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Toxoplasma gondii is a protozoan parasite with a remarkable neurotropism. We recently 
showed that T. gondii infection can alter the global metabolism of the cerebral cortex of 
mice. However, the impact of T. gondii infection on the metabolism of the cerebellum 
remains unknown. Here we apply metabolomic profiling to discover metabolic changes 
associated with T. gondii infection of the mouse cerebellum using ultra performance liquid 
chromatography-tandem mass spectrometry (UPLC-MS/MS). Multivariate statistics 
revealed differences in the metabolic profiles between the infected and control mouse 
groups and between the infected mouse groups as infection advanced. We also detected 
10, 22, and 42 significantly altered metabolites (SAMs) in the infected cerebellum at 7, 
14, and 21 days post infection (dpi), respectively. Four metabolites [tabersonine, arachidonic 
acid (AA), docosahexaenoic acid, and oleic acid] were identified as potential biomarker 
or responsive metabolites to T. gondii infection in the mouse cerebellum. Three of these 
metabolites (AA, docosahexaenoic acid, and oleic acid) play roles in the regulation of host 
behavior and immune response. Pathway analysis showed that T. gondii infection of the 
cerebellum involves reprogramming of amino acid and lipid metabolism. These results 
showcase temporal metabolomic changes during cerebellar infection by T. gondii in mice. 
The study provides new insight into the neuropathogenesis of T. gondii infection and 
reveals new metabolites and pathways that mediate the interplay between T. gondii and 
the mouse cerebellum.
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INTRODUCTION

Toxoplasma gondii is an apicomplexan protozoan pathogen 
that can infect nearly all warm-blooded vertebrate animals 
and humans. In general, infection by T. gondii can 
be  asymptomatic or causes mild non-specific symptoms in 
immunocompetent people. However, in immunocompromised 
patients, the consequences of T. gondii infection can be  fatal. 
One-third of the world population has been estimated to 
be chronically infected by T. gondii, and the global seropositive 
rates range from 0% to over 90%, with the highest seropositive 
rates reported in Latin America, South America, and the 
Middle East (Pappas et  al., 2009). Infection by T. gondii has 
been reported to cause behavioral changes in rodents (Ingram 
et al., 2013; Evans et al., 2014; Tyebji et al., 2019) and humans 
(Ustun et  al., 2004; Shapira et  al., 2012; Elsheikha and Zhu, 
2016). A recent study showed that neuroinflammation induced 
by T. gondii may underlie the behavioral alterations in mice 
(Boillat et  al., 2020). Also, T. gondii infection impairs the 
GLT-1-dependent glutamate transportation and redistributes 
glutamate decarboxylase to the postsynaptic neuron cytosol, 
resulting in excitotoxicity of postsynaptic neurons 
(David et  al., 2016; Mendez and Koshy, 2017).

Cerebellum is an essential part of the brain, which controls 
mood, feeling, learning, thinking, motor coordination, temporal 
discrimination, and food-anticipatory activity (Mendoza et al., 
2010). Cerebellar damage can impair these functions and 
results in ataxia, dyslexia, vertigo, and learning disorders 
(Reeber et  al., 2013; Abdoli and Dalimi, 2014). Signaling 
pathways mediated by neurotransmitters, such as GABAergic 
and glutamatergic pathways, are crucial for the cerebellum 
functions (De Zeeuw et al., 2011). During T. gondii infection, 
alterations of some neurotransmitters, such as dopamine, 
tryptophan, which is a precursor of serotonin, kynurenine, 
and quinolinic acid, have been shown to contribute to the 
changes in the host behavior (Elsheikha et al., 2016). T. gondii 
has been also shown to impact the metabolism of the host 
cell via usurping and modulating host metabolites to potentiate 
parasite replication (Zhou et  al., 2015, 2016, 2017, 2019; 
Chen et  al., 2017, 2018; Ma et  al., 2019). In a previous 
metabolomics study, we  showed that the levels of 
neurotransmitter in the mouse cerebral cortex are altered 
by T. gondii infection (Ma et  al., 2019). Since neurologic 
defects detected in T. gondii-infected animals could be also 
attributed to the brain cerebellum dysfunction, knowledge 
of the cerebellum metabolomic changes during T. gondii 
infection may improve the understanding of the mechanisms 
that underpin the neurobehavioral alterations attributed 
to T. gondii.

