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As amember of the death-associated protein kinase family of serine/threonine kinases, the
STK17B has been associated with diverse diseases such as hepatocellular carcinoma.
However, the conformational dynamics of the phosphate-binding loop (P-loop) in the
determination of inhibitor selectivity profile to the STK17B are less understood. Here, a
multi-microsecond length molecular dynamics (MD) simulation of STK17B in the three
different states (ligand-free, ADP-bound, and ligand-bound states) was carried out to
uncover the conformational plasticity of the P-loop. Together with the analyses of principal
component analysis, cross-correlation and generalized correlation motions, secondary
structural analysis, and community network analysis, the conformational dynamics of the
P-loop in the different states were revealed, in which the P-loop flipped into the ADP-
binding site upon the inhibitor binding and interacted with the inhibitor and the C-lobe,
strengthened the communication between the N- and C-lobes. These resulting
interactions contributed to inhibitor selectivity profile to the STK17B. Our results may
advance our understanding of kinase inhibitor selectivity and offer possible implications for
the design of highly selective inhibitors for other protein kinases.
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INTRODUCTION

Protein kinases transfer the γ-phosphate group of ATP to serine, threonine, or tyrosine residues of
their substate proteins. This physiological process is also called as phosphorylation. Protein
phosphorylation provokes cellular signal transduction cascades associated with cell
differentiation, growth, homeostasis, and death (Pearce et al., 2010). Aberrant protein kinase
function by either activating mutations or translocations is related with numerous disease states,
including cancer, Alzheimer disease, Parkinson’s disease, inflammation, and metabolic disease
(Attwood et al., 2021; Cohen et al., 2021). Protein kinase are thus important therapeutic targets for
drug discovery. Until now, 71 small-molecule kinase inhibitors have been approved by the FDA in
the treatment of cancer and other diseases (Roskoski, 2021).
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Despite the inspiring clinical benefits, kinase inhibitors are still
encountered an unsurmountable challenge hallmarked by kinase
selectivity profile. This is because that the vast majority of protein
kinase inhibitors bind to the conserved ATP-binding site, leading
to the poor selectivity of kinase inhibitors towards a unique kinase
(Wu et al., 2015; Chen et al., 2020; Li C. et al., 2020). For example,
Davis et al. (2011) have previously explored the interaction of 72
kinase inhibitors with 442 kinases representing >80% of the
human catalytic protein kimome and found that the kinase
inhibitor selectivity profile is relatively narrow, with 10%–40%
of inhibitors interacting with >60% of kinases, and each inhibitor
interacting with more than one kinase. Therefore, developing a
promising strategy to discover highly selective inhibitors is an
area of intensive research in kinase kinome (Lu et al., 2018, Lu
et al., 2019a; Lu and Zhang, 2019).

To achieve inhibitor selectivity, several successful strategies
have been reported. Covalent kinase inhibitors are a class of
compounds that harbour a reactive, electrophilic warhead,
reacting with a nucleophilic cysteine residue at the target site
and then forming a stable covalent adduct (Nussinov and Tsai,
2015; Lu and Zhang, 2017; Ni et al., 2020). These covalent
inhibitors have pharmacological advantages of high potency
and selectivity. For instance, in the double mutant T790M/
L858R epidermal growth factor receptor (EGFR), the FDA-
approved Osimertinib engages with Cys797 at the ATP-
binding site through a covalent bond (Jia et al., 2016;
Nussinov et al., 2022). However, in the ATP-binding site, the
availability of cysteine residues at the proper position is scarce for
most of kinases, rendering the design of covalent inhibitors
remaining a challenging task.

Harnessing the sequence differences of ATP-binding site that
control inhibitor selectivity has emerged as an alternative. One
quintessential example is STK17B, a member of the death-
associated protein kinase family of serine/threonine kinases
(Pearce et al., 2010). Overexpression of STK17B plays a crucial

