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ABSTRACT Microbacterium phages Mercedes, Leafus, Nebulous, and Ixel were iso-
lated from soil in Rock Hill, SC. All are lytic phages with Siphoviridae morphotypes
and similar genome sequence lengths that range from 40,200 bp to 42,000 bp. The
four bacteriophages were isolated using the host Microbacterium liquefaciens.

An increase in the isolation and characterization of Microbacterium phages for
potential therapeutic use, biotechnological applications, and host-pathogen evo-

lutionary studies has recently occurred (1, 2). Here, Microbacterium liquefaciens LMG
16120 was used to isolate microbacteriophages in the soil at Winthrop University in Rock
Hill, SC. This research is part of the Science Education Alliance-Phage Hunters Advancing
Genomics and Evolutionary Science (SEA-PHAGES) program (3). Protocols were provided
by the HHMI SEA-PHAGES discovery guide (https://seaphagesphagediscoveryguide
.helpdocsonline.com/home). Microbacterium phages Mercedes, Leafus, and Nebulous
were isolated directly from sandy soil under grass and flowers, while Ixel was isolated
from deeper moist black soil (see Table 1 for global positioning system [GPS] location
coordinates) and required an initial enrichment step with M. liquefaciens. All phage went
through two rounds of purification and were amplified in the bacterial host grown on
peptone-yeast-calcium agar (PYCa) medium at 30°C. Transmission electron microscopy
revealed that all four phages had Siphoviridae morphologies with long flexible tails
(Fig. 1). Phage DNA was extracted from high-titer lysates using the Wizard DNA cleanup
kit (Promega) and sequenced at the University of Pittsburgh. Libraries were constructed
using the NEBNext Ultra II FS DNA library prep kit and sequenced using the Illumina
MiSeq v3 sequencing platform; 150-bp single-end reads yielded 1,094-fold (Mercedes),
1,489-fold (Leafus), 707-fold (Nebulous), and 1,263-fold (Ixel) coverage of each genome
(Table 1). The reads were assembled using Newbler v2.9 and checked for accuracy, cov-
erage, and genomic termini using Consed v29 as previously described (4, 5). The results
(genome size, GC content, and predicted number of genes and termini) and accession
numbers (GenBank and SRA) are listed in Table 1. Using an online tool (https://phagesdb
.org/genecontent/) at the PhagesDB database (6), all phages were assigned by gene con-
tent similarity (GCS) into cluster EA (35% or greater GCS). Within the cluster, Leafus was
assigned into subcluster EA1, Nebulous into subcluster EA5, and Ixel into subcluster
EA11 (1, 7).

For all bioinformatics analyses and software, default parameters were used. The ge-
nome sequences were annotated to identify open reading frames and predicted pro-
tein functions using DNA Master v5.22.3 (8), Glimmer v3.02 (9), GeneMark v2.5 (10),
Starterator (8), Phamerator v3 (11), hhPred v2.07 (12), and BLASTp v2.7.1 (13). All four
phages have the typical genomic architecture seen in the Microbacterium phage clus-
ter EA genomes (1). Genes in the 59 half of the genome sequence are forward encoded
and include sequences for a portal protein, scaffolding protein, a major capsid protein,
two tail assembly chaperones (predicted to be expressed using a programmed transla-
tional frameshift in Mercedes, Nebulous, and Ixel), and a tape measure protein. The
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majority of the 39 half of the genome sequences are encoded on the reverse strand
and include coding for DNA Pol I, MazG-like protein, and thymidylate synthase. None
of the genome sequences contained genes for tRNAs, integrases, or immunity repress-
ors, and so these phages are predicted to solely use the lytic pathway for replication.

Data availability. The individual GenBank and SRA accession numbers are listed
in Table 1. The actinobacteriophage sequencing BioProject accession number is
PRJNA488469.
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No. of
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FIG 1 Transmission electron micrographs of Microbacterium phages Ixel (A), Leafus (B), Nebulous (C), and
Mercedes (D). Phage lysates were negatively stained with 1% uranyl acetate.
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