure 2 | Semi-automatic detection of mitochondria in a tobacco cultured cell TEM image. (A) TEM image used to detect mitochondria (inset). Image

resolution: 2000 3 2000 pixels. (B) Tiled map of 2000 windows, which were randomly located in the TEM image shown in (A). Stars indicate number of

hidden windows at each node. (C) Example of original size window (red) and enlarged window (blue). (D) Results of semi-automatic detection based on

features from original size windows. Green rectangles show ‘true’ mitochondria, which were confirmed by visual inspection; red boxed regions show

semi-automatically detected windows. (E) Magnified image of yellow dashed box in (D). M, mitochondrion; C, chromosome; V, vacuole; CW, cell wall.

Red arrows show false positive (misdetected) windows. (F) Results of semi-automatic detection based on features from original size and enlarged

windows (bi-scale features) as shown in (C). Green rectangles show ‘true’ mitochondria; red boxed regions show semi-automatically detected windows

that were drawn with original size windows. (G) Magnification of yellow dashed box in (F). M, mitochondrion; C, chromosome; V, vacuole; CW, cell wall.

Note the lower rate of misdetection compared with that in (E). (H, I) Relationship between detection area and true (H) or false (I) positive rates of

detection with random selection of randomly located windows (filled circles) and with proposed methods with features from original size windows (open

squares), enlarged windows (open triangles), and both of them (bi-scale features; open circles). Data are mean 6 SD from three independent experiments.

(J) Relationship between true and false positive detection rates random selection of randomly located windows (filled circles) and proposed methods

based on features from original size windows (open squares), enlarged windows (open triangles), and both of them (bi-scale features; open circles). Data

are mean 6 SD from three independent experiments. (K) Comparison of true positive detection rates. Mean number of false positive windows was 10.3

(random selection) (N 5 4), 12.8 (with features from original size window) (N 5 9), 11.3 (with features from enlarged windows) (N 5 6) and 12.3 (with

bi-scale features) (N 5 10). Data are mean 6 SD. Significance was determined using Mann–Whitney’s U-test (p-value, *,0.0003. **,0.0001).
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Practical use of proposed method with bi-scale features. To
evaluate the accuracy of the method described above, a TEM
image of cultured tobacco cells containing 39 ‘true’ mitochondria
(as confirmed by manual visual inspection) was used as a test case
(Fig. 2A). The tiled map was improved via three rounds of manual
assignment of mitochondrial windows (Fig. 2B). After the
improvement of the tiled map, the mitochondria could be detected
in this framework (Fig. 2D, E). The detection rate of true positives
increased as the number of selected window nodes increased
(Supplementary Video S1). When the detected area reached
around 5% of the image area, the detection windows captured
approximately 50% of true mitochondria, but approximately 20
windows gave false positive results (misdetection) (Fig. 2D, E, H,
I). By comparison, random selection of randomly located windows
covered around 20% of mitochondria but more than 60 windows
were misdetected when the total detected window area was around
5% of the image (Fig. 2H, I, Supplementary Video S2). These results
suggested the method worked to some degree, but that the detection
was far from accurate.

In this example, the interface between cytoplasm and cell walls was
frequently misdetected as mitochondria (Fig. 2E, arrows).
Mitochondria and cell walls are similar in that both have a higher
electron density, but their curvature differs on a larger scale.
Consequently, we considered that information from enlarged images
would improve the accuracy of detection, when combined with
information from the original size window (comparable to the size
of a mitochondrion). When the KBI features extracted from three-
times enlarged windows were combined with those from the ori-
ginal-sized windows (Fig. 2C, Supplementary Table S1) (in total,
592 features; referred to as bi-scale KBI features), the accuracy of
detection was dramatically improved (Fig. 2F, G). Using these para-
meters, approximately 90% of mitochondria were semi-automat-
ically detected, with approximately 10 misdetected windows when
the total detected window area was approximately 5% of the total
area of the image (Fig. 2H, I). The accuracy was significantly better
than that achieved using only 296 KBI features extracted from ori-
ginal-size or enlarged windows (Fig. 2J, K), confirming that the bi-
scale KBI features were more useful for organelle recognition in a
TEM image.

Performance with various kinds of organelles. To confirm the
versatility of the method incorporating bi-scale KBI features, we
tried to detect four other kinds of organelles. First, we analysed a
TEM image of Arabidopsis thaliana root tip tissue containing
amyloplasts, which are organelles for the synthesis and storage of
starch granules (Fig. 3A). Manual visual inspection of the image
revealed that there were 33 amyloplasts (Fig. 3B, green). Using our
proposed method, we successfully detected more than 85% of
amyloplasts with approximately 5 misdetected windows when the
detected area was approximately 4% of the image area (Fig. 3B, C, D,
E, and F). Second, we analysed chloroplasts in a TEM image of an A.
thaliana embryo (Fig. 4A). When the proposed method was used to
analyse a TEM image containing 44 chloroplasts (Fig. 4B, green), the
organelles were detected accurately. When the detected area reached
approximately 6% of the image area, more than 90% of chloroplasts
were detected with approximately 7 misdetected windows (Fig. 4B,
C, D, E, and F). Third, a TEM image of A. thaliana cotyledon tissue
containing etioplasts was analysed (Fig. 5A). This image contained
11 etioplasts, which contain a crystalline prolamellar body5 (Fig. 5B,
green). Using our method, we detected 90% of etioplasts with 6
misdetected windows when the detected area was approximately
3% of the image area (Fig. 5B, C, D, E, and F). Finally, we analysed
Golgi stacks and vesicle cluster-shaped compartments (trans-Golgi
network and/or secretory vesicle cluster)2,6 in a TEM image of a
cultured tobacco cells (Fig. 6A). When the proposed method was
used to analyse a TEM image containing 10 Golgi stacks and the