In this study, ultra performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) based metabolomics 
analysis was used to detect the metabolic changes that occur 
in the mouse cerebellum after T. gondii infection. This approach 
enabled the identification of significantly altered metabolites 
and associated pathways in the cerebellar tissue of infected 
compared to non-infected mice at 7, 14, and 21 days post 
infection (dpi).

MATERIALS AND METHODS

Mice and Toxoplasma gondii Infection
Three-week-old female BALB/c mice (n  =  36) were purchased 
from Lanzhou University Laboratory Animal Center (Lanzhou, 
China). Mice were separated into six groups (six mice/group). 
The mice in the infected groups were orally gavaged with 10 
T. gondii cysts of Pru strain suspended in 0.5  ml phosphate-
buffered saline (PBS). Mice in the control groups were sham-
treated with 0.5  ml PBS only without parasite cysts. All mice 
were provided non-medicated feed and water ad libitum during 
the experiment. The mice were monitored twice daily for signs 
of illness and mortality. At 7, 14, and 21  dpi, mice from 
infected and control groups were sacrificed by CO2 asphyxiation, 
and the cerebellum of each mouse was immediately dissected 
out with scissors and forceps.

Cerebellum Collection and Confirmation of 
Infection
The mouse cerebella were identified according to anatomical 
atlas of mice brains. The cerebella were collected from infected 
and control (non-infected) mice (six mice/groups) at 7, 14, 
and 21  dpi. The collected cerebella were washed with chilled 
PBS three times to remove contaminating blood and stored 
at −80°C until used for metabolite or DNA extraction. 
Approximately 10  mg of each collected cerebellum was used 
for DNA extraction. DNA of each sample was extracted using 
TIANamp Genomic DNA kit (TianGen™, Beijing, China) 
according to the manufacturer’s instructions. The presence of 
T. gondii in the cerebellum was tested using PCR, and primers 
that target B1 gene of T. gondii: B1F: 5'-TGCATAGGTTGCAG 
TCACTG-3', and B1R: 5'-TCTTTAAAGCGTTCGTGGTC-3'. 
The PCR amplification was performed as follows: an initial 
denaturation at 95°C for 5  min followed by 35 cycles at 95°C 
for 10  s, 60°C for 10  s, and 72°C for 20  s. Negative control 
sample (PBS only) and positive control samples (T. gondii 
DNA) were included in each PCR run. PCR amplification 
products were analyzed by 2% agarose gels, and PCR bands 
were observed under a UV illuminator.

Extraction of Metabolites
Before the experiment, the cerebellar tissues stored at −80°C 
were thawed gradually by incubation at −20°C for 30  min, 
followed by incubation on ice at 4°C. Approximately 25  mg 
of each defrosted cerebellum was used for metabolite extraction. 
Each defrosted cerebellum was mixed with 800  μl H2O/50% 
MeOH (vol/vol), and then lysed with TissueLyser bead-mill 
homogenizer (Qiagen, Hilden, Germany). The cerebellum 
homogenate was centrifuged at 25,000  g for 20  min at 4°C. 
The cerebellum homogenate supernatant was transferred into 
new tubes, and 50  μl of the supernatants was loaded into 
solid phase extraction (SPE) column for extracting the 
metabolites. The extracted metabolites were dissolved in 
acetonitrile. A quality control (QC) sample was made by mixing 
equal volumes (20  μl) from each processed cerebellar sample 
and used to represent all the metabolites encountered during 
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analysis to assess the reproducibility and reliability of the 
UPLC-MS/MS method. Metabolites extracted from all cerebellar 
samples were stored at −80°C until use.

LC-MS/MS Analysis for Untargeted 
Metabolite Profiling
Ultra performance liquid chromatography (UPLC) system 
(Waters, UK) was used for unbiased (global) metabolomics 
analysis of all cerebellar samples. An ACQUITY UPLC BEH 
C18 column (100  ×  2.1  mm, 1.7  μm, Waters, UK) was used 
for the reversed phase separation of metabolites. The column 
oven was maintained at 50°C. The flow rate was 0.4  ml/min, 
and the mobile phase consisted of solvent A (water  +  0.1% 
formic acid) and solvent B (acetonitrile  +  0.1% formic acid). 
The following gradient used for metabolite elution was applied: 
100% solvent A for 0–2  min; 0–100% solvent B for ~11  min; 
100% solvent B for 11–13  min; and 100% solvent A for 
13–15 min. The eluted metabolites were further analyzed using 
high-resolution tandem mass spectrometer SYNAPT G2-XS 
QTOF (Waters, Ireland) in the negative electrospray ionization 
(ESI−) and positive electrospray ionization (ESI+) modes. The 
TOF mass range was set from 50 to 1,200  Da, and the scan 
time was 0.2  s. For the MS/MS detection, all precursors were 
fragmented using 20–40  eV, and the scan time was set to 
0.2 s. For calibrating the mass accuracy, during the acquisition, 
the LE signal was acquired every 3  s. Centroid mean square 
error (MSE) mode was used for collection of the mass 
spectrometry data.