role in hepatocellular carcinoma and thus, inhibition of STK17B
catalytic activity in cells implies clinical utility in the treatment of
this malignancy (Lan et al., 2018). The crystal structure of ADP-
bound STK17B contains a small N-lobe and a large C-lobe
(Figure 1A). The N-lobe is mainly consisted of five β-strands
and one catalytic helix αC. The phosphate-binding loop (P-loop)
connecting the β1 to the β2 adopts a “U” shape. The C-lobe is
largely constituted by helices. The activation loop (A-loop) that
control catalytic activity runs along the substrate binding groove.
The flexible hinge domain connects the N-lobe to the C-lobe.
ADP binds to the cleft between the two lobes located under the
P-loop. There are several reported STK17B inhibitors, including
quercetin 1, dovitinib 2, and benzofuranone 3 (Supplementary
Figure S1). However, these are non-selective or modest selective
inhibitors toward STK17B. Recently, Picado et al. (2020) reported
a cell active STK17B inhibitor, thieno[3,2-d] pyrimidine PFE-
PKIS 43 (Figure 1B), which had remarkable potency and
selectivity toward STK17B against other homologous protein
kinases. A crystal structure of PFE-PKIS 43 complexed with
STK17B highlights a unique P-loop flip that interacts with the
inhibitor. In addition to the crystal structure of STK17B−PEF-
PRIS 43 complex, there are five co-crystal structures of STK17B in
complex with different inhibitors previously reported, including
EBD (PDB ID: 3LMO), quercetin (PDB ID: 3LM5), UNC-AP-194
probe (PDB ID: 6Y6H), AP-229 (PDB ID: 6ZJF), and dovitinib
(PDB ID: 7AKG). Structural superimposition of the five co-
crystal structures shows that the P-loop conformation in these
structures adopts the ordered β-strands (Supplementary Figure
S2), which is different from that in the crystal structure of
STK17B−PEF-PRIS 43 complex. However, the conformational
dynamics of the P-loop in the STK17B−PEF-PRIS 43 complex
remain unexplored.

Here, we performed a multi-microsecond length molecular
dynamics (MD) simulation of STK17B in the ligand-free, ADP-
bound, or ligand-bound states, to characterize the conformational

FIGURE 1 | Cartoon representation of STK17B in complex with ADP (PDB ID: 6QF4) (A) and the inhibitor PFE-PKIS 43 (PDB ID: 6Y6F) (B). The secondary
structural elements of α-helices and β-strands are colored by red and cyan, respectively. The loop including the phosphate-binding loop (P-loop) and the activation loop
(A-loop) is colored by gray. The hinge domain is colored by green. ADP and inhibitor are depicted by stick representation. Mg2+ ion is shown by a green sphere. (C)
Chemical structure of the inhibitor PFE-PKIS 43.
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plasticity of the P-loop and its interplay with the ligand over long
time-scales. We collected an overall simulated trajectories of
27 μs, which were conducted in multiple replicates in different
states. Coupled with the analyses of principal component analysis
(PCA), cross-correlation and generalized correlation motions,
secondary structural elements, and community networks, the
distinct conformational dynamics of the P-loop in the
different states were presented. Our results will advance our
understanding of kinase inhibitor selectivity and provide hits
for the design of selective inhibitors for other protein kinases.

RESULTS AND DISCUSSION

System Stability
Based on the available X-ray crystal structures of STK17B, we
collected conformational ensembles of μs-length MD
simulations. We simulated STK17B in various states
(i.e., ligand-free, ATP-bound, or ligand-bound) to explore
differences and similarities during MD simulations. For each
system, MD simulations were performed in explicit water
environment, collecting multiple μs-length trajectories (i.e., 3
replicates of 3 μs each) and yielding a total of sampling of
27 μs. Such a multiple and independent μs-length MD
trajectory has been proved efficient for investigating the
interdependent conformational plasticity of the kinase
domains (i.e., P-loop and A-loop) and their interactions with
the ADP or the ligand (Lu et al., 2019b; Zhang et al., 2019; Lu
et al., 2021a; Lu et al., 2021b; Maloney et al., 2021; Ni et al., 2021;
Hu et al., 2022).

We first monitored the root mean square deviation (RMSD) of
the kinase Cα atoms averaged over three replicates for each
system. As shown in Supplementary Figure S3, the kinase
backbone reached a similar stability in the apo (ligand-free),
ADP-bound, and ligand-bound states (i.e., the RMSD reaches
1–1.5 Å). This suggested that upon ADP or ligand binding, the
overall stability of the kinase has no significant conformational
differences during the simulations.

