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Abstract

We analysed the 16S rRNA gene diversity within the bacterioplankton community in the water column of the
ornamental fish Pterophyllum scalare and Archocentrus nigrofasciatus aquaria during a 60-day growth experiment in
order to detect any dominant bacterial species and their possible association with the rearing organisms. The basic
physical and chemical parameters remained stable but the bacterial community at 0, 30 and 60 days showed
marked differences in bacterial cell abundance and diversity. We found high species richness but no dominant
phylotypes were detected. Only few of the phylotypes were found in more than one time point per treatment and
always with low relative abundance. The majority of the common phylotypes belonged to the Proteobacteria
phylum and were closely related to Acinetobacter junii, Pseudomonas sp., Nevskia ramosa, Vogesella perlucida,
Chitinomonas taiwanensis, Acidovorax sp., Pelomonas saccharophila and the rest belonged to the α-Proteobacteria,
Bacteroidetes, Actinobacteria, candidate division OP11 and one unaffiliated group. Several of these phylotypes were
closely related to known taxa including Sphingopyxis chilensis, Flexibacter aurantiacus subsp. excathedrus and
Mycobacterium sp. Despite the high phylogenetic diversity most of the inferred ecophysiological roles of the found
phylotypes are related to nitrogen metabolism, a key process for fish aquaria.
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Introduction
The spatial and temporal distribution of organisms is
considered one of the first and most important steps in
understanding the distribution of life on the planet. More
specifically, knowledge of the distribution of multiple spe-
cies in time and space within a shared habitat is valuable
for understanding how an ecosystem functions (Konopka,
2009). For example, a stable microbial community struc-
ture is considered to be a critical factor for ecosystem re-
silience after disturbances and along biogeochemical cycles
of elements and materials (Torsvik and Øvreås, 2002;
Ramond et al. 2012). In microbial habitats, i.e., where
microbes are the sole living organisms or hold the key
ecophysiological roles, the changes in community structure
are even more important. It is known that under stable
conditions a few bacterial phylotypes are expected to dom-
inate and/or few alterations in community structure occur

until some environmental perturbations take place (Øvreås
and Curtis, 2011). Despite intensive studies into the
bacterioplankton community structure in natural marine
and freshwater habitats (Bomberg et al. 2008; Kirchman,
2008; Barberan and Casamayor, 2010; Newton et al., 2011)
and the use of artificial controlled systems for studying mi-
crobial community dynamics (e.g. Massana et al. 2001),
engineered systems, e.g., fish aquaria, have been understud-
ied regarding their bacterioplankton dynamics.
Little is known about the bacterioplankton communi-

ties’ structure and dynamics in ornamental fish aquaria.
Most of the studies that have been conducted have fo-
cused either on the isolation of bacteria from fish tissues
(e.g., Beran et al. 2006) or biofilters in the aquaria (Hovanec
and DeLong, 1996; Burrel et al. 2001; Grommen et al. 2005;
Sugita et al. 2005; Sauder et al. 2011). However, these
systems harbour interesting bacterial communities that
might contain antibiotic-resistant strains as a result of the
water treatment process during commercial transportation
of the fish (Trust and Whitby, 1976). Regarding the two
species we examined, i.e. Pterophyllum scalare and
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Archocentrus nigrofasciatus, it is known that P. scalare
is susceptible to mycobacteriosis (Lescenko et al. 2003),
although mycobacteria are found in healthy fish as well
(Beran et al. 2006). These two species are among the most
popular species in the global ornamental fish market. Both
cichlid species are omnivorous (Garcia-Ulloa and Gomez-
Romero, 2005; Bernstein, 1980), carnivorous (Degani,
1993) and saprotrophs/detrivores (Crampton, 2008).
Small glass aquaria with recirculating systems that allow