Metabolite Identification, Pathway 
Enrichment, and Multivariate Statistical 
Analysis
Progenesis QI software was used for identification of the 
cerebellum metabolites. The mass-to-charge ratio (m/z) and 
retention time of the metabolites were used for metabolite 
identification. For validation and confirmation, the metabolites, 
MS/MS spectra, molecular mass data, and retention times of 
metabolites were compared against standard substances. Student’s 
t-test was used for the identification of significantly altered 
metabolites (SAMs) based on values of p  <  0.05. The log2 fold 
change (log2FC) represented the ratio between abundance of 
the average ion intensities in the infected cerebella compared 
to the non-infected cerebella.

The identified SAMs were annotated using human 
metabolome database (HMDB1) and Kyoto encyclopedia of 
genes and genome (KEGG2) to determine the enriched 
metabolic pathways. Cerebellum metabolite abundances were 
used as input data for partial least squares-discriminant 
analysis (PLS-DA) to discriminate infected cerebellar samples 
from control samples, and PLS-DA was performed using  
SIMCA 13.0 software. A heat-map was used to show the 
relatively disturbed and unbalanced metabolic state among 
infected cerebellar samples compared to samples of control mice. 

1 http://www.hmdb.ca/
2 www.genome.jp/kegg/

Receiver operating characteristic (ROC) analysis was performed 
to identify potential biomarker or responsive metabolite to 
T. gondii infection. ROC curve and the area under the 
curve (AUC) of ROC were analyzed using the pROC R 
package (Robin et  al., 2011).

RESULTS

Toxoplasma gondii Infection in Mice 
Cerebella
At 7  dpi, no significant clinical signs of toxoplasmosis were 
observed in all mice. At 14 dpi, mice in infected groups showed 
significant clinical signs, such as loss of appetite and ruffled 
fur, whereas the mice in control groups remained apparently 
healthy. At 21 dpi, infected mice seemed to regain their normal 
physical status, probably correlated with the development of 
the chronic infection stage. All cerebella of infected mice 
collected at 7, 14, and 21  dpi were T. gondii B1 gene positive. 
However, no B1 gene amplification product was detected in 
the cerebella of non-infected mice in the control groups 
(Figure  1).

Metabolic Profiles of the Cerebella
We detected 3,200 and 6,198 metabolic ions in the ESI− mode 
and ESI+ mode, respectively. To reveal whether the metabolite 
profile of infected cerebellum was different from non-infected 
cerebellum, PLS-DA analysis was performed. As shown in 
Figure  2, the infected cerebellum samples and non-infected 
control cerebellum samples were clearly separated in the PLS-DA 
plot, and the separation between infected and non-infected 
cerebellum samples was more obvious at 14 and 21  dpi.

FIGURE 1 | Confirmation of the presence of Toxoplasma gondii infection in 
the cerebella of the infected mice. DNA was extracted from the cerebellum of 
infected and non-infected mice at 7, 14, and 21 dpi and used in PCR to 
detect T. gondii B1 gene. 7 dpi (lanes 1–6), 14 dpi (lanes 7–12), and 21 dpi 
(lanes 13–18): PCR amplicons from the cerebellum of infected (top image) 
and non-infected (bottom image) mice; M, DNA marker; P, T. gondii PCR 
positive control; and N, PCR negative control.
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The levels of dozens of retention time-exact mass pairs were 
significantly affected in the cerebellum following T. gondii 
infection. In the ESI− mode, 21, 57, and 148 retention time-exact 
mass pairs were altered at 7, 14, and 21  dpi, respectively. 
However, in the ESI+ mode, the levels of 54, 63, and 154 
retention time-exact mass pairs were significantly altered at 7, 
14, and 21  dpi, respectively. The volcano and heat-map plots 
of these retention time-exact mass pairs are shown in Figure 3. 
Around 10, 22, and 42 SAMs were identified in infected 
cerebella at 7, 14, and 21 dpi, respectively. The details of SAMs 
at each time point are listed in Supplementary Table S1. Venn 
diagram showed that two SAMs (2-lysophosphatidylcholine and 
lecithin) were common in the infected cerebella at all time 
points after infection (Figure  4A). 2-Lysophosphatidylcholine 
and lecithin were downregulated at 7 and 21  dpi, but were 
upregulated at 14  dpi (Supplementary Table S1). Around 8, 
13, and 33 metabolites were exclusively altered at 7, 14, and 
21  dpi, respectively.

