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Abstract

Multiparental Advanced Generation Inter-Cross (MAGIC) populations are valuable crop resources with a wide array of research uses includ-
ing genetic mapping of complex traits, management of genetic resources and breeding of new varieties. Multiple founders are crossed to
create a rich mosaic of highly recombined founder genomes in the MAGIC recombinant inbred lines (RILs). Many variations of MAGIC pop-
ulation designs exist; however, a large proportion of the currently available populations have been created empirically and based on similar
designs. In our evaluations of five MAGIC populations, we found that the choice of designs has a large impact on the recombination land-
scape in the RILs. The most popular design used in many MAGIC populations has been shown to have a bias in recombinant haplotypes
and low level of unique recombinant haplotypes, and therefore is not recommended. To address this problem and provide a remedy for
the future, we have developed the “magicdesign” R package for creating and testing any MAGIC population design via simulation. A
Shiny app version of the package is available as well. Our “magicdesign” package provides a unifying tool and a framework for creativity
and innovation in MAGIC population designs. For example, using this package, we demonstrate that MAGIC population designs can be
found which are very effective in creating haplotype diversity without the requirement for very large crossing programs. Furthermore, we
show that interspersing cycles of crossing with cycles of selfing is effective in increasing haplotype diversity. These approaches are applica-
ble in species that are hard to cross or in which resources are limited.

Keywords: Multiparental Advanced Generation Inter-Cross (MAGIC); Multiparental Populations; MPP; population design; quantitative
genetics; genetic diversity

Introduction
The Multiparental Advanced Generation Inter-Cross (MAGIC)
population was initially proposed in crops by Mackay and Powell
(2007) as a highly recombined population derived from multiple
founders. The MAGIC term is largely relevant in plants; however,
the concept was derived from the mapping approach using genet-
ically heterogeneous stock in mice (Mott et al. 2000) and is very
close to the Collaborative Cross (CC) population in mice
(Churchill et al. 2004). The first MAGIC population was produced
using 19 founders in Arabidopsis thaliana (Kover et al. 2009). The
MAGIC pedigree described by Cavanagh et al. (2008) has served as
a foundation for the design of many MAGIC populations in subse-
quent years. Briefly, the MAGIC pedigree shows a single funnel
going from eight founders to a recombinant inbred line (RIL).
Starting with eight founders labeled as A to H, two-way crosses
are made as (A�B), (C�D), (E� F), and (G�H). Next, four-way
crosses are made as [(A�B) � (C�D)] and [(E� F) � (G�H)].
Finally, eight-way crosses are made as (((A�B) � (C�D)) �
((E� F) � (G�H))) followed by several generations of selfing.
Using this crossing scheme, the end of the funnel is a RIL with its

genome composed of contributions from all eight founders.
Alternatively, a MAGIC population design may involve multiple
funnels like the elite wheat MAGIC population by Mackay et al.
(2014). Regardless of the designs, MAGIC RILs have diverse re-
combination landscape and rich mosaics of founder genomes
(Scott et al. 2020).

Over the years, MAGIC populations have been used in various
studies with great success. MAGIC populations are popular
choices in mapping quantitative trait loci (QTLs) due to their high
mapping power and resolution (Valdar et al. 2006), for examples
resistance QTLs in bread wheat (Stadlmeier et al. 2019), cold toler-
ance QTLs in maize (Yi et al. 2020), and high-throughput pheno-
type QTLs in rice (Ogawa et al. 2021). In addition to single-trait
analyses, multivariate analyses (multi-trait or -environment)
have been demonstrated in MAGIC populations (Scutari et al.
2014; Verbyla et al. 2014). Diouf et al. (2020) used a tomato MAGIC
population to dissect the underlying genetic-by-environment
(G�E) and plasticity for climate adaptation traits. Aside from
QTL mapping, MAGIC populations are valuable resources for ge-
nomic selection owing to their properties of highly recombined
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genomes and large population size (Scott et al. 2021). Following
that, there are opportunities for using MAGIC RILs in breeding
new varieties (Bandillo et al. 2013; Li et al. 2013). With large num-
bers of founders, MAGIC populations also provide a dynamic as-
set for the management of genetic resources (Thépot et al. 2015)
and may be used to improve our understanding of crop adapta-
tion (Scott et al. 2021). Given their longevity with a broad array of
uses, MAGIC populations are an invaluable community resource
for creative and impactful research.

Considering the importance of MAGIC populations in crop re-
search, several previous studies have explored their designs.
Ladejobi et al. (2016) investigated a genetic diversity-based ap-
proach in founder selection and compared the distributions of re-
combinant haplotypes within small interval for several MAGIC
population designs. Zheng et al. (2018) calculated recombination
densities in several MPP designs and showed that higher recombi-
nation densities can be achieved by increasing the number of
crossing generations. Similar work in mice also showed that addi-
tional crossing and maintenance generations increase the num-
ber of recombinations in RILs (Valdar et al. 2006). Other
simulation studies that compared several MPP designs suggest
that MAGIC-like populations are better for generating high num-
ber of recombinations, and smaller nonrecombining genomic bin
region (Rockman and Kruglyak 2008; Klasen et al. 2012). The de-
velopment of MAGIC populations has been summarized recently
in reviews by Huang et al. (2015), Arrones et al. (2020), and Scott
et al. (2020).

Many of the past works have resulted in software for simulat-
ing and identifying recombinations, as well as calculating QTL
mapping power and resolution. However, there is none dedicated
for the design and test of novel MAGIC crossing schemes. The
“GA” R package and GeneDrop software (Ladejobi et al. 2016) can
be used to calculate founder genetic diversity and simulate
recombinations, but neither is capable of producing a MAGIC
pedigree. The RABBIT software (Zheng et al. 2015), similar to its
counterparts HAPPY (Mott 2008), “mpMap” R package (Huang and
George 2011), and “qtl2” R package (Broman 2019), can be used to
determine founder genotypes and thus identify recombination
breakpoints in MAGIC, but it still does not create a MAGIC pedi-
gree. Given that MAGIC has applications beyond QTL mapping, it
would be beneficial to explore novel crossing schemes that re-
quire minimum effort to construct populations suited for wide
array of uses.