control of environmental conditions, disease, feeding and
stocking densities are used to rear freshwater ornamental
fish. However, food and water quality are among the most
important factors shown to affect the growth of ornamen-
tal fish and optimal culture methods and techniques for
current commonly traded and cultured species are still
needed. There are 1300–2000 cichlid species worldwide
that utilize various dietary sources and vary greatly in
their dietary requirements (Knop and Moorhead, 2012).
P. scalare and A. nigrofasciatus consume plankton, mos-
quito larvae, crustaceans (copepods), plants and worms
(Soriano-Salazar and Hernadez-Ocampo, 2002). Under
captivity in aquaria conditions, their feeding up to the lar-
vae stage is restricted to macrozooplankton organisms
such as Daphnia, Moina and Αrtemia nauplii (Lim and
Wong, 1997). Artificial diets are also used, most frequently
as flakes or pellets (Luna-Figueroa et al. 2000).
As a side project of a broader study on growth and

food consumption of the freshwater ornamental fish
Pterophyllum scalare and Archocentrus nigrofasciatus,
we investigated the changes in bacterioplankton species
composition during a 60 day growth experiment of the
two species. We monitored the bacterial 16S rRNA gene
diversity in order to elucidate whether (a) any dominant
Bacteria can be found and (b) there are bacterial species
that persist in the tanks. We chose the two tropical
Cichlidae species as they have similar rearing conditions
and, based on our previous expriments, they have similar
growth rates despite their differences in food consumption.

Materials and methods
Rearing conditions
The rearing experiments were conducted at the laboratory
of aquaculture and fisheries in the Technological Education
Institution in Mesolongi, in Greece. Larvae were hatched
from ovigerous females that had been grown in the labora-
tory under captivity. They were fed ad libitum, Artemia
nauplii, (JBL Artemio Pur type, Germany) Cyclops and
Daphnia (Ocean nutrition, Belgium) (Sorgeloos et al. 1986)
for ten days and then with appropriately sized pellets and
flakes containing 42% protein until day 30. A group of 20
chosen angelfish (P. scalare, 1.10 ± 0.5 g mean initial
wet weight) and 20 convict cichlids (A. nigrofasciatus,
1.11 ± 0.11 g mean initial wet weight) were selected and
transferred to four glass aquaria (10 fish per rearing units).

Growth took place in 45 l glass aquaria (41 × 36 × 30.5 cm)
filled with fresh water and with an independent recircu-
lation system. The growth experiments were set up as a
randomized complete block design with three blocks
containing one replicate of the six treatments. Each block
consisted of six 45 l glass aquaria (rearing tanks) with an
independent recirculation system. They were hand fed 5%
of their body weight three times per day for a period of 60
days with a commercial diet consisting of pellets and
flakes. The feeding rate was adjusted every two weeks. The
tanks were cleaned and uneaten food was removed every
day. The fish weighed 2 g with no significant statistical
differences (P > 0.05) between their final weights at the
end of the trial.
During the trial, the water temperature was kept at 25°C

or 20°C, the optimal growth temperatures for P. scalare
and A. nigrofasciatus, respectively. Temperature was kept
stable throughout the growth period by using air-
conditioning and a stainless steel immersion heater
located in the head reservoir. A false perforated plastic
bottom was properly fitted in each aquarium and was
covered with 6.5 Kg of lava grain to act as a filter bed sub-
strate. The surface area of each filter bed was 1476 cm2.
The water was continuously recycled through the filter
bed using an air-lift pump with an adjusted flow of 5118
ml min-1 to yield a filtration speed of 3.88 cm min-1. The
tanks were left for 24 hours in order to allow traces of
chlorine in the tap water to be removed. One to two days
after that, ca. 50 × 106 nitrifying and denitrifying cells
(Biodigest Probio, France) were added. The addition of
these cells is expected to be low compared to the existing
cell counts. The addition in the first three days of 50 × 106

cells in 45 l of waters equals ca. 1,111 cells ml-1. On day 2
the bacterial abundance was between ca. 2.4 and 5.3 × 106