Coupled Motions of Kinase Intradomains
The dynamic correlation analysis was carried out to probe the
interdependent dynamics among different kinase domains. Two
distinct methods, including the traditional Pearson cross-
correlation (CCij) and the generalized correlation (GCij), were
used to calculate the correlation analysis (Shibata et al., 2020;
Liang et al., 2021; Zhang et al., 2022a), which was conducted and
averaged over all MD trajectories. The CCij analysis describes the
collinear correlation between the two residue Cα atoms (i and j),
reflecting whether they move in the correlated motions (CCij > 0)
or in the anti-correlated (CCij < 0) motions. The GCij analysis
monitors the degree of correlation between the two residue Cα
atoms (i and j), reflecting how much information of one atom’s
positions is provided by that of another atom. The GCij analysis
cannot identify correlated or anticorrelated motions of the two
atoms, ignoring the elucidation of atom’s motions.

The CCij matrix of STK17B that is represented by a two-by-
two plot of the Cα CCij coefficients reveals a conserved pattern of

correlated/anticorrelated motions in all apo, ADP-bound and
ligand-bound states (Figure 2). The N-lobe containing the P-loop
(residues 40–47) and C-lobe shows anticorrelated motions, which
is also observed on other protein kinases such as anaplastic
lymphoma kinase (ALK) (Liang et al., 2021), BCR-ABL
(Zhang et al., 2022a) and epidermal growth factor receptor
(EGFR) (Qiu et al., 2021). This suggests that the opposite
movement of the N- and C-lobes favours the “open or closed”
conformational transition of the nucleotide binding site
underlying ADP/ATP and substrate binding. In addition, the
difference matrix of ADP- and ligand-bound states using the apo
state as the reference indicates that the opposite movement of the
N- and C-lobes was stronger in the ADP-bound state than that in
the ligand-bound state (Supplementary Figure S4). The GCij
analysis was further used to unravel the global dependencies of
the protein kinase domain motions (Figure 3). Like the CCij
matrix, the GCij matrix of the STK17B in the apo, ADP-bound
and ligand-bound states showed a high degree of correlations
between the N-lobe and the C-lobe. However, the protein in the
ligand-bound system had a slightly higher correlations than that
in the ADP-bound and apo systems, which was further supported
by the difference matrix of ADP- and ligand-bound states using
the apo state as the reference (Supplementary Figure S5). This
result indicated that ligand binding induced an enhancedmotions
of protein kinase domains.

Local Motions and Conformational
Dynamics
In order to unravel the predominant collective motions of
different STK17B states and capture their essential degrees of
freedom, we conducted principal component analysis (PCA) of
STK17B in the apo, ADP-bound, and ligand-bound states. Based
on the PCA, the first two principal modes of motion
(i.e., principal components 1 and 2, PC1 and PC2) provide
information regarding to the large-amplitude motions of
different STK17B states, which represent their functional
dynamics (Masterson et al., 2011; Chen et al., 2019; Chen
et al., 2021; He et al., 2021; Okeke et al., 2021; Rehman et al.,
2021). In PCA, we selected all simulated trajectories for each
system and subjected to RMS-fit to the same initial structure to
rule out the translational and rotational motions of the protein.

As shown in Figure 4A, the apo protein sampled a confined
distribution of conformations. Addition of ADP largely changed
PC1, but did not change PC2 (Figure 4B), indicating that the
protein kinase had increased dynamics in response to ADP
binding. More remarkably, in the ligand-bound system
(Figure 4C), both PC1 and PC2 were enlarged compared to
the apo and ADP-bound systems. This observation suggested that
the ligand binding induced more enhanced conformational
dynamics of STK17B, which was consistent with the GCij
analysis. We further extracted the most represented
conformation from each cluster in the ligand-bound state
(L1–L3). As shown in Supplementary Figure S6, structural
overlapping of the three most represented conformations
showed that the P-loop and A-loop in the ligand-bound
STK17B underwent obvious conformational changes. Indeed,
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FIGURE 2 | The cross-correlation (CCij) matrix of STK17B for the apo (A), ADP-bound (B), and ligand-bound (C) systems. The correlated motions are colored by
violent (CCij > 0), while the anti-correlated motions are colored by cyan (CCij < 0). Color scales are shown at the right. The CCij values with an absolute correlation
coefficient of <0.4 are colored by white for clarity.

FIGURE 3 | The generalized correlation (GCij) matrix of STK17B for the apo (A), ADP-bound (B), and ligand-bound (C) systems. Color scales are shown at the right.