Four upregulated metabolites (pyroglutamic acid, 
7(1)-hydroxychlorophyll a, 3,4-dihydroxyphenylacetic acid, and 
p-Cresol) and four downregulated metabolites (ceramide, 
cephalin, nerolidol, and oleic acid) were detected at 7  dpi 
only. Eight upregulated metabolites [diacylglycerol (DAG), 
galactosylsphingosine, arachidonic acid (AA), chitin, 17alpha, 
21-dihydroxypregnenolone, sulfatide, 4,4-dimethyl-5a-cholesta-
8-en-3b-ol, and Norfloxacin] and five downregulated metabolites 

(uridine, tabersonine, sphingomyelin, ethylbenzene, and 5alpha, 
cholesta-7,24-dien-3beta-ol) were exclusively detected at 14 dpi. 
There were 15 upregulated metabolites (chenodeoxycholic acid, 
traumatic acid, 2-chloro-3-oxoadipate, 9-OxoODE, phenethyl 
alcohol, S-lactoylglutathione, androstan-3alpha, 17beta-diol, 
arachidonate, 5-hydroxyconiferaldehyde, calcitetrol, 
allotetrahydrodeoxycorticosterone, 13-OxoODE, eucalyptol, 
cytidine, and phosphatidylethanolamine) and 18 downregulated 
metabolites [5,6-epoxytetraene, cortolone, pravastatin, 
5,6-epoxy-8,11,14-eicosatrienoic acid, fexofenadine, rhodovibrin, 
palmitoleic acid, estriol, phosphatidic acid (PA), xanthoxin, 
sphingosine, 2-arachidonylglycerol, capric acid, 
2'-N-acetylparomamine, tryptophol, (−) alpha-terpineol, vitamin 
A, and 1,2-dehydroreticuline] were exclusively detected 
at 21  dpi.

Metabolic Pathways Affected by 
Toxoplasma gondii
As shown in Figure  4B, the SAMs were enriched in 26, 76, 
and 51 pathways at 7, 14, and 21  dpi, respectively. Details 
of enriched pathways are showed in Supplementary Table S1. 
Also, we  found that 11 pathways were consistently affected 
throughout the study (i.e., at 7, 14, and 21  dpi). These shared 
pathways included sphingolipid metabolism, metabolic 
pathways, sphingolipid signaling pathway, leishmaniasis, 

FIGURE 2 | Two-dimensional partial least squares-discriminant analysis (PLS-DA) score plots of liquid chromatography-mass spectrometry metabolomic data 
showing the separation between infected and control mice at 7, 14, and 21 dpi in the positive (POS) and negative (NEG) ion modes. The ellipses enclose the 95% 
confidence intervals estimated by the sample means and covariances of each group.
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glycerophospholipid metabolism, choline metabolism in cancer, 
AA metabolism, linoleic acid metabolism, alpha-linolenic acid 
metabolism, retrograde endocannabinoid signaling, and 
biosynthesis of unsaturated fatty acids (Table  1 and Figure  5). 
However, 7, 35, and 12 pathways were exclusively altered at 
7, 14, and 21  dpi, respectively.