cells ml-1 and on day 5 it was ca. 1.2 and 4.3 × 106 cells
ml-1, which renders the introduced 1,111 cells rather neg-
ligible. The tanks were sterilised at the start of the experi-
ment, however, the observed cell counts were due to the
aged tap water used for these rearing experiments.
An amount of 0.2 g solid NH4Cl was then dissolved in

each aquarium to serve as the ammonia source (Vlahos
et al. 2004). Approximately 10% of the water in each tank
was replaced every day with fresh tap water. The aquaria
were subjected to a photoperiod of 12 h:12 h light:dark,
and the starting pH was 7.8 – 8.0. The concentrations of
nitrate, nitrite and ammonia were measured every two or
three days spectrophotometrically by using commercial
kits (Hach Lange, USA). The dissolved oxygen concen-
trations and pH were measured with an HQ 40d multi-
probe (Hach Lange, USA).

Bacterial abundance and diversity
Bacterial cell abundance and 16S rRNA diversity were
investigated at the beginning (0d), middle (30d) and end
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(60d) of the rearing period for each species from one tank
for each of the species. To investigate the bacterioplankton
diversity, we sampled only from one tank for each species
in order not to disturb the major rearing experiment
(e.g. water level reduction, possible water tank contamin-
ation from handling, etc.) which could mask the fish
growth results. From each rearing tank, 50 ml of water was
fixed with 2% formaldehyde final concentration and kept at
4°C in the dark. A subsample of 10–15 ml was filtered on
black Nuclepore filters (pore size of 0.2 μm) and stained
with DAPI (4',6-diamidino-2-phenylindole). After mounting
the filters on glass slides, the cells were counted on an
Axiostar (Zeiss) epifluorescence microscope at 1,000 ×
magnification (Porter and Feig, 1980). DAPI counts were
counted thrice for every sampling time point from the same
tank and the coefficient of variation was always less than
10% (data not shown). In parallel, 1–2 l of water was
filtered on 47 mm diameter 0.2 μm pore-size polycarbonate
filters of (Millipore, USA) under low vacuum pressure
(≤150 mm Hg) and the filters were stored at −80°C. DNA
was extracted using the UltraClean Soil DNA isolation kit
(MoBio Laboratories, USA) according to the manufac-
turer’s protocol after slicing the filters with a sterile scal-
pel. DNA concentrations ranged from 7.6 – 17.8 ng μl-1

(A260/A280 ratios 1.87-2.13). Bacterial 16S rDNA was
amplified using the bacterial primers GM3 (5′- AGAGT
TTGATCMTGGC-3′) (Muyzer et al., 1995) and 1390r
(5′-TGTACACACCGCCCGTC-3′) or GM4 (5′-TACCTT
GTTACGACTT-3′) (Lane at al., 1991). The PCR included
an initial denaturation step at 94°C for 1 min followed by
25 to 29 cycles consisting of denaturing at 94°C for 45 s,
annealing at 44°C for 45 s, and elongating at 72°C for
2 min with a final 7-min elongation step at 72°C after the
final cycle. The number of cycles was determined for each
sample after cycle optimisation. PCRs were repeated with
different cycle numbers, and the lowest number of cycles
that gave a positive signal was then used for cloning and
sequencing in order to avoid differential representation of
the 16S rDNA genes with low and high copy numbers
(Spiegelman et al., 2005).
Polymerase chain reaction products were visualized

on a 1% agarose gel under ultraviolet light, the bands
were excised, and the PCR products were extracted
with the PureLink Quick Gel Extraction Kit (Invitrogen
Corporation, USA) following the manufacturer’s protocol.
The PCR products were cloned using the TOPO TA for
sequencing cloning kit (Invitrogen Corporation, USA) and
electrocompetent cells according to the manufacturer’s
specifications. For each sample and each gene, randomly
picked clones with inserts of the expected length were
analysed. Clones were grown in liquid LB medium with
kanamycin and their plasmids were purified using the
NucleoSpin Plasmid QuickPure kit (Macherey-Nagel
GmbH & Co. KG, Germany) for DNA sequencing.