Here, we have sought to understand the relationship between
MAGIC population designs and population recombination land-
scape. We selected and analyzed five MAGIC populations with
publicly available marker genotypes for the founders and RILs,
genetic map positions and pedigrees. The selected populations
comprise the UK wheat eight-founder (Mackay et al. 2014),
German wheat 8-founder (Sannemann et al. 2018), cowpea eight-
founder (Huynh et al. 2018), tomato eight-founder (Pascual et al.
2015), and UK wheat 16-founder (Scott et al. 2021) MAGIC popula-
tions. These MAGIC populations were created from different
designs. We contrasted the observed recombinant haplotypes to
expected (simulated) recombinant haplotypes in each popula-
tion. A comparable cross-population analysis can be challenging
due to many variables like genome sizes, marker genotyping plat-
forms and numbers of founders. Fortunately, there are two elite
wheat eight-founder MAGIC populations (Mackay et al. 2014;
Sannemann et al. 2018) that were genotyped with the same 90k
SNP array (Wang et al. 2014), which allowed us to directly com-
pare the two populations in greater depth. We found that the

recombination landscape varies across designs and that this vari-

ation is consistent across species.
Following our results, we have created the “magicdesign”

package in R Core Team (2021) for the purpose of creating and

testing different MAGIC population designs. Three major steps

are involved in the package pipeline: design creation, population

simulation and comparative analysis. Users can create a design

by either specifying input variables or providing a custom pedi-

gree. Once a design is created, “magicdesign” converts it into a

crossing scheme from the founders to final RILs and simulates a

population based on the crossing scheme. After multiple itera-

tions of simulation, distributions of recombinant haplotypes and

founder genomes are summarized. Results from one or more

designs can be combined and compared visually in plots. In addi-

tion, “magicdesign” produces a pedigree in both text and plot for-

mats that can be used as a guide to support crossing work in

practice. Aside from the described roles, “magicdesign” serves as

a tool to advance the use of MAGIC in future multiparental popu-

lations.

Materials and methods
Evaluation of MAGIC population designs
We surveyed all available MAGIC populations that have been

published to date (including pre-prints) and identified five popu-

lations with publicly available marker data. These five MAGIC

populations include wheat with eight UK elite founders (Mackay

et al. 2014), wheat with eight German elite founders (Sannemann

et al. 2018), cowpea with eight founders (Huynh et al. 2018), to-

mato with eight founders (Pascual et al. 2015), and wheat with 16

UK diverse founders (Scott et al. 2021). These populations are re-

ferred to as wheat-UK8, wheat-DE8, cowpea, tomato, and wheat-

UK16, respectively (Table 1). These datasets were chosen because

the marker data for the founders and RILs, genetic map positions,

and pedigree are publicly available. The wheat-UK16 population

is an exception as it has founder dosages to compensate for the

lack of genetic map positions. Links to the source datasets are

listed in the Data Availability section. Other publicly available

datasets like the wheat with eight German founders (Stadlmeier

et al. 2018), wheat with eight Australian founders (Shah et al.

2019), rice with eight founders (Raghavan et al. 2017), maize with

nine founders (Dell’Acqua et al. 2015), and Arabidopsis with 19

founders (Kover et al. 2009) are excluded because at least one

component of the data needed for our purpose is not present.
All five chosen MAGIC populations vary in numbers of RILs

and marker density (Table 1). The original wheat-UK8 dataset is

made of 643 RILs and 18,599 markers while the original wheat-

DE8 dataset is made of 910 RILs and 7579 markers. To maintain a

fair comparison between these two populations, we kept only

5138 markers that are common between wheat-UK8 and wheat-

DE8. In wheat-DE8, missing data were previously imputed to nu-

merical mean (twice the allele frequency). These imputed marker

data cannot be used in “qtl2” (Broman et al. 2019) for calculating

founder genotype probabilities, so we reverted the imputed

marker data by converting any noninteger marker data to miss-

ing. The cowpea dataset is made of 305 RILs and 32,114 markers

after removing 16 markers in the original dataset where the

marker data is missing in at least one founder. The tomato data-

set is made of 238 RILs and 1345 markers. The wheat-UK16 data-

set is made of 504 RILs and 1,065,178 markers.

2 | G3, 2021, Vol. 11, No. 11



Identification of recombinant haplotypes in
MAGIC populations
To identify recombinant haplotypes, the biallelic marker data in
the RILs need to be converted into founder genotypes. For each
dataset except wheat-UK16, we determined the founder geno-
types in each RIL using the “qtl2” package (Broman et al. 2019) in
R (R Core Team 2021). We first calculated the founder genotype
probabilities using calc.genoprob function with error probability of
0.01 (1%) and Haldane map function. Next, we inferred the
founder genotypes from the probabilities using maxmarg function
with minimum probability of 0.5001. We chose a slightly higher
threshold than the previously used minimum probability of 0.5
by Gardner et al. (2016). Because the genotype probabilities for all
founders at each RIL’s marker sum to 1, the threshold of 0.5001
eliminates the risk of the maxmarg function picking a founder ge-
notype at random when there are two or more with the same
probability above the threshold. For the wheat-UK16 dataset, the
founder genotype dosages are readily available. These founder
genotype dosages were calculated from STITCH (Davies et al.
2016), which is a different software but uses the same underlying
hidden Markov model (HMM) as “qtl2.” We inferred the founder
genotypes in the wheat-UK16 dataset using an equivalent thresh-
old of 1 because the estimated genotype dosages sum to 2.
Markers without any founder genotype probabilities above the
threshold were set to missing.

Using the inferred founder genotypes in each dataset, we iden-
tified the recombinant haplotypes at each breakpoint. The re-
combinant haplotype is a combination of flanking founder
genotypes at each breakpoint. For example, 1_5 is the recombi-
nant haplotype at a breakpoint where the two flanking founder
genotypes are founder 1 and 5. For a population with n founders,
there are n2 � n individual recombinant haplotypes. Therefore, in
an 8-founder MAGIC population, there are 56 individual recombi-
nant haplotypes (1_2, 1_3, . . ., 8_6, 8_7). In order to summarize
the results, we summed the counts of each individual recombi-
nant haplotype in every RIL, and averaging the counts across all
RILs to obtain the mean counts of individual recombinant haplo-
types.

As a control, we simulated a similar MAGIC population based
on the original pedigree for each dataset and calculated the true
counts of recombinant haplotypes. We first derived an approxi-
mated crossing scheme from the pedigree. Because the informa-
tion on replicates is not always present in the pedigree, we
assumed that no replicates and considered all funnels to be inde-
pendent. Next, we used the “AlphaSimR” package (Gaynor et al.
2021) in R (R Core Team 2021) to simulate the MAGIC populations
for a total of 100 iterations. “AlphaSimR” is a package designed
for simulating plant and animal breeding programs, and we used
a fraction of its functionality to simulate crosses and recombina-
tions. In order to keep track of founder genotypes, we expanded
each marker into n� 1 markers with the same exact genetic map

position to prevent recombination among these markers. Using
n ¼ 4 founders as example, the founders are coded as 000, 100,
010, and 001 across the three expanded markers. This expanded
marker system tracked the true founder genotypes from the start
to the end of simulation, and therefore allowed us to calculate
the true counts of recombinant haplotypes using the same
method described in the previous paragraph. In all datasets ex-
cept for wheat-UK16, we used the same genetic map positions as
the actual datasets. In wheat-UK16, we used equally spaced
markers at 0.5 cM since the genetic map positions were not avail-
able for this dataset.

We included an additional control using a hybrid approach of
actual and simulated datasets. Specifically, we converted the
founder genotypes in simulated RILs into biallelic marker data
and inferred the founder genotypes using the same procedures as
we did in the actual datasets. This approach was applied to all
four MAGIC datasets except wheat-UK16. The counts of recombi-
nant haplotypes identified from this approach provide an upper
limit to the inferred number of founder genotypes using “qtl2”
(Broman et al. 2019). There is a caveat, however, that since our
simulation is based on an approximated crossing scheme, the
outcomes of this approach may not precisely represent the upper
limit.