At 7  dpi, all the seven pathways had one upregulated 
metabolite, including 7(1)-hydroxychlorophyll A (log2FC 
0.756, p  =  0.012) of porphyrin and chlorophyll metabolism, 
p-Cresol (log2FC 0.422, p  =  0.024) of protein digestion and 
absorption, and 3,4-dihydroxyphenylacetic acid (DOPAC; 
log2FC 2.128, p = 0.025) of five pathways (tyrosine metabolism, 

A

B

FIGURE 3 | The intensity patterns and hierarchical cluster analysis of the differentially abundant metabolites between infected and non-infected mice in the positive 
and negative ion modes. (A) Volcano plots showing significantly differentially abundant ions denoted as red dots. The y-axis shows statistical significance values 
−log10(p) for the abundance of metabolite ions, and the x-axis shows the magnitude of the log2 fold change (log2FC) of metabolite ions between infected and non-
infected samples. (B) Heat-map plots of the intensity of the differentially abundant metabolite ions showing significantly different metabolic profiles between infected 
and non-infected (control) cerebellum samples. Each row represents data for a specific metabolite, and each column represents a mouse (T. gondii-infected or 
healthy control). Different colors correspond to the different intensity levels of metabolites. Red and green colors represent increased and decreased levels of 
metabolites, respectively.
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dopaminergic synapse, cocaine addiction, amphetamine 
addiction, and alcoholism pathway). At 14  dpi, all the 35 
pathways had one upregulated metabolite, such as chitin 
(log2FC 0.483, p  =  0.003) of amino sugar and nucleotide 
sugar metabolism, norfloxacin (log2FC 0.334, p  =  0.009) of 
ABC transporters, calcidiol (log2FC 0.691, p  =  0.018) of 
tuberculosis, and DAG (log2FC 0.705, p  =  0.027) of 32 
pathways (EGFR tyrosine kinase inhibitor resistance, MAPK 

signaling pathway, ErbB signaling pathway, Ras signaling 
pathway, Rap1 signaling pathway, calcium signaling pathway, 
chemokine signaling pathway, NF-kappa B signaling pathway, 
HIF-1 signaling pathway, adrenergic signaling in 
cardiomyocytes, VEGF signaling pathway, gap junction, 
natural killer cell mediated cytotoxicity, T cell receptor 
signaling pathway, B cell receptor signaling pathway, circadian 
entrainment, long-term potentiation, glutamatergic synapse, 

A B

FIGURE 4 | Three-way Venn diagrams of the (A) differentially abundant metabolites and (B) enriched metabolic pathways at 7, 14, and 21 dpi. The time after 
infection is indicated next to the corresponding circle. The numbers of metabolites shared between the groups are indicated at the intersections of the circles in the 
Venn diagram. The number of metabolites specific to each time point is shown inside the corresponding circle in red + green colors, denoting the upregulated and 
downregulated metabolites, respectively. Two SAMs and 11 enriched metabolic pathways were shared in common between all groups at the three time points after 
infection.

TABLE 1 | The summary of significantly altered metabolite (SAM) of the 11 common pathways at 7, 14, and 21 days post infection (dpi).

Pathways
Number of significantly altered metabolites

7 dpi 14 dpi 21 dpi

Downregulated 
metabolite

Upregulated 
metabolite

Downregulated 
metabolite

Upregulated 
metabolite

Downregulated 
metabolite

Upregulated 
metabolite

Alpha-linolenic acid 
metabolism 1 0 0 1 1 1
Arachidonic acid (AA) 
metabolism 1 0 0 2 3 1
Biosynthesis of 
unsaturated fatty acids 1 0 0 3 1 2
Choline metabolism in 
cancer 2 0 0 3 3 0
Glycerophospholipid 
metabolism 3 0 0 3 4 1
Leishmaniasis 1 0 0 2 1 1
Linoleic acid 
metabolism 1 0 0 3 2 3
Metabolic pathways 4 3 5 8 13 8
Retrograde 
endocannabinoid 
signaling 2 0 0 3 2 2
Sphingolipid 
metabolism 1 0 1 3 1 1
Sphingolipid signaling 
pathway 1 0 1 1 1 0
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cholinergic synapse, insulin secretion, estrogen signaling 
pathway, melanogenesis, thyroid hormone synthesis, thyroid 
hormone signaling pathway, endocrine and other factor-
regulated calcium reabsorption, salivary secretion, gastric 
acid secretion, pancreatic secretion, carbohydrate digestion 
and absorption, African trypanosomiasis, glioma, and 
non-small cell lung cancer).