FIGURE 4 | The free energy landscape of the first and second principal components (PC1 and PC2) for the apo (A), ADP-bound (B), and ligand-bound (C)
systems. The unit of free-energy values is kcal/mol.
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previous MD simulations of protein kinase A (PKA) also
indicated that ligand binding induced global transitions in the
catalytic domain of PKA (Hyeon et al., 2009), supporting our MD
simulation results of ligand-bound STK17B.

The conformational landscapes of different STK17B states
based on the PCA results implied that STK17B was more
dynamics in the presence of ligand. To further validate this
hypothesis, the PC1 of the STK17B in the three different states
was visualized on the 3D structure (Figure 5). The red arrows
show the direction of residue motions, with the length
proportional to the intensity of the motion. Remarkably, the
ligand binding (Figure 5C) triggered more dynamic movement of
P-loop and A-loop than the apo (Figure 5A) and the ADP-bound
(Figure 5B) systems. For instance, no motion of the P-loop, but a
weak motion of the A-loop was observed in both the apo and
ADP-bound systems. In agreement with the PCA results, both the
P-loop and the A-loop of STK17B in the presence of ligand were
highly flexible, which may determine the selectivity profile of
ligand to the STK17B.

Secondary Structural Analysis of the
Phosphate-Binding Loop
To further reveal the different secondary structures of the P-loop
in the three different STK17B states, the defined secondary
structure of proteins (DSSP) (Lei et al., 2019) method was
used to analyse the secondary structural elements of residues
Tyr32−Ser55. Figure 6 shows the secondary structural profile of
residues Tyr32−Ser55 for the three systems. In both the apo
(Figure 6A) and ADP-bound (Figure 6B) systems, the residues
Ile33−Arg41 and Val46−Ile51 formed two extended strands (β1
and β2) and residues Gly42−Ala45 at the P-loop adopted the
bend conformation. These secondary structural elements of the
β1, P-loop and β2 in the apo and ADP-bound states are consistent
with the typical protein kinases at the corresponding position. In
sharp contrast, in the ligand-bound state (Figure 6C), the
secondary structural conformation of the β-strand in the
residues Ile33−Arg41 and Val46−Ile51 was disturbed,

especially the residues Ile33−Arg41 in the disordered
conformation. Together, DSSP results indicated that the
conformational changes of residues Ile33−Arg41 induced by
the ligand binding may have an important role in the control
of inhibitor selectivity to the STK17B.

Community Network Analysis
We next performed community network analysis to reveal the
altered community networks of STK17B in the apo, ADP-
bound, and ligand-bound states. The whole simulated
trajectories were selected for community network analysis.
The two Cα atoms within a cut-off distance of 4.5 Å that has
an occupation time >75% of simulation time were classified into
the same community (Sethi et al., 2009; Liang et al., 2020; Li
et al., 2021a; Foutch et al., 2021; Tian et al., 2021). Each
community was represented by coloured circles whose size is
related to the number of residues it includes. The strength of the
two communities was represented by the width of sticks that
connect inter-communities.

Figure 7 shows the communities of different STK18B states. In
the apo system (Figure 7A), there has nine communities. The
community 1 contains the P-loop, the helix αC, and the β3-β5.
The community 2 consists of the helix αD and the β6-β7. The
community 9 largely includes the A-loop. There was the existence
of strong connection between the community 1 and community 2
and between the community 1 and community 9. In contrast, the
communication between the community 1 and community 9 was
weak. This observation indicated that there was no information
flow between the P-loop and the A-loop in the apo system. In the
ADP-bound system (Figure 7B), the community 1 diminished,
which only consists of the helix αC. The sizes of the community 2
and community 9 in the ADP-bound system were similar to those
in the apo system. However, the information flow that connects
between the community 1 and community 2 and between the
community 1 and community 9 was markedly weaker in the
ADP-bound system than in the apo system. This indicated that
upon ADP binding to the STK17B, the inter-domain interaction
between the P-loop in the N-lobe and the helix αD in the C-lobe

FIGURE 5 | The motion of the first principal component (PC1) for the apo (A), ADP-bound (B), and ligand-bound (C) systems. The red arrows represent the
direction, with length proportional to the intensity of the motion.
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became weaken compared to the apo system. In the ligand-bound
system (Figure 7C), the community 1 was enlarged compared to
the ADP-bound systems, which was the same with the apo
system. The community 1 in the ligand-bound systems
consists of the P-loop, the helix αC, and the β3-β5. More
significantly, the communication between the community 1
and community 2 in the ligand-bound system was enhanced

compared to the ADP-bound system, with the strength
resembling to the apo system. This observation suggested that
upon ligand binding to the ADP-bound site, the information flow
between the P-loop in the N-lobe and the helix αD in the C-lobe
became stronger compared to the ADP-bound system. This
enhanced interactions between the two lobes may promote
inhibitor binding and selectivity to the STK17B.