Determination of unique or identical recombinant
haplotypes
Following the identified recombinant haplotypes in wheat-UK8
and wheat-DE8, we classified these recombinant haplotypes into
unique or identical groups based on their positional overlaps
within an interval. Recombinant haplotypes of the same founder
pairs are considered identical if they fall within the same interval,
otherwise unique if they do not overlap. The intervals are ar-
ranged in nonoverlapping bins of approximately 1 or 10 cM from
the start to end of a chromosome. Identical recombinant haplo-
types exist due to replications of cross progeny in the MAGIC pop-
ulation. While this classification cannot distinguish between
identical and independent recombinant haplotypes within the in-
terval, the probability of independent recombinant haplotypes is
low and assumed equal between wheat-UK8 and wheat-DE8.
Therefore, the results from this comparison can elucidate the ef-
fect of MAGIC population designs on the proportions of unique
against identical recombinant haplotypes.

Minimum probability in calling founder
genotypes
The minimum probability used in calling founder genotypes
determines the power in identifying the correct founder geno-
types in the RILs. We selected 10 thresholds ranging from 0.1 to
1.0 with an increment of 0.1. We applied each threshold to the
maxmarg function in “qtl2” (Broman et al. 2019) in simulated pop-
ulations based on wheat-UK8 and wheat-DE8. These simulated

Table 1 Summary of five analyzed MAGIC populations

Dataset n Genome (cM) Marker Distance (cM/marker) PRHR Reference

Wheat-UK8 8 5,262 5,138 1.024 0.296 6 0.094 Mackay et al. (2014)
Wheat-DE8 8 5,262 5,138 1.024 0.331 6 0.058 Sannemann et al. (2018)
Cowpea 8 979 32,114 0.030 0.674 6 0.207 Huynh et al. (2018)
Tomato 8 2,156 1,345 1.603 0.410 6 0.106 Pascual et al. (2015)
Wheat-UK16 16 5,262 1,065,178 0.005 0.799 6 0.092 Scott et al. (2021)

The wheat-UK8 and wheat-DE8 datasets have been reduced to share the same markers and maps for comparison. The PRHR is calculated as number of
recombinant haplotypes in actual dataset divided by number of recombinant haplotypes in simulated dataset. PRHR is shown as mean 6 standard deviation.
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populations are similar to the previously described hybrid ap-
proach where the simulated founder genotypes in RILs are con-
verted to biallelic markers prior to calculating genotype
probabilities. For each threshold, we computed the proportions of
correct, incorrect or missing founder genotypes by comparing the
inferred to true founder genotypes. The ideal threshold should
have a high proportion of correct founder genotypes with low
proportions of incorrect and missing founder genotypes.

Marker density in MAGIC population
We used the proportion of recombinant haplotype recovered
(PRHR) to quantify the recombinations in MAGIC population that
is captured in the marker data. We calculated the empirical
PRHR in all five datasets as the counts of recombinant haplotypes
in the actual dataset divided by the counts in the simulated data-
set. Because the marker density is not constant along the
genomes in actual datasets, we sought to determine a clearer re-
lationship between PRHR and marker density via simulation. We
simulated a single chromosome of 200 cM with eight founders
crossed using the same design as wheat-UK8. The founder alleles
were simulated based on the correlations among founders in
wheat-UK8 using the rmvbin function in “bindata” package
(Leisch et al. 2021) in R (R Core Team 2021). We simulated a total
of 4000 markers that are equally spaced at 0.05 cM. To test lower
marker densities, we thinned the same simulated marker data to
0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 6.40, 12.80 cM, respectively. For
each marker density, we inferred the founder genotypes in the
RILs using “qtl2” (Broman et al. 2019) at a probability threshold of
0.5001 and calculated the counts of recombinant haplotypes.
Finally, we obtained the PRHR by taking the counts of recombi-
nant haplotypes for each marker density divided by the true
counts.

Results
Classifications of MAGIC population designs
Variations in the MAGIC population designs can be described by
the number of founders and the crossing scheme (Figure 1A). It is

convenient to first consider two classes of designs based on the
number of founders: power of two (P2) and nonpower of two
(NP2). As the names suggest, the P2 class has n ¼ 2i founders for
any i > 1 whereas the NP2 class has n 6¼ 2i and n > 2 founders. P2
designs are generally easier to implement in practice because the
numbers of individuals in a funnel are halved in every crossing
generation. For either P2 or NP2 classes, the crossing scheme can
be structured, unstructured and semi-structured (Figure 1A). A
structured design involves strictly defined crosses among the
founders and intermediates such that the crossing scheme can
be further classified into full, partial balanced, partial unbal-
anced or basic designs. These designs are elaborated further in
subsequent paragraphs. On the other hand, an unstructured de-
sign involves random crosses among the founders and intermedi-
ates, while a semi-structured design is a combination of
structured and unstructured designs. Additional features of a
structured design include: (1) precise tracing of the ancestry of
each RIL back to its progenitors, (2) number of crossing genera-
tions is equal to log2n rounded up to the nearest integer. These
features may not hold true in unstructured or semi-structured
designs.

Within a structured design, there are two primary types based
on the number of funnels: full and partial (Figure 1A). A full P2
design has n!=2n�1 funnels while a partial P2 design has one or
more funnels but less than n!=2n�1 funnels. The numerator is the
total number of permutations of 1 to n founders, and the denomi-
nator is the total number of equivalent permutations by the
MAGIC definition. Directions of crosses are disregarded in defin-
ing a funnel. The denominator can be described as 2n�1 ¼

Qn

x¼2i

2
n=x

for i > 0. In an example with four founders, 1234, 1243, 2134,
2143, 3412, 3421, 4312, and 4321 are all equivalent funnels. For
simplicity, [(1� 2) � (3� 4)] is written as 1234. Full and partial
types exist in NP2 designs although the number of funnels in a
full design cannot be generalized similarly (Supplementary Table
S1). From a practical perspective, a full P2 design is achievable for
four or eight founders but not for 16 or more founders as the
number of required funnels becomes unmanageable.

Figure 1 Classifications of MAGIC population designs. (A) Flowchart of classifying MAGIC population designs based on their crossing schemes. (B)
Distribution of MAGIC population designs in all 48 surveyed populations.
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Within a partial design, the funnels can be chosen in either a
balanced or an unbalanced way (Figure 1A). A balanced design
has an equal number of founders among the funnels and equal
frequency of founder pairs at each crossing generation. In a four-
founder MAGIC design, 1234, 1324, and 1423 form a set of three
balanced funnels. First, each founder occurs thrice in the set of
funnels. Second, each founder is paired once with another
founder in the two-way crosses, and twice in the four-way
crosses. For example, founder 1 meets founder 2 once in the two-
way cross (first funnel) and twice in the four-way cross (second
and third funnels). Coincidentally, since n ¼ 4 and
n!=2n�1 ¼ 4!=23 ¼ 3, the set of three balanced funnels is equiva-
lent to a full design for four founders. Unlike the partial balanced
design where the number of funnels is restricted to set rules, the
partial unbalanced design is formed by funnels chosen randomly.
Differences between balanced and unbalanced designs are ex-
plored in a later section. In addition, we coin the special case of
partial unbalanced design with one funnel as a basic design.
Examples of all of the designs are shown in Supplementary
Figure S1.