Twelve cerebellum pathways were exclusively altered at 
21  days post T. gondii infection, including phenylalanine 
metabolism (Phenethyl alcohol—log2FC 0.391, p  =  0.038), 
pyruvate metabolism (S-lactoylglutathione—log2FC 0.446, 
p  =  0.043), glycerolipid metabolism (S-lactoylglutathione—
log2FC 0.446, p  =  0.043), bile secretion (chenodeoxycholic 
acid with log2FC 0.265, p = 0.041; pravastatin—log2FC –0.693, 
p  =  0.020; fexofenadine—log2FC –0.596, p  =  0.024), butirosin 
and neomycin biosynthesis (2'-N-acetylparomamine—log2FC 
–0.315, p  =  0.020), phosphatidylinositol signaling system 
(PA—log2FC –0.403, p = 0.030), pancreatic cancer (PA—log2FC 

–0.403, p  =  0.030), neuroactive ligand-receptor interaction 
(2-arachidonylglycerol—log2FC –0.337, p = 0.028), tryptophan 
metabolism (tryptophol—log2FC –0.297, p  =  0.008), retinol 
metabolism (vitamin A—log2FC –0.312, p  =  0.033), vitamin 
digestion and absorption (vitamin A—log2FC –0.312, 
p  =  0.033), and apoptosis (sphingosine—log2FC –0.359, 
p  =  0.028).

Identification of Responsive Metabolites in 
the Infected Cerebellum
To identify T. gondii responsive metabolites in infected cerebella, 
ROC analysis was performed. As shown in Figure  6A, four 
metabolites (tabersonine, AA, docosahexaenoic acid, and oleic 
acid) showed good predictability of T. gondii infection in the 
mouse cerebellum with AUC  >  0.7. Both AA and 
docosahexaenoic acid were upregulated in the mouse cerebellum; 
however, oleic acid and tabersonine were downregulated 
(Figure  6B).

FIGURE 5 | Relationship among 11 common pathways and SAMs. Oval denotes the common pathways among 7, 14, and 21 dpi. Triangle denotes the 
differentially abundant metabolites. Green and red color represents downregulated metabolites and upregulated metabolites, respectively. In the 11 pathways, 9, 18, 
and 29 metabolites were significantly altered at 7, 14, and 21 dpi, respectively.
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Discussion
In this study, we  used UPLC-MS/MS based metabolomics to 
understand how the metabolic profiles of the mouse cerebellum 
change during T. gondii infection. Our PLS-DA results showed 
that the metabolic profiles between infected and non-infected 
cerebella were different (Figure  2), and the separation became 
more obvious as infection advanced. We  also investigated 
whether different time points after infection have unique 
metabolomic signatures, which may inform on infection 
progression. Our analysis identified 8, 13, and 33 SAMs 
exclusively at 7, 14, and 21  dpi, respectively. Two metabolites 
(2-lysophosphatidylcholine and lecithin) were altered at all 
three time points. 2-Lysophosphatidylcholine plays a role in 
phospholipid metabolism and in maintaining the integrity of 
the cell membrane (van den Bosch, 1974). A previous report 
showed that the production of 2-lysophosphatidylcholine, which 
activates T lymphocytes, is triggered by antigen stimulation, 
and that 2-lysophosphatidylcholine production is time dependent 
(Asaoka et  al., 1992). Lecithin has been used as an adjuvant 
to enhance cellular immune response to antigen stimulation 
(Kawano and Noma, 1995; Sloat et  al., 2010; Gasper et  al., 
2016). These two metabolites were downregulated at 7 and 
21 dpi; however, they were upregulated at 14 dpi. Interestingly, 
both metabolites are involved in glycerophospholipid metabolism 
pathway, which plays a role in neurological disorders (Farooqui 
et  al., 2000). Whether alterations of these two metabolites 
contribute to the changes of host behavior during T. gondii 
infection remain to be  determined.

As shown in Figure  4B, 11 pathways were altered at 7, 
14, and 21 dpi, whereas 7, 35, and 12 pathways were exclusively 
altered at 7, 14, and 21  dpi, respectively. The DOPAC is an 
oxidation product of the neurotransmitter dopamine, which 
is a critical molecule for regulating learning and motivation 
(Berke, 2018). Several studies showed that schizophrenia 