compartments (Fig. 6B, green), they were detected accurately. When
the detected area reached approximately 2% of the image area,
around 90% of the organelles were detected with approximately 2
misdetected windows (Fig. 6B, C, D, E, and F). Together, these results
show that the proposed method is a versatile and highly accurate
method to detect organelles in TEM images.

Discussion
Automated detection systems have been proposed as a fundamental
technology in computational cell biology7. Many detection methods
including thresholding, region-growing, edge-based segmentation,
or combinations of these methods have been used as image proces-
sing tools. These unsupervised approaches often work well, but
require laborious tuning of parameters whenever image properties
change as a result of different visualization or capturing methods.
Supervised learning approaches have also been used to automatically
detect objects. If there is a very large dataset of training images, then
this approach can be used relatively easily for accurate detection. For
example, supervised learning methods have been used successfully to
detect biological objects such as synapses8, platelets9, or rosette-like
epithelial tissues10 in fluorescence microscopy images. Such methods
have also been used to detect objects in electron microscopic images,
including mitochondria11,12 and synapses13. The disadvantages of
supervised learning-based approaches are that they generally lack
versatility and require a large amount of human labour to produce
a large training dataset. Therefore, supervised learning-based detec-
tion systems have tended to be disposable systems for specific pro-
jects, despite their high costs of development.

Our proposed detection method is based on our original image
evaluation framework CARTA, an active learning algorithm
developed for high-efficiency data training in machine learning14.
The CARTA framework has been used to archive various types of
biomedical images such as bright field and fluorescence microscopy
images and magnetic resonance images4, demonstrating its versat-
ility. The proposed method takes advantage of the CARTA system
for efficient and on-demand organelle detection via a simplified
assignment based on a tiled map of representative region windows.
Additional customized features can be added easily to the CARTA
framework, depending on the purpose of image evaluation4.
Interestingly, the detection accuracy was significantly increased by
including bi-scale KBI features in the analysis, instead of the simple
KBI features (Fig. 2K). These results suggest that including multi-
scale features is an attractive strategy to extract features and accur-
ately detect organelles in TEM images, as previously demonstrated
for generic object recognition15, medical radiographic image clas-
sification16 and analysis of fluorescence microscopy images of cells17.
Our proposed method that includes bi-scale KBI features accurately
detected mitochondria (Fig. 2), amyloplasts (Fig. 3), chloroplasts
(Fig. 4), etioplasts (Fig. 5), and Golgi stacks (Fig. 6), indicating its
broad utility to detect biological structures in TEM images. Our
proposed method is ready for immediate use to reduce the amount
of expert labour required for manual assignment of organelles and
for quantitative evaluation of the changes in organelle distribution in
large-scale TEM imaging studies2. This method will also be useful to
retrieve data on structures of interest from electron microscope
image databases18, and to analyse biological structures in innovative
three-dimensional electron microscope imaging datasets, such as
those that are currently produced in the field of neuroscience1,19.

Methods
Plant materials and TEM imaging. The tobacco (Nicotiana tabacum) BY-2 cell line
was prepared by high-pressure freezing/frozen substitution method as described2,6,20.
Cotyledons of mature embryo about 10 days after flowering were fixed with 3%
glutaraldehyde in a 20 mM sodium cacodylate buffer, pH 7.0, at 4uC overnight, and
then postfixed with 1% KMnO4 for 2 hours. Cotyledons of etiolated seedling
cultivated for 6 days in the dark were fixed with 2% glutaraldehyde and 4%
paraformaldehyde overnight, and then postfixed with 2% OsO4 for 6 hours. These
fixed samples were dehydrated in an ethanol series and embedded in Spurr resin.
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Figure 3 | Semi-automatic detection of amyloplasts in a TEM image of Arabidopsis thaliana root tip tissue. (A) TEM image used to detect amyloplasts

(inset). Image resolution: 2000 3 2000 pixels. (B) Result of semi-automatic detection. Green rectangles show ‘true’ amyloplasts, which were confirmed by

visual inspection; red boxed regions show semi-automatically detected windows. (C, D) Relationship between detection area and true (C) or false (D)

positive detection rates with random selection of randomly-located windows (filled circles) and proposed methods (open circles). Data are mean 6 SD

from three independent experiments. (E) Relationship between true and false positive detection rates with random selection of randomly-located

windows (filled circles) and proposed methods (open circles). Data are mean 6 SD from three independent experiments. (F) Comparison of true positive

detection rates. Mean number of false positive windows was 14.3 (random detection) (N 5 6) and 5.00 (proposed method) (N 5 6). Data are mean 6 SD.