Based on our survey of 48 MAGIC populations in 15 crop spe-
cies that have been described in either published or pre-print lit-
erature to date, there are 39 P2 and 9 NP2 designs (Figure 1B and
Supplementary Table S2). The numbers of founders range from
four to 60, with four and eight founders as the predominant num-
bers. Despite the ease of handling required for crosses based on a
full design with four founders, all 10 of the populations were cre-
ated using a basic design. Of the 26 MAGIC populations with eight
founders, there are 16 basic designs, nine partial designs and one
semi-structured design. The popularity of the basic design can be
ascribed to Cavanagh et al. (2008), who provided an illustrated
pedigree of a basic design. We refrained from classifying the par-
tial designs into balanced and unbalanced designs due to the lack
of pedigree information in many MAGIC populations. Regardless
of the number of founders, there has not been any MAGIC popu-
lation created with a full design. There are several eight-founder
populations that came close to a full design. The bread wheat
MAGIC population by Mackay et al. (2014) had 210 out of 315 re-
quired funnels for a full design. The maize MAGIC population by
Dell’Acqua et al. (2015) had mixed funnels from pooling different
four-way individuals and had to introduce an additional founder
due to a failed two-way cross. The three bread wheat MAGIC pop-
ulations by Shah et al. (2019) came closest to a full design with
311–313 funnels.

Empirical evaluation of two bread wheat MAGIC
populations
Our evaluation on two bread wheat MAGIC populations derived
from distinct sets of eight elite founders shows that the distribu-
tions of recombinant haplotypes differ for each MAGIC design
(Figure 2 and Supplementary Figure S2). We used the wheat-UK8
and wheat-DE8 populations, in which wheat-UK8 is an example
of a partial design while wheat-DE8 is an example of a basic de-
sign (Supplementary Table S2). To maintain our cross-population
comparison as fair as possible, we reduced the original wheat-
UK8 and wheat-DE8 datasets to smaller subsets with common
markers (Figure 2), although the same analysis was performed on
the original datasets too (Supplementary Figure S2). The subsets
include all 643 RILs in wheat-UK8 and 910 RILs in wheat-DE8,
and 5138 common markers arranged in the same genetic map
positions as Gardner et al. (2016). This genetic map is chosen over
the original genetic map in the wheat 90k array (Wang et al. 2014)
because of higher map quality.

The distribution of all recombinant haplotypes is less skewed
in wheat-UK8 than in wheat-DE8 (Figure 2). In wheat-UK8, none
of the recombinant haplotype appears more frequently than
others (Figure 2A). In any given RIL, there are 0.879 6 0.227 (mean
6 standard deviation) individual recombinant haplotypes. In
wheat-DE8, eight recombinant haplotypes appear about twice as
frequently as the others (Figure 2B). There are 1.910 6 0.313 of
these eight recombinant haplotypes (1_2, 2_1, 3_4, 4_3, 5_6, 6_5,
7_8, and 8_7) instead of 0.845 6 0.150 of the other recombinant
haplotypes. In addition, the mean count of recombinant haplo-
type is approximately normally distributed in wheat-UK8
(Figure 2C) but is skewed to the right in wheat-DE8 (Figure 2D).
The eight skewed recombinant haplotypes match with all of the
founder pairs in two-way crosses in wheat-DE8. This is not a co-
incidence because two-way crosses have the largest founder
genomes to recombine. With every generation of crosses, the
founder genomes are halved and so there are fewer recombina-
tions between any two founders. Examples of the detrimental
consequences of the skew in recombinant haplotypes are: (1) re-
duction in QTL mapping power and resolution when the pairs of
founders with higher skew carry the same haplotypes surround-
ing the causative QTL, (2) limited novel haplotypes for breeding
use.

While wheat-UK8 has a slightly lower number of recombinant
haplotypes per RIL than wheat-DE8 in both reduced (Table 2) and
full (Supplementary Tables S3 and S4) datasets, the proportion of
unique recombinant haplotypes is higher in wheat-UK8 than in
wheat-DE8 (Figure 3 and Supplementary Figure S3). Due to the
imprecision of inferred recombination breakpoints, we defined
recombinant haplotypes with breakpoints within any nonover-
lapping intervals as identical. We chose the intervals to be 1 and
10 cM wide. With the interval width set to 1 cM, there are 17,786
distinct recombinant haplotypes distributed among 643 RILs in
wheat-UK8, which is equivalent to 27.66 distinct recombinant
haplotypes per RIL. Similarly, there are 17,643 distinct recombi-
nant haplotypes distributed among 910 RILs in wheat-DE8, which
is equivalent to 19.39 distinct recombinant haplotypes per RIL.
When the interval is set to 10 cM, the counts and proportions of
unique recombinant haplotypes decrease and the differences be-
tween wheat-UK8 and wheat-DE8 holds (Supplementary Figure
S3). There are many practical implications of having more unique
recombinant haplotypes: (1) increased mapping power and reso-
lution, (2) increased options of novel haplotypes for breeding, and
(3) minimized redundancy of the same recombinant haplotypes.
For any pair of founders that share a haplotype carrying linked
QTLs, all recombinations between the two founders within the
region are noninformative. Such haplotype can be broken down
by recombinations between other pairs of founders, which is
achievable by having more unique recombinant haplotypes. This
is useful to avoid mapping ghost QTLs For example, a previously
identified AOP2/AOP3 locus in Arabidopsis (Atwell et al. 2010;
Kerwin et al. 2011) was recently re-mapped to two other linked
loci, NDX1, and GA1 (Sasaki et al. 2021).

Empirical evaluation of three other MAGIC
populations
While not directly comparable, the relationship between MAGIC
population designs and the distributions of recombinant haplo-
types in three other datasets remains consistent. Similar to
wheat-DE8, the cowpea and tomato MAGIC populations were cre-
ated from a basic design and thus have a skewed distribution of
recombinant haplotypes (Figure 4). The recombinant haplotypes
from two-way founder pairs are higher than the other
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recombinant haplotypes. In cowpea, the two-way recombinant
haplotypes are 0.936 6 0.171 (mean 6 standard deviation) per RIL
while the other recombinant haplotypes are 0.384 6 0.123 per RIL.
In tomato, the two-way recombinant haplotypes are
0.907 6 0.095 per RIL and the other recombinant haplotypes are
0.416 6 0.116 per RIL. On the other hand, wheat-UK16 was cre-
ated from a partial balanced design and does not have any skew
in its distribution of recombinant haplotypes (Supplementary
Figure S4). The recombinant haplotypes are 0.878 6 0.102 per RIL.