is linked with upregulation of dopamine signaling 
(Frankle and Laruelle, 2002; Nikolaus et  al., 2009; Beaulieu 
and Gainetdinov, 2011) and T. gondii infection (Elsheikha and 
Zhu, 2016). In the present study, DOPAC was significantly 
upregulated at 7  dpi only (log2FC 2.128, p  =  0.025) which 
agrees with the result of a previous study (Prandovszky et  al., 
2011). Upregulation of dopamine metabolic process results in 
downregulation of dopamine. In the present study, the dopamine 
was slightly upregulated (log2FC 0.091, p  =  0.293). Although 
the mechanism underlying this result remains unknown, T. gondii 
encodes a tyrosine hydroxylase, which participates in the 
synthesis of dopamine. The dopamine production derived from 
T. gondii could be a source to replenish the cerebellar dopamine 
(McConkey et  al., 2013, 2015) resulting in slightly upregulated 
dopamine in the infected mouse cerebellum. The relationships 
among alteration of dopamine pathway, T. gondii and 
schizophrenia need to be  elucidated. Pathway analysis showed 
that this metabolite is involved in five neural-related metabolic 
pathways, including tyrosine metabolism, dopaminergic synapse, 
cocaine addiction, amphetamine addiction, and alcoholism 
pathway, suggesting that significant neuro-metabolic alterations 
may occur in the mouse cerebellum during acute T. gondii 
infection. This result agrees with a previous metabolomic 
profiling of mouse sera (Zhou et  al., 2017).

At 14 dpi, immune-related pathways became more prominent, 
such as MAPK signaling pathway, chemokine signaling pathway, 
natural killer cell mediated cytotoxicity, NF-kappa B signaling 
pathway, T cell receptor signaling pathway, and B cell receptor 
signaling pathway. Interestingly, 35 pathways were exclusively 
altered at 14  dpi, and all the pathways had one upregulated 
DAG (log2FC 0.705, p  =  0.027). DAG is a component of the 
cell membrane and a key lipid secondary messenger for immune 
system. The production and clearance of DAG is coordinated 
by the host to offset pathogen infection (Carrasco and Merida, 2007; 

A B

FIGURE 6 | Identification and intensity of the potential biomarkers. (A) Receiver operating characteristic (ROC) analysis of four identified potential biomarkers or 
responsive metabolites in the infected mouse cerebellum. The four indicated metabolites show area under the curve (AUC) > 0.7. (B) Relative abundance of the four 
potential biomarkers or responsive metabolites in the infected cerebellum at 7, 14, and 21 dpi.
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Shahnazari et  al., 2010). The deletion of DAG kinase zeta that 
catalyzes the conversion of DAG to PA impaired Th1 immune 
responses and increased susceptibility to T. gondii infection (Liu 
et  al., 2007), suggesting that DAG plays a role in the host 
immune defense against T. gondii. Thus, upregulation of DAG 
may promote the immune response against T. gondii in mouse 
cerebellum at 14  dpi. This result provides a new clue for 
understanding how T. gondii infection is controlled in the 
mouse cerebellum.

Compared with 7 and 14  dpi, 12 pathways were exclusively 
altered at 21 dpi, five of which participate in various metabolic 
pathways, including phenylalanine metabolism, pyruvate 
metabolism, glycerolipid metabolism, retinol metabolism, and 
tryptophan metabolism. Alterations in the metabolism of 
phenylalanine, retinol, and tryptophan can lead to behavioral 
changes in the host (Elsheikha et  al., 2016; Elsheikha and 
Zhu, 2016). Tryptophan is a precursor of neurotransmitters 
(serotonin and melatonin) and neuroactive substances (Young, 
1996). Dysregulation of tryptophan is associated with 
neuropsychiatric disorders, such as epilepsy, multiple sclerosis, 
and schizophrenia (Ravikumar et al., 2000). Low phenylalanine 
impaired mouse behavior and reduced the levels of brain 
neurotransmitter (Sawin et  al., 2014). Retinol, also known as 
vitamin A, participates in the regulation of mouse mood and 
behavior (O’Reilly et al., 2008; Buxbaum et al., 2014). Tryptophol 
and phenethyl alcohol are the metabolic products of tryptophan 
and phenylalanine, respectively. At 21  dpi, tryptophol (log2FC 
–0.297, p  =  0.008) and vitamin A (log2FC –0.312, p  =  0.033) 
were downregulated in the infected mouse cerebellum, whereas 
phenethyl alcohol (log2FC 0.391, p  =  0.038) was upregulated. 
Additionally, there was another downregulated metabolite, 
2-arachidonylglycerol (log2FC –0.337, p  =  0.028), which is one 
of the endogenous cannabinoid-receptor agonists that regulate 
many neurobehavioral functions (Iannotti et  al., 2016).