Sequencing and phylogenetic analysis
Sequence data were obtained by Macrogen Inc. (South
Korea) using capillary electrophoresis and the BigDye
Terminator kit (Applied Biosystems Inc., USA) with the
primers M13F (−20) and M13R. Each sequence read was
approximately 900 bp, and for each individual clone, for-
ward and reverse reads were assembled. Chimeric sequen-
ces were checked by comparing neighbour-joining trees
made of the first and second halves of all sequences.
Sequences with different groupings between the first and
second halves were then checked using the Pintail program
(http://www.bioinformatics-toolkit.org/Web-Pintail/).
The closest relatives for all retrieved sequences were

determined by comparison using the BLAST function
(http://www.ncbi.nlm.nih.gov/ BLAST/). Automatic align-
ment against sequences from their closest relatives was
performed using SILVA (http://www.arb-silva.de/aligner/).
Phylotypes were defined as sequences showing ≥98% hom-
ology to each other. Phylogenetic trees were constructed
by the neighbour-joining method using the Jukes-Cantor
correction. Bootstrap analyses for 1000 replicates were
performed to assign confidence levels to the tree topology
using the MEGA4 software (Tamura et al., 2007). The
sequences of unique phylotypes found in this study have
GenBank numbers JX105530 - JX105733.
The clone library coverage was calculated using the

equation C = [1 - (ni/N)]x100, where ni is the number of
phylotypes and N is the number of 16S rRNA sequences
examined (Good, 1953; Kemp and Aller, 2004).

Results
Physical and chemical parameters
Temperature remained stable at the desired values
throughout the rearing periods for both species. Al-
though the concentrations of dissolved oxygen (Figure 1)
showed different fluctuation patterns for the two rea-
ring treatment (8.1 – 8.3 and 8.2 – 8.8 mg l-1 for A.
nigrofasciatus and P. scalare, respectively), no limiting
concentrations were detected. Variations in the pH
(Figure 1) were also different, especially after the first 10
days (7.0 – 7.7 and 6.5 – 7.8 for A. nigrofasciatus and P.
scalare, respectively). Phosphate levels (Figure 1) showed
little variation (0.000 – 0.001 μM) for both species, but the
highest values were obtained at different time points for
the two species. Regarding nitrogen-containing nutrients
(Figure 1), no ammonia was detected after the first six to
eight days of the experiment but nitrate levels increased
after this time point.

Bacterial abundance and diversity
The water column cell counts increased until the end of
the rearing period for both species (Figure 1). The initial
cell abundance was comparable in both treatments (0.5
and 0.8 × 106 cells ml-1 for A. nigrofasciatus and P. scalare,
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respectively) and was followed by an initial decrease in the
P. scalare tanks. At the end of the experiment, the bacterial
cell abundance reached 2.9 × 106 and 1.2 × 106 cells ml-1

for A. nigrofasciatus and P. scalare, respectively.
For each clone library we analysed 41–72 clones, which

corresponded to 21 – 50 unique phylotypes (Figure 2).
The level of clone coverage showed that the estimated
species richness of the samples is high (Additional file 1:
Figure S1). This, along with the lack of any dominant
phylotype (i.e., the most abundant phylotypes reached 8.6%
and 13.9% for A. nigrofasciatus and P. scalare, respectively)
and the numerous singletons or doubletons, suggest the
presence of highly diverse communities that have not been
fully revealed using the current methodology.
In both treatments, the highest number of phylotypes

occurred at 0day but the lowest occurred at 60days and
30days for A. nigrofasciatus and P. scalare, respectively
For each treatment, only two to six phylotypes were
found in more than one clone library (Figure 2) but their
relative abundance was low in most cases. For A. nigro-
fasciatus, phylotype T0-An-20C-58 occurred at all three
time points, but no common phylotypes were detected
for P. scalare between 30 days and 60 days. No common
phylotypes were found to dominate any of the sampling
points in each of the aquaria (Additional file 1: Table S1).
There were no common phylotypes identified between the
aquaria of the two fish species.
The phylogenetic analysis of the common phylotypes