Minimum probability for calling founder genotype
The minimum probability for calling founder genotype is impor-
tant for the identification of recombinant haplotypes, and our
simulation results suggest that the range of 0.4–0.6 gives a good

balance of correct, incorrect and missing founder genotype calls
(Figure 5, A and B). This range is in accordance to the threshold of
0.5 used in Gardner et al. (2016). The results are similar between
simulated wheat-UK8 and wheat-DE8 populations, so only
results from the simulated wheat-UK8 population are elaborated
here. At a minimum probability of 0.4, the correct, incorrect and
missing founder calls are 69%, 16%, and 15% of the total markers,
respectively. At a minimum probability of 0.5, the rates are 64%,
11%, and 25%. At a minimum probability of 0.6, the rates are
58%, 6%, and 36%. As the minimum probability increases, the
rates of correct and incorrect founder calls decrease while the
missing rate increases. In order to avoid the issue of having two
or more founder probabilities above the threshold, the minimum
probability can be set to 0.5 or higher. Because the simulations

Figure 2 Distributions of recombinant haplotypes in two wheat MAGIC populations. (A) Plot shows mean count of each recombinant haplotype in a
single RIL in wheat-UK8. The boxplot shows mean count from true founder genotypes (100 simulated iterations). The red and blue points show mean
count from inferred founder genotypes. (B) Plot shows mean count of each recombinant haplotype in a single RIL in wheat-DE8. (C) Histogram of the
mean count in wheat-UK8. (D) Histogram of the mean count in wheat-DE8.
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are based on the available diversity among the wheat-UK8 and

wheat-DE8 founders, the appropriate range of minimum proba-

bility for calling founder genotype may vary in other populations.

Marker density in MAGIC population
In all five analyzed datasets, the proportion of recombinant hap-

lotypes recovered (PRHR) is higher in populations genotyped at

higher marker density (Table 1). PRHR is computed by taking the

number of recombinant haplotypes in actual dataset divided by
the true number of recombinant haplotypes in simulated dataset.
Therefore, high PRHR ensures that fine-scale recombinations are
captured and increases QTL mapping resolution. In wheat-UK8
and wheat-DE8 with an average marker distance of 1.024 cM, the
PRHR is approximately one-third (Figure 2). Even though the to-
mato population is genotyped at a lower marker density with an
average marker distance of 1.603 cM, the PRHR is higher than in
the two wheat populations (Figure 4B). This is likely because the
markers on the wheat D-genome are generally sparse due to its
low diversity (Akhunov et al., 2010). The cowpea population is
genotyped at a high marker density with an average marker dis-
tance of 0.030 cM, in which the PRHR is approximately two-thirds
(Figure 4A). Finally, wheat-UK16 is genotyped at the highest
marker density of all analyzed datasets with an average marker
distance of 0.005 cM, and it has the highest PRHR of almost 80%
(Supplementary Figure S4). Marker density is an important factor
in identifying fine-scale recombination breakpoints in MAGIC
populations.

Under ideal conditions, where the markers are evenly spaced,
a marker distance of 0.20 cM or less between two adjacent
markers is sufficient to achieve a PRHR of at least 90%
(Figure 5C). We tested recombinant haplotype recovery rates for
markers that are evenly spaced across 0.05, 0.10, 0.20, 0.40, 0.80,
1.60, 3.20, 6.40, and 12.80 cM. At the smallest tested distance of
0.05 cM, approximately 97% of the true recombinant haplotypes
can be recovered. As the distance increases, the recovery rate
decreases. At the largest tested distance of 12.80 cM, approxi-
mately 11% of the true recombinant haplotypes can be recovered.
These results are more optimistic than the actual results
(Table 1). In practice, more markers are required to achieve the
same recovery rate for any given marker density because
markers are not evenly distributed across the whole genome. In
addition, the discrepancy between simulated and actual results
can also be attributed to marker quality. For example, the
markers on the wheat D-genomes are generally sparser than on
the others.

Table 2 Number of informative recombinations in wheat-UK8
and wheat-DE8

Chr NR/RIL NR/RIL/M

Wheat-UK8 Wheat-DE8 Wheat-UK8 Wheat-DE8

Sim Actual Sim Actual Sim Actual Sim Actual

1A 7.21 1.91 7.21 2.35 3.13 0.83 3.13 1.02
1B 11.77 3.57 11.76 4.31 3.44 1.04 3.44 1.26
1D 3.74 0.68 3.73 0.99 2.92 0.53 2.92 0.78
2A 8.37 3.67 8.37 3.17 3.32 1.45 3.32 1.26
2B 12.43 2.63 12.43 3.61 3.34 0.71 3.34 0.97
2D 4.97 1.69 4.96 1.42 2.71 0.92 2.71 0.77
3A 10.21 4.50 10.19 4.16 3.37 1.48 3.36 1.37
3B 9.89 3.35 9.90 4.18 3.51 1.19 3.51 1.48
3D 4.45 0.61 4.44 0.45 2.29 0.32 2.28 0.23
4A 6.95 2.51 6.96 2.11 3.30 1.19 3.30 1.00
4B 7.55 2.21 7.58 2.23 3.40 0.99 3.41 1.01
4D 2.95 0.51 2.96 0.43 2.75 0.47 2.75 0.40
5A 10.23 4.15 10.23 4.47 3.26 1.32 3.26 1.43
5B 10.97 2.59 10.96 3.25 3.53 0.83 3.53 1.05
5D 4.76 1.33 4.75 1.52 2.39 0.67 2.39 0.76
6A 9.70 3.38 9.68 4.48 3.48 1.21 3.47 1.61
6B 8.85 1.97 8.84 2.46 3.40 0.76 3.40 0.95
6D 3.92 0.43 3.93 1.14 1.82 0.20 1.83 0.53
7A 13.53 4.21 13.50 5.07 3.53 1.10 3.52 1.32
7B 9.28 2.64 9.27 2.97 3.23 0.92 3.23 1.03
7D 4.40 0.74 4.40 1.05 2.36 0.40 2.35 0.56
All 166.10 49.24 166.05 55.84 3.16 0.94 3.16 1.06

The number of informative recombinations (NR) is calculated for both
simulated and actual wheat-UK8 and wheat-DE8 datasets. Note: recombinant
inbred line (RIL), Morgan (M).

Figure 3 Distributions of unique and identical recombinant haplotypes in two wheat MAGIC populations. Recombinant haplotypes are considered
identical if they are of the same founder pairs and present in the same 1 cM interval, otherwise unique. (A) Counts of the number of identical
recombinant haplotypes in wheat-UK8. The left most point is the count of unique recombinant haplotypes. (B) Counts of the number of identical
recombinant haplotypes in wheat-DE8. (C) Proportions of unique and nonunique (identical) recombinant haplotypes in wheat-UK8 and wheat-DE8.
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magicdesign: a tool to create and test MAGIC
population designs
Given that MAGIC population construction requires a lot of time

and effort, and that design choices can impact population attrib-

utes, there is a need for a “free trial” before committing to create

a MAGIC population. Here, we introduce an R package called

“magicdesign,” which is specifically made for creating and testing
various MAGIC population designs via simulation. Alternatively,

we also provide a user-friendly Shiny app version called

“magicdesignee” which implements the “magicdesign” R package

in its back-end. Therefore, minimal R knowledge is required for

users to use “magicdesignee.”
Briefly, the “magicdesign” package workflow can be described

as: (1) design creation, (2) population simulation, and (3) compar-

ative analysis. In the design creation step, the package creates a

crossing scheme that spans from the founders to the final RILs

based on user inputs. In the population simulation step, the

package simulates a MAGIC RIL population constructed from the

crossing scheme, and repeats over multiple iterations. At this
point, the first two steps may be repeated for other MAGIC popu-

lation designs. Finally, in the comparative analysis step, the

package extracts information from previously tested designs and

summarizes the results illustratively. Additional details on each

step are described in subsequent sections.