At the three time points post infection, 11 pathways were 
altered in all examined mouse cerebellum, including alpha-
linolenic acid metabolism, AA metabolism, biosynthesis of 
unsaturated fatty acids, choline metabolism in cancer, 
glycerophospholipid metabolism, leishmaniasis, linoleic acid 
metabolism, metabolic pathways, retrograde endocannabinoid 
signaling, sphingolipid metabolism, and sphingolipid signaling 
pathway. Interestingly, most of these pathways had downregulated 
metabolites at 7  dpi and upregulated metabolites at 14  dpi 
(Table  1 and Figure  5). AA metabolism, choline metabolism 
in cancer and glycerophospholipid metabolism were 
downregulated at 21  dpi (Table  1 and Figure  5). These three 
pathways were also found to be downregulated in mouse cerebral 
cortices infected by T. gondii (Ma et al., 2019). The metabolites 
of AA metabolism pathway were upregulated at 14  dpi, but 
were downregulated at 7 and 21 dpi. AA is an n-6 polyunsaturated 
fatty acid that activates host inflammatory response (Grimble 
and Tappia, 1998; Levick et  al., 2007). In addition to immune 
regulation, AA and its metabolites participate in regulating 
some neural functions (Shimizu and Wolfe, 1990). For example, 
AA can activate protein kinase C (PKC; Shearman et al., 1989) 
that regulates neurogenesis (Cambray-Deakin et  al., 1990) and 
neurite outgrowth (Herrick-Davis et  al., 1991).

The AA has been identified as a potential biomarker in 
mouse spleen (Chen et  al., 2017), liver (Chen et  al., 2018), 
and cerebral cortex (Ma et  al., 2019), following infection by 
T. gondii. In the present study, AA was also identified as 
potential biomarker of cerebellum infection by T. gondii 
(Figure  6A). Using ROC analysis, four metabolites (AA, 
docosahexaenoic acid, oleic acid, and tabersonine) had AUC 
value > 0.7, suggesting that these four metabolites can be valuable 
biomarkers or responsive metabolites to T. gondii infection of 
the cerebellum. AA and docosahexaenoic acid were upregulated 
in the infected cerebellum (Figure  6B). AA, tabersonine, 
docosahexaenoic acid, and oleic acid play immunoregulatory 
roles in mice. As mentioned above, AA activates host 
inflammatory response (Grimble and Tappia, 1998; Levick 
et  al., 2007). Tabersonine can protect the lung from acute 
injury via inhibiting ubiquitination of the tumor necrosis factor 
receptor (TNFR)-associated factor 6 (TRAF6), which plays 
immuno-inflammatory roles (Zhang et  al., 2018). Thus, 
downregulation of tabersonine may enhance the immune 
response to clear T. gondii in cerebellum. Docosahexaenoic 
acid (n-3 polyunsaturated fatty acid) and oleic acid 
(monounsaturated fatty acid) can decrease the responsiveness 
to cytokines (Grimble and Tappia, 1998). Taken together, these 
data show that AA, docosahexaenoic acid, oleic acid, and 
tabersonine are promising candidates for further elucidation 
of the interaction between host and T. gondii in the 
mouse cerebellum.

CONCLUSIONS

In this study, we  successfully applied global metabolomics 
to investigate the differences in the metabolic profiles between 
T. gondii-infected mice and non-infected mice. Two 
immunoregulatory metabolites (2-lysophosphatidylcholine 
and lecithin) were significantly altered during the entire 
course of T. gondii infection. We  identified differential 
metabolites related to the metabolism of lipids (e.g., 
glycerophospholipid) and amino acid (phenylalanine, retinol, 
and tryptophan), which play roles in neuropsychiatric 
disorders. Pathway enrichment analysis identified 11 pathways, 
mainly involved in lipid metabolism, which were altered in 
the infected mouse cerebellum at all time points. Four 
metabolites, including AA, tabersonine, docosahexaenoic 
acid, and oleic acid, were identified as potential infection 
responsive metabolites, and may have important implications 
in the diagnosis of cerebral toxoplasmosis. These four 
metabolites have immunoregulatory roles in mice. Therefore, 
further investigation of the functions of these metabolites 
can provide a key component to our understanding of 
cerebellum’s response to T. gondii infection.
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