(Figure 3) revealed that the majority belonged to the
Proteobacteria. These proteobacterial phylotypes were
closely related to known taxa: Acinetobacter junii,
Pseudomonas sp., Nevskia ramosa, Vogesella perlucida,
Chitinomonas taiwanensis, Acidovorax sp., and Pelomonas
saccharophila. The rest of the phylotypes belonged to the
α-Proteobacteria, Bacteroidetes, Actinobacteria, candidate
divison OP11 and one unaffiliated group. A subset of these
phylotypes was closely related to known taxa including
Sphingopyxis chilensis, Flexibacter aurantiacus subsp.
excathedrus and Mycobacterium sp.
For both samples, the remaining phylotypes, occurred in

only one clone library (Additional; file 1: Figure S2, S3) and
belonged to the α-, β- γ- δ- and unaffiliated Proteobacteria,
Fusobacteria, Bacteroidetes, Actinobacteria, Firmicutes
and unaffiliated phyla. In the A. nigrofasciatus samples,
phylotypes belonging to the Deinococcus-Themus,
Planctomycetes, Verrucomicrobia phyla and some
plastid-related clades were also found.

Figure 1 Temporal changes in (a) dissolved oxygen, (b) pH,
(c) phosphate, (d) nitrate, (e) ammonia/DIN and (f) bacterial
abundance (cells × 105 ml-1) in the water column of the rearing
tanks of Archocentrus nigrofasciatus and Pterophyllum scalare.
DIN: dissolved inorganic nitrogen, i.e. total concentrations of nitrate,
nitrite and ammonia.
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Discussion
In this study, we showed that the bacterial communities
developed in the water column under controlled rearing
conditions in two ornamental fish aquaria were charac-
terised by high species richness but low relative abun-
dance. The coverage of the clone libraries was low due to
the high number of rare species (i.e., species with ≤0.1%
relative abundance). In tapwater samples (e.g., Kormas
et al. 2010; Poitelon et al. 2010; Revetta et al. 2010)
or drinking water reservoirs (e.g., Simek et al. 2001;

Lymperopoulou et al. 2012) this quantity of sequences is
adequate to illustrate the dominant members of the bac-
terial community. In our study, the coverage was only sat-
isfactory for the 60days in the A. nigrofasciatus sample
(Additional file 1: Figure S1), however, there were still no
dominant phylotypes revealed.
Of all the measured parameters, pH and nitrate

showed such fluctuating patterns that could affect the
bacterial species community structure. The pH varied
markedly for A. nigrofasciatus but not for P. scalare at
the three sampling points. Nitrate showed the opposite
pattern. Nitrate levels in P. scalare peaked on day 30
and then fell to almost half this value at day 60. For A.
nigrofasciatus, no clear peak occurred and the nitrate
levels never reached the ones for P. scalare. Despite
these differences, both treatments showed little overlap-
ping phylotypes between sampling points, rendering
their presence independent from the changes of these
parameters or at least with a time lag which was not
detected at the 30 day intervals used in this study.
Nitrification must have been taking place in both

treatments because ammonia was not detectable after
the first six to eight days, and after that, nitrogen
increased until the end of the experiment. Because ni-
trate and phosphate are considered major limiting
factors for the growth of microorganisms in the aquatic
environment, it is possible that the increased nitrate
concentrations could sustain the observed increasing cell
abundance until the end of the experiment while
favouring, thus, the dominance of some nitrate reducers.
Phosphate is also expected to be turned over fast i.e., it
is used immediately which is why its levels remained
below the detection limit.
It has recently been suggested that although the bac-