Design creation
In a structured design, the design creation step takes various user
inputs to create a crossing scheme. The major inputs include

number of founders, number of funnels or funnel sets, and a bal-

anced design indicator. Based on how these inputs are specified,

one of the structured designs (Full, Partial Balanced, Partial

Unbalanced, and Basic) as shown in Figure 1A is created. As de-
fined previously, a balanced design has an equal number of

founders among the funnels and equal frequency of founder

pairs at each crossing generation. This design creation step works

for either power of 2 (P2) or nonpower of 2 (NP2) number of

founders. Currently, the allowed range of number of founders is
any integer between 3 and 128. The allowed number of funnels or

funnel sets varies according to the number of founders and the

balanced design indicator, and the full list is provided in

Supplementary Table S1.
Finding a balanced design requires more computation power

than finding an unbalanced design. This is because the balanced

design requires many funnel permutations to be evaluated while
the unbalanced design randomly sample the required number of

funnel permutations. To reduce the computational burden, we

have identified alternative methods that are less computationally

intensive. In the case of eight founders, we have searched

through all 3157 possible combinations and identified 720 partial

Figure 4 Distributions of recombinant haplotypes in cowpea and tomato MAGIC populations. (A) Plot shows mean count of each recombinant haplotype
in a single RIL in cowpea. The boxplot shows mean count from true founder genotypes (100 simulated iterations). The red and blue points show mean
count from inferred founder genotypes. (B) Plot shows mean count of each recombinant haplotype in a single RIL in tomato.
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balanced funnel sets. There are seven funnels to make a mini-
mum partial balanced funnel set and any of the 315 funnels from
a full design can be chosen to fill each of the seven funnels in a
funnel set. Furthermore, each of the partial balanced funnel set
can be combined with another nonoverlapping partial balanced
funnel set to form a larger partial balanced funnel set. In the case
of 16 founders, the number of possible combinations is very large
and so we opted for a different approach. To start, we obtained
the 15 funnels from Scott et al. (2021), which is a partial balanced
set for 16 founders. We searched through all 315 possible permu-
tations of 8- and 16-way crosses in these funnels and identified
7776 partial balanced funnel sets. More partial balanced funnel
sets could be found by searching through all 31515 possible per-
mutations of four-way crosses, however, that was beyond our
available computational capacity. Unlike the case of eight found-
ers, these funnel sets do overlap and thus cannot be combined to
form a larger set. Instead, by randomly swapping the founders

from a starting partial balanced funnel set, a nonoverlapping par-
tial balanced funnel set can be created and merged to form a
larger set. For other numbers of founders between 4 and 16, the
balanced design is created based on a nested incomplete block
design (NIBD) generated using the “blocksdesign” package
(Edmondson 2020, 2021). A MAGIC funnel is analogous to a NIBD
as the founders in two-way crosses (experimental block of two
plots) are nested within four-way crosses, founders in four-way
crosses are nested within eight-way crosses, and so on.
Currently, a balanced design in “magicdesign” is limited to 16 or
less founders as there is not yet an efficient method for larger
number of founders.

In addition, “magicdesign” provides options to further modify
the MAGIC population design by specifying the number of repli-
cates, number of selfing generations, and an additional crossing
indicator. The number of replicates determines how many seeds
from a cross are retained. This can help to increase the haplotype

Figure 5 Ideal threshold for inferring founder genotypes and marker density in MAGIC population. (A) Proportions of correct, incorrect and missing
founder genotypes inferred at different minimum probability (minprob) in simulated wheat-UK8 population. (B) Proportions of correct, incorrect and
missing founder genotypes inferred at different minprob in simulated wheat-DE8 population. (C) Proportions of recombinant haplotypes recovered
(PRHR) at different marker density along a simulated chromosome of 200 cM. The marker density is adjusted by having markers equally spaced at 0.05,
0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 6.40, and 12.80 cM apart.
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diversity in the MAGIC population when the seeds are not geneti-
cally identical. In the case of inbred founders, replicates of two-
ways individuals are all identical but not replicates of four-ways
(or higher) individuals. The number of selfing generations deter-
mine how many generations of selfing are required after each
cross. Typically, the selfing step is only applied after the last
crossing generation as a way to reduce heterozygosity in the RILs.
However, selfing prior to that may be beneficial in increasing re-
combinant haplotypes. Finally, the additional crossing indicator
allows for an extra crossing generation to further increase recom-
binant haplotypes. This is similar to the approach taken by
Stadlmeier et al. (2018) and Shah et al. (2019).

Alternatively, any MAGIC population design that is not avail-
able directly in “magicdesign” can be created by supplying a com-
plete pedigree. The only requirement for the pedigree is that it
must detail all crosses involved from the founders to the final
RILs. This option provides a greater flexibility to accommodate
for semi-structured or unstructured designs. Furthermore, it is
also possible to modify a design created from “magicdesign” and
provide the pedigree of the modified design.

Population simulation
Once a MAGIC population design is created, “magicdesign” simu-
lates a population based on the design and other user inputs. The
major inputs include distance between markers, chromosome ge-
netic lengths, number of simulations and recombinant haplotype
interval size. The simulation step will create evenly spaced
markers based on the distance between markers and chromo-
some genetic lengths. All founders are considered unique and so
each of these markers is used to encode for the founder geno-
types. The desired number of simulations is selected. In addition,
the recombinant haplotype interval size determines the distance
between two markers to look for recombinant haplotypes.

Comparative analysis
After simulating one or more designs, the final step is to compare
the design qualities in terms of recombinant haplotype propor-
tions and distribution of founder genomes in the RILs. In general,
a good MAGIC population design should yield consistently higher
recombinant haplotype proportions as well as an even distribu-
tion of founder genomes compared to other designs.

To demonstrate comparative analysis with “magicdesign,” the
five designs in Table 3 are used as examples. These designs are
all applied to a fictitious species with five chromosomes of 1.0,
1.5, 2.0, 2.5, 3.0 Morgans (M) length. All five designs are created
based on a MAGIC population of eight founders. Design 1 is a full
design and so it has all 315 funnels. Designs 2 and 4 are both par-
tial balanced design with one funnel set (seven funnels), and the

only difference between them is that the four-way individuals in
design 4 are selfed once before making eight-way crosses. Design
3 is similar to design 2 except it is a partial unbalanced design
with seven funnels. Finally, design 5 is a basic design with 1 fun-
nel inspired by the design used in Stadlmeier et al. (2018). The
numbers of replicates are varied for each design to achieve simi-
lar final RIL population size close to 1000. Aside from design 1
which has the highest number of crosses, the other designs have
fairly similar numbers of crosses. Designs 1, 2, and 3 require
seven generations from founders to RILs, while designs 4 and 5
require eight generations because of the additional selfing and
crossing generation, respectively.