Significance was determined using Mann–Whitney’s U-test (p-value, *,0.003).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7794 | DOI: 10.1038/srep07794 5



Figure 4 | Semi-automatic detection of chloroplasts in a TEM image of Arabidopsis thaliana embryo. (A) TEM image used to detect chloroplasts

(inset). Image resolution: 2000 3 2000 pixels. (B) Results of semi-automatic detection. Green rectangles show ‘true’ chloroplasts, which were confirmed

by visual inspection; red boxed regions show semi-automatically detected windows. (C, D) Relationship between detection area and true (C) or false (D)

positive detection rates with random selection of randomly-located windows (filled circles) and proposed methods (open circles). Data are mean 6 SD

from three independent experiments. (E) Relationship between true and false positive detection rates with random selection of randomly-located

windows (filled circles) and proposed methods (open circles). Data are mean 6 SD from three independent experiments. (F) Comparison of true positive

rates. Mean number of false positive windows was 33.0 (random detection) (N 5 4) and 6.67 (proposed method) (N 5 6). Data are mean 6 SD.

Significance was determined using Mann–Whitney’s U-test (p-value, **,0.0001).
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Figure 5 | Semi-automatic detection of etioplasts in a TEM image of Arabidopsis thaliana cotyledons. (A) TEM image used for detection of etioplasts

(inset). Image resolution: 2000 3 2000 pixels. (B) Results of semi-automatic detection. Green rectangles show ‘true’ etioplasts, which were confirmed by

visual inspection; red boxed regions show semi-automatically detected windows. (C, D) Relationship between detection area and true (C) or false (D)

positive detection rates with random selection of randomly-located windows (filled circles) and proposed methods (open circles). Data are mean 6 SD

from three independent experiments. (E) Relationship between true and false positive detection rates with random selection of randomly-located

windows (filled circles) and proposed methods (open circles). Data are mean 6 SD from three independent experiments. (F) Comparison of true positive

rates. Mean number of false positive windows was 13.2 (random detection) (N 5 6) and 6.00 (proposed method) (N 5 6). Data are mean 6 SD.

Significance was determined using Mann–Whitney’s U-test (p-value, *,0.003).
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Figure 6 | Semi-automatic detection of Golgi stacks and vesicle cluster-shaped compartments (trans-Golgi network and/or secretory vesicle cluster) in
a TEM image of tobacco cultured cells. (A) TEM image used for detection of Golgi stacks and vesicle cluster-shaped compartments2,6 (inset). Image

resolution: 2000 3 2000 pixels. (B) Results of semi-automatic detection. Green rectangles show ‘true’ Golgi stacks and vesicle cluster-shaped

compartments, which were confirmed by visual inspection; red boxed regions show semi-automatically detected windows. (C, D) Relationship between

detection area and true (C) or false (D) positive detection rates with random selection of randomly-located windows (filled circles) and proposed

methods (open circles). Data are mean 6 SD from three independent experiments. (E) Relationship between true and false positive detection rates with

random selection of randomly-located windows (filled circles) and proposed methods (open circles). Data are mean 6 SD from three independent

experiments. (F) Comparison of true positive rates. Mean number of false positive windows was 11.5 (random detection) (N 5 4) and 2.50 (proposed

method) (N 5 6). Data are mean 6 SD. Significance was determined using Mann–Whitney’s U-test (p-value, *,0.01).
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Ultrathin sections (70 nm thick) were stained with uranyl acetate and lead citrate.
Observations were made on a JEM-1400 (JEOL, Tokyo, Japan) TEM. Construction of
high-resolution TEM pictures was carried out as described2,20.

Image analysis experiments for semiautomatic organelle detection. For
preprocessing, the original TEM images were resized to a resolution of 2000 3 2000
pixels with bilinear interpolation using ImageJ software21 to reduce feature
measurement times. Then, the images were normalized to an average intensity of 0
with a standard derivation of 1 using KBI plugins (http://hasezawa.ib.k.u-tokyo.ac.jp/
zp/Kbi/ImageJKbiPlugins) as previously described22. For image analysis procedures
in our proposed method (Figure 1), we used the CARTA ImageJ plugin in KBI version
1192 (freely available at http://hasezawa.ib.k.u-tokyo.ac.jp/zp/Kbi/RegionSearch)
with KBI Features version 2, which contains 296 features (http://hasezawa.ib.k.u-
tokyo.ac.jp/zp/Kbi/KbiFeatures02)4. To enlarge windows, we used ‘‘ImageJ-Edit-
Selection-Enlarge…’’ in the ImageJ menu. In all experiments, we assigned a total of 30
target organelle windows on 20 3 20 nodes of the self-organizing map in the three
inspections during iterative clustering (more than 300 clustering trials).
Computations were performed on a laptop computer with a Core i5 2.6 GHz
processor and 8 GB memory under the Windows 7 operating system (Microsoft,
Redmond, WA, USA).
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