terial diversity and community structure can be highly
variable between two communities, the functional re-
dundancy of these different species can be high (Burke
et al. 2011). Although there was no clear dominance of
specific phylotypes in the current study, most of the
common phylotypes were closely related to species that
reduce nitrate reduction, most likely as a result of the
increased nitrate concentrations after the first days of
the experiment. Phylotype T0-An-20C-76 is closely
related to Nevskia ramosa. This species grows optimally
at 20 – 25°C (Brenner et al. 2005) at air-freshwater
interfaces (Pladdies et al. 2004) or in drinking water
biofilms (Keinänen-Toivola et al. 2006). Another phylo-
type (T30-Ps-25C-52) is a Vogesella perlucida-like bac-
terium that can perform nitrate reduction at 4–45°C,
with 0–2% NaCl and at pH 7–9 (optimal growth at
30°C, 0.5% NaCl and pH 7.5) (Chou et al. 2008).
Phylotype T0-An-20C-39 is related to Burkholderia
cepacia, a species known to fix N2 but also a possible
pathogen causing cystic fibrosis (Brenner et al. 2005).

Figure 2 Venn diagrams of the common phylotypes occurring
in the water column of the rearing tanks of Archocentrus
nigrofasciatus and Pterophyllum scalare at the beginning (t0d),
middle (t30d) and the end (t60d) of the growth period.
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Figure 3 (See legend on next page.)
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Phylotype T0-An-20C-39 has been found only in the pos-
terior gut of semi-intensively cultured tilapia, Oreochromis
niloticus (Molinari et al. 2003), and the Chilean freshwater-
farmed Atlantic salmon (Miranda and Zemelman 2002),
but it has been suggested to be involved in fish pathogen-
icity (e.g., catfish Clarias gariepinus fingerlinks, Nzeako
et al. 2001). Consequently, it is very likely that this phylo-
type originated from the fish intestine suggesting that fish
aquaria are sources of faecal microbes. However, its natural
occurrence cannot be excluded as it also occurs in natural
streams (Santmire and Leff 2006) and has been positively
correlated to nitrate concentrations (Olapade et al. 2005).
Thus, phylotype T0-An-20C-39 could contribute to the ni-
trification of the tank. Phylotype T30-Ps-25C-22 is related
to Pelomonas saccharophila (Xie and Yokota 2005) and is
also a potential nitrate reducer, along with T30-Ps-25C-5,
an Acidovorax sp. group that contains denitrifiers (Brenner
et al. 2005). Phylotype T0-An-20C-6 is most likely a
Flexibacter aurianticus, which known to grow at 10-25°C
and can reduce nitrate to nitrite (Brenner et al. 2005). The
Sphingopyxis (synonymous with Sphingomonas)-like phylo-
type T0-An-20C-6 is also a known nitrate reducer (Godoy
et al. 2003).
Bacterial abundance continued to increase until the

end of the experiment due to the lack of considerable
grazing pressure (Sherr and Sherr, 2002) evidenced by
our failure to observe any nanoflagellates (i.e., always
below detection limit) (Kormas, unpublished data). In
batch (closed) cultures, the increase in bacterial cell
numbers is usually attributed to few dominant species,
but this was not the case in our study. Not only were
there no dominant species, but very few of the ones that
existed at day 30 and day 0 appeared in day 60 and high
numbers of rare phylotypes were found.
Usually, high numbers of rare phylotypes are expected in

more variable environments (Reid and Buckley, 2011). This
number is decreased with the concomitant dominance of a
few taxa in more stable habitats with less prominent
changes in their prevailing conditions (Øvreås and Curtis,
2011). Possible ecophysiological mechanisms that may re-
tain a high number of rare taxa include the following: (a)
low metabolic or growth rates, (b) antagonism/allelopathy,
(c) balance between growth and removal rates and (d)
specialization in substrates or habitats (Pedrós-Alió, 2012).
Regarding the metabolic rates of the inferred phylogenies,
the prevailing conditions (i.e., temperature, pH, salinity) in
the tanks fall in the range required by most of the common