First, we investigated the designs’ effects on recombinant hap-
lotypes within a 5 cM interval. In term of total recombinant hap-
lotypes, a good design should have high mean with low variance.
High mean implies a reduction in linkage disequilibrium (LD) and
thus improves QTL mapping resolution (Ladejobi et al. 2016) as
well as prediction of marker effects in genomic prediction (GP).
Low variance ensures that the proportion of recombinant haplo-
types in the created MAGIC population remains close to the sim-
ulated mean and minimizes the risk of constructing a poorly
recombined MAGIC population. For designs 1–5, respectively, the
means are 0.167, 0.167, 0.169, 0.186, and 0.202 while the varian-
ces are 0.000158, 0.000244, 0.000293, 0.000452, and 0.003000
(Figure 6A). The means are similar in designs 1–3, slightly higher
in design 4 and highest in design 5. However, the variances are
lowest in design 1, similar in designs 2 and 3, slightly larger in de-
sign 4, and substantially larger in design 5.

In any RIL derived from an eight-founder MAGIC population,
there are 56 distinct recombinant haplotypes and a good design
should have high mean with low variance. Mean number of
unique recombinant haplotypes that approaches the theoretical
maximum of n2 � n is important for maximizing QTL mapping
resolution and generating novel haplotypes for breeding new va-
rieties. In a population of MAGIC RILs with high proportion of re-
combinant haplotypes but low number of unique recombinant
haplotypes, the QTL mapping resolution can be poor when the re-
combinant haplotypes are largely composed of pairs of founders
carrying the same causative QTL haplotype. Low variance is ben-
eficial for the same reason as explained in the previous para-
graph. The means for the number of unique recombinant
haplotypes are 52.20, 49.93, 50.29, 47.81, and 34.51 for designs 1–
5, respectively, while the variances are 3.31, 4.29, 4.21, 4.68, and
34.78 for designs 1–5, respectively (Figure 6B). The means are
highest in design 1, similar in designs 2 and 3, slightly lower in de-
sign 4 and lowest in design 5. The variances follow a similar but
reverse trend as the means except for design 5 where the vari-
ance is over seven times greater. Equivalently, the coefficients of

Table 3 Five MAGIC population designs tested in magicdesign

Design 1 Design 2 Design 3 Design 4 Design 5

Founders 8 8 8 8 8
Type Full Partial balanced Partial unbalanced Partial balanced Basic
Replicates 1, 1, 3 1, 9, 15 1, 9, 15 1, 9, 15 1, 4, 4, 15
Selfing 0, 0, 4 0, 0, 4 0, 0, 4 0, 1, 4 0, 0, 0, 4
Crosses 28, 210, 315 (553) 28, 14, 63 (105) 19, 13, 63 (95) 28, 14, 63 (105) 4, 2, 4, 64 (74)
Generations 7 7 7 8 8
RIL 945 945 945 945 960
Funnel 315 7 7 7 1

The numbers of replicates, selfing generations and crosses are listed separately for each generation. For example, in design 1, the eight-way individuals are
replicated three times and then selfed for four generations. The total number of crosses is shown in parentheses.
RIL, recombinant inbred line.
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variation (CVs) are 0.035, 0.041, 0.041, 0.045, and 0.171 for designs

1–5, respectively. That for design 5 is approximately four times

that for the other designs.
The distributions of individual recombinant haplotype should

be consistent across all recombinant haplotypes with minimal

variability across simulations in a good design. This metric offers

an in-depth view of individual recombinant haplotypes by com-

bining the two previously described metrics. Here, we can identify

the individual recombinant haplotypes that deviate from the

others, which can be a cause of concern relating to poor QTL

mapping resolution and lack of novel recombinant haplotypes

for breeding uses. With the exception of design 5, all other

designs have similar distributions of individual recombinant hap-

lotype (Figure 6C and Supplementary Table S5). Similar to wheat-

DE8 (Figure 2B), cowpea and tomato (Figure 4), design 5 has more

two-ways recombinant haplotypes than other recombinant hap-

lotypes. Furthermore, the spreads of two-ways recombinant hap-

lotypes in design 5 are much higher than the others, which imply

low consistency.
Similar to the previous criterion, the proportions of founder

genomes should be consistent across all founders with low vari-

ability across simulations in a good design. This is an important

metric that highlights the disparity in founder genome distribu-

tion. Multiple uses of MAGIC populations are compromised when

the disparity is large, for instance, rare QTLs may drop out, GP

training model and breeding options become skewed, and

valuable diversity is lost in a genetic resource management pro-

gram. With eight founders, the expected proportion of each

founder genome in a population is 0.125. The proportions are

within 0.01 of expectation for all designs except for design 5,

which has 5 out of 8 proportions exceeding the range (Figure 7A).

On the other hand, the variances are lowest in design 1, slightly

higher in designs 2–4, and highest in design 5 (Figure 7A).
In any single chromosome, a RIL can carry tracts of 1–8 unique

founder genomes and it is generally better to have more unique

founder genomes. This metric is similar to the first metric show-

ing the total recombinant haplotypes where higher number of

unique founder genome suggests more recombinations. In addi-

tion, this metric highlights the relationship between genetic

length and the number of unique founder genomes, which dem-

onstrates the advantages of MAGIC in species with many geneti-

cally long chromosomes. In the shortest chromosome

(chromosome 1), designs 1–3 frequently produce three unique

founders, while designs 4 and 5 frequently produce four unique

founders (Figure 7B). In the longest chromosome (chromosome

5), designs 1–4 frequently produce six unique founders while de-

sign 5 frequently produces seven unique founders (Figure 7B).
Finally, a good design should have short nonrecombinant seg-

ments, which can be achieved by increasing the number of cross-

ing generations from the founders to the RILs. Short

nonrecombinant segments imply higher QTL mapping resolution

and possibly better marker effect prediction in GP. Across all

Figure 6 Distributions of recombinant haplotypes in five MAGIC population designs. Recombinant haplotypes are evaluated within a 5 cM interval over
100 iterations of simulation. (A) Proportions of total recombinant haplotypes. (B) Number of unique recombinant haplotypes. (C) Proportions of six
chosen recombinant haplotypes. Complete results are available in Supplementary Table S5.
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chromosomes, design 5 has the shortest nonrecombinant seg-

ments, followed by design 4, and designs 1–3 being undiscernible

(Figure 7C).
Of all the five designs considered here, each has its own

advantages and disadvantages. Designs 1–3 are highly similar ex-

cept that design 1 tends to show smaller variability than the

other two at the cost of more crossing work required. Design 4 is

slightly better than the first three in most occasions, although it

is slightly more variable and requires one additional generation.