FIGURE 6 | Secondary structural element analysis as a function of simulation time for residues Tyr32 to Ser52 in the apo (A), ADP-bound (B), and ligand-bound (C)
systems as calculated using the defined secondary structure of proteins (DSSP) method.
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Comparative Binding Modes
Community network analysis implied the strong interactions
between the N- and C-lobes in response to the ligand binding.
To further elucidate the conformational arrangement of the two
lobes of the protein kinase and the detailed interactions of ADP
and the ligand with the STK17B, the most representative
conformation of the STK17B-ligand and STK17B-ADP
complexes was obtained using the cluster analysis of the three
simulated trajectories (Liu et al., 2018; Xie et al., 2019). As shown
in Figure 8A, in the ligand-bound state, there was a significantly
disordered conformation of the P-loop, especially the β1, which
was in good agreement with the DSSP results. Owing to the

disordered P-loop conformation, the Arg41 at the β1 was flipped
into the ADP-binding site and formed hydrogen bonding or salt
bridge interactions with the residues Glu117 and Asn163 at the
C-lobe and the carboxylic acid of the ligand. The hydrogen
bonding occupation percentage was summarized in the
Supplementary Table S1. These interactions promoted the
strong communication between the N- and C-lobes, which
contributed to increase the selectivity profile of the ligand to
the STK17B. Simultaneously, the carboxylic acid of the ligand also
interacted with the catalytic residue Lys62 through a salt bridge.
Lys62 in turn formed salt bridge interactions with the Glu80 at
the helix αC. In addition, the N1 of the thieno[3,2-d]pyrimidine
formed a hydrogen bond with the amide backbone of Ala113 at
the hinge domain. In contrast, in the ADP-bound state
(Figure 8B), the β1 and β2 formed two anti-paralleled strands,
which was consistent with the DSSP results. Owing to the ordered
P-loop conformation, the Arg41 at the β1 was protruded into the
solvent and had no interactions with the C-lobe, which was
markedly different from that in the ligand-bound state. In the
hinge domain, the backbone of residues Glu111 and Ala113
formed two hydrogen bonds with the adenine moiety of ADP.
The hydrogen bonding occupation percentage was summarized
in the Supplementary Table S2. The catalytic residue Lys62
formed salt bridges with the α- and β-phosphate moieties of ADP
and the Mg2+ ion was coordinated with the α- and β-phosphate
moieties, the carboxylic moiety of Asp179, and the carbonyl
moiety of Asn163. Collectively, the comparative binding
modes of ADP and the ligand with the STK17B highlighted
that the unique p conformation induced by the ligand binding
played a determined role in the increased selectivity of the ligand
to the protein kinase. Given that the important role of the salt
bridge interactions between the carboxylic acid moiety of the
ligand and Arg41, it is advisable to retain the carboxylic acid
moiety in the future drug design toward STK17B.

CONCLUSION

In the present study, the collective sampling of 27 μs MD
simulations, coupled with the PCA, correlated motion analysis,
DSSP, and community network analysis, revealed the effect of the
conformational dynamics of the P-loop on the inhibitor
selectivity profile to the STK17B. Ligand binding contributed
to the increase of the conformational plasticity of the STK17B.
Compared to the apo and ADP-bound STK17B, the P-loop,
especially the β1, adopted the disordered conformation in the
presence of the ligand. This unusual P-loop conformation
rendered the residue Arg41 at the β1 flipping into the ADP-
binding site and interacted with the carboxylic acid moiety of the
ligand and residues Glu117 and Asn163 the C-lobe. These
interactions in the ligand-bound state enhanced the
information flow between the N- and C-lobes as observed by
the community network analysis, which played an essential role
in the control of the inhibitor selectivity to the STK17B. Owing to
the importance of the salt bridge interactions between the
carboxylic acid moiety of the ligand and Arg41 in the
maintenance of the unique, disordered P-loop conformation,

FIGURE 7 | The community networks for the apo (A), ADP-bound (B),
and ligand-bound (C) systems. The communities are shown as circles with
different colors. The edges represent the connections among communities
and the width is related to the intensity of the connections among
communities.
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the carboxylic acid moiety is suggested to retain in the future drug
design toward STK17B. These results shed light on the structural
basis of the selectivity of the inhibitor to the STK17B, which may
be useful for the design of highly selective inhibitors to other
protein kinases.

MATERIALS AND METHODS

System Preparation
The co-crystal structures of STK17B in complex with ADP (PDB
ID: 6QF4) (Lieske et al., 2019) or PFE-PKIS 43 (PDB ID: 6Y6F)
(Picado et al., 2020) were respectively downloaded from the
Protein Data Bank (PDB). The missing residues E191−E194 in
the 6QF4 and C187−I195 in the 6Y6F at the A-loop were
modelled using the MODELLER program (Webb and Sali,
2014). The ADP molecule in the 6QF4 was removed to serve
as the ligand-free STK17B (apo STK17B).

The force field parameters for ADP and Mg2+ were obtained
from the AMBER parameter database (www.amber.manchester.
ac.uk) and the generalized AMBER force field (GAFF) (Wang
et al., 2004) was used for PFE-PKIS 43. Partial changes for PFE-
PKIS 43 were computed using the RESP HF/6-31G* method
(Bayly et al., 1993) through the antechamber module in AMBER
18 (Case et al., 2005) and Gaussian 09 program. The AMBER
ff14SB (Maier et al., 2015) force field was used for the protein and
the TIP3P model was used for water molecules (Jorgensen et al.,
1983). The three simulated systems were embedded in a truncated
octahedron TIP3P explicit water box with a boundary of 10 Å,
while counterions Na+ were added to neutralize the total charge.
Then, 0.15 mol/L NaCl were added to simulate the physiological
environment.

Molecular Dynamics Simulations
MD simulations were carried out using the AMBER 18 program
(Case et al., 2005). Two rounds of minimizations of the three
simulated systems were performed, including the steepest descent
and conjugate gradient algorithms. This simulation protocol has

also been employed in recent studies of protein conformational
dynamics (Lu et al., 2019c; An et al., 2021; Liu et al., 2021; Zhang
et al., 2022b). Then, each system was heated up from 0 to 300 K
within 1 ns of MD simulations in the canonical ensemble (NVT),
imposing position restraints of 100 kcal/mol·A2 on the solute
atoms. Finally, three replicas of independent 3 μs simulations
were performed with random velocities under isothermal isobaric
(NPT) conditions. An integration time step of 2 fs was used. The
SHAKE algorithm was used to constrain all bond lengths
involving hydrogen atoms (Ryckaert et al., 1977). The particle
mesh Ewald (PME) method was used to treat with the long-range
electrostatic interactions (Darden et al., 1993), while a 10 Å non-
bonded cut-off was used for the short-range electrostatics and van
der Waals interactions.

Principal Component Analysis
Principal component analysis (PCA) has been widely used to
elucidate large-scale collective motions of biological
macromolecules during MD simulations (Li et al., 2020b; Li
et al., 2021b; Feng et al., 2021), which can transform a series
of potentially coordinated observations into orthogonal vectors to
capture large-amplitude motions. Among these vectors, the first
two principal component (named PC1 and PC2) provide the
dominant motions during MD simulations. In PCA, PCs were
generated based on coordinate covariance matrix of Cα atoms in
the STK17B protein and these collected frames were all projected
on the PC1 and PC2.

Generalized Correlation Analysis
Generalized correlation (GCij) analysis was performed to monitor
the correlated motions of residues (He et al., 2022; Wang et al.,
2022; Zhuang et al., 2022). To describe that how much
information of one atom was provided by another atom,
Mutual Information (MI) was calculated using the Eq. 1:

MI[xi, xj] � ∫∫p(xi, xj) ln p(xi, xj)
p(xi)p(xj) dxidxj (1)

FIGURE 8 | The most representative structural complexes of ligand-bound (A) and ADP-bound (B) STK17B. The β1 and β2 and the P-loop are colored by pink.
Hydrogen bonds or salt bridges are shown by green dotted lines. Coordinated bonds are shown by blue dotted lines.
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The equation can be calculated using the known measure of
entropy as the Eq. 2