phylotypes (see above). Antagonism in the bacterio-
plankton of the tanks is expected to be high, and this
could cause a lack of dominant phylotypes. Because we
used closed systems, no new species could be introduced.
However, the tanks were not isolated from the air and air-
borne bacteria could be introduced in the tanks, although
their successful establishment remains doubtful and un-
known. Top-down control was negligible as we did not ob-
serve any bacterial grazers, i.e. heterotrophic nanoflagellates
or larger protozoa (Kormas, personal observations), but the
effect of viral infection and lysis cannot be ruled out
(Wommack and Colwell, 2000). The remaining factor that
could cause ever-changing conditions in the water column
of the tank is the quality and quantity of carbon sources.
Carbon substrates are expected to originate from aquafeed
leftovers and excretions from fish. The quality, quantity and
lability of excreted carbon from fish, currently is not well
known and this carbon pool remains a black box. Never-
theless, the production rate of dissolved and particulate ni-
trogenous waste by farmed salmon has been estimated
(Davies 2000; Mente et al., 2006). Recently, the high or low
sea bream (Sparus aurata) density in aquaculture cages
was suggested to cause significant differences in bacterial
cell numbers in response to higher or lower amounts of
excreted material from the fish (Mente et al., 2012). The de-
velopment of commercial rearing facilities that are in line
with advances in research for optimal culture conditions
will facilitate the further growth of sustainable ornamental
aquaculture.

Additional files

Additional file 1: Table S1. Changes in the relative abundance of the
water column common phylotypes, at 0, 30 and 60 days, between
samplings in the Archocentrus nigrofasciatus and Pterophyllum scalare
rearing tanks. Figure S1. Bacteria clone library coverage based on Good’s
C estimator from the water of Archocentrus nigrofasciatus and
Pterophyllum scalare rearing tanks at the beginning (0 d) middle (30 d)
and end (60 d) of the growth experiment. Figure S2. Phylogenetic tree
of the Bacteria 16S rRNA gene phylotypes (ca. 1,500 bp, 1013 positions),
excluding the ones that were found in more than one clone library, in
the water column of Archocentrus nigrofasciatus rearing tank. The tree
was based on the neighbour-joining method as determined by distance
using Kimura’s two-parameter correction. Numbers of identical (≥98%
sequence similarity) phylotypes of the total phylotype number in sample
are shown in parentheses. One thousand bootstrap analyses (distance)
were conducted, and percentages ≥50% are indicated at nodes.
Numbers in brackets are GenBank accession numbers. Scale bar
represents 2% estimated distance. Figure S3. Phylogenetic tree of the
Bacteria 16S rRNA gene phylotypes (ca. 1,500 bp, 1013 positions),
excluding the ones that were found in more than one clone library, in

(See figure on previous page.)
Figure 3 Phylogenetic tree of the common Bacteria (in bold) occurring in the water column of the rearing tanks of Archocentrus
nigrofasciatus and Pterophyllum scalare at the beginning (0d), middle (30d) and the end (60d) of the growth period. The tree of the
Bacteria 16S rRNA gene phylotypes (ca. 1,500 bp, 1013 positions) was based on the neighbour-joining method as determined by distance using
Kimura’s two-parameter correction. One thousand bootstrap analyses (distance) were conducted, and percentages ≥50% are indicated at nodes.
Numbers in brackets are GenBank accession numbers. Scale bar represents 2% estimated distance.
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the water column of Pterophyllum scalare rearing tank. The tree was
based on the neighbour-joining method as determined by distance
using Kimura’s two-parameter correction. Numbers of identical (≥98%
sequence similarity) phylotypes of the total phylotype number in sample
are shown in parentheses. One thousand bootstrap analyses (distance)
were conducted, and percentages ≥50% are indicated at nodes.
Numbers in brackets are GenBank accession numbers. Scale bar
represents 2% estimated distance.
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