Design 5 is generally poor and should be avoided if possible, al-

though the additional crossing generation helps in increasing the

number of unique founders and reducing nonrecombinant seg-

ment lengths. Of all designs considered, design 4 appears to be

the best option if the additional generation is acceptable, other-

wise either designs 2 or 3 is a good alternative. Across all the

metrics used for comparisons in “magicdesign,” there is no ob-

servable difference between designs 2 (balanced) and 3 (unbal-

anced).

Discussion
Ease of design appears as a major factor in driving the design

choices in currently available MAGIC populations. These MAGIC

populations are predominantly made of four or eight founders

crossed using a basic design (Figure 1B). There are several possi-

ble explanations to the choice popularity. First, P2 designs are

easier to handle than NP2 designs since the individuals in every

funnel are halved at every crossing generation. Besides, four and

eight founders are effectively the lowest numbers of founders

available in P2 designs, and higher numbers of founders require

Figure 7 Distributions of founder genomes in five MAGIC population designs. Founder genomes are evaluated from 100 iterations of simulation. (A)
Proportions of each founder genome in the MAGIC RILs. (B) Proportions of the MAGIC RILs carrying tracts of 1–8 unique founder genomes in each
chromosome. (C) Mean count of nonrecombinant segment length in each RIL’s chromosome.
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more generations of crossing and may increase the design com-
plexity. Of all the explored designs, the basic design likely
requires the least amount of effort in population construction.
The only other option that may rival a basic design is the un-
structured design with random mating, which often relies on seg-
regation of male sterility loci. Unfortunately, this system is not
always readily available in every species and may restrict the
founder choices.

Choice of MAGIC population design plays a critical role in de-
termining the recombination landscape in the RILs. In the com-
parison between wheat-UK8 and wheat-DE8, we identified a bias
in individual recombinant haplotypes in the basic design but not
the partial design (Figure 2). The bias resulted in more two-way
recombinant haplotypes than other recombinant haplotypes.
The bias might be exacerbated if the pairs of founders in two-
ways are genetically more similar than others, which can happen
if the founders stratify into two or more groups. It is possible to
avoid pairing the founders of the same groups in two-ways if the
grouping is known. For example, Pascual et al. (2015) made the
two-way crosses by crossing tomato founders with large fruits to
founders with small fruits, and Ogawa et al. (2018) followed simi-
larly by crossing indica rice founders to japonica rice founders.
This countermeasure is only possible if the numbers of founders
are equal between groups, but not if the founders cannot be sub-
divided equally like the barley (Sannemann et al. 2015), cowpea
(Huynh et al. 2018), and wheat (Stadlmeier et al. 2018) MAGIC pop-
ulations. Besides, the stratification may be incomplete due to
other traits that are not considered, for example, flowering time
and nutrition qualities in tomatoes.

In addition to the bias, the basic design also resulted in a lower
proportion of unique recombinant haplotypes than the partial
design (Figure 3). Because a basic design always has less funnels
than any other designs, high replication of cross progeny is re-
quired to bring the number of RILs up. In general, replicates re-
duce the amount of crossing work required in prior generation by
keeping more than one progeny from a single cross to advance.
The recombination landscape in these replicated individuals is
nonindependent because any prior recombinations are passed
down from their parents. The detriments from replication can be
minimized by replicating in earlier generations as subsequent
crosses will reduce the nonindependence among replicates. In a
MAGIC population with 8 inbred founders, the earliest meaning-
ful replication would be the four-way individuals. However, repli-
cates prior to the final crosses do increase the amount of
downstream crossing work, and so it is important to consider the
tradeoffs between available work resources and uniqueness of re-
combinant haplotypes.

High marker density is needed to capture the highly recom-
bined genomes of MAGIC RILs. We used the PRHR as a measure
of how well the markers capture recombinant haplotypes. PRHRs
in the five analyzed datasets correlate well with the marker den-
sity. Even with the high marker density in wheat-UK16, the PRHR
is only 0.799 (Table 1), which suggests that one-fifth of the recom-
binant haplotypes is still missing. Some explanations include the
sparser marker density in the D-genomes, uneven marker density
along the genomes and segregation distortions of the founder
genomes. To generalize the relationship between marker density
and recombinant haplotypes further, our simulation results
showed that marker distance of 0.80 cM or less is sufficient to re-
cover over three-quarters of the recombinant haplotypes. Despite
the results from actual datasets being less optimistic than the
results from simulation, the importance of high marker density
in MAGIC populations still holds.

Given that the advantages and disadvantages of different

MAGIC population designs are largely unexplored, the

“magicdesign” package serves as an important tool to create and

test different designs. Specifically, “magicdesign” provides the op-

portunity to evaluate the options before committing to years of

effort in constructing MAGIC populations. In our examples, an

additional selfing generation offers a simple path to improve-

ment (Figures 6 and 7), especially in inbreeding species. When

used in combination with speed breeding (Watson et al. 2018), the

additional time due to selfing can be minimized. In addition,

“magicdesign” also acts as a bridging tool for researchers who are

new to MAGIC populations by providing a starting point to creat-

ing a MAGIC population. The opportunity to create and test dif-

ferent designs will encourage innovation in MAGIC population

designs rather than relying on previously used designs.
While the initial version of “magicdesign” package involves sim-

ulations with relatively simple parameters, we intend to expand

the package scopes to cover broader biological aspects that are rel-

evant to MAGIC. For example, the recombination landscape is gen-

erally perceived to be uneven (Petes 2001) and it will be useful to

consider recombination hot and cold spots. Gene density varies

along the genome and may need to be accounted for in MAGIC

simulation, although noncoding and unannotated regions cannot

be discounted too given their biological importance (Jiang 2015).

Founder diversity was previously shown to be important in MAGIC

population design (Ladejobi et al. 2016). Currently, this feature is

not available in “magicdesign” and will be considered as a priority

for subsequent versions. Overall, “magicdesign” is a valuable re-

source for unifying the process of creating and testing MAGIC pop-

ulation designs, and providing the flexibility for additional features

to be included in future updates as the package grows with users’

feedback and research demands.

Data availability
The MAGIC datasets used in this work were sourced from www.

niab.com/research/agricultural-crop-research/resources/niab-

magic-population-resources (wheat-UK8), doi:10.1186/s12864-

018-4915-3 (wheat-DE8), doi:10.1111/tpj.13827 (cowpea),

doi:10.1111/pbi.12282 (tomato), and mtweb.cs.ucl.ac.uk/mus/

www/MAGICdiverse/(wheat-UK16). Links to source datasets

without DOI were last accessed on April 13, 2021 and have been

archived at web.archive.org on the same day.
The “magicdesign” package and its installation instructions are

available for download at github.com/cjyang-sruc/magicdesign.

Detailed instructions are available at cjyang-sruc.github.io/

magicdesign_vignette. The Shiny app “magicdesignee” can be

found at magicdesign.shinyapps.io/magicdesignee/. R scripts

used in all analyses can be found at cjyang-sruc.github.io/files/

magicdesign_analysis.R.
Supplementary materials available online at G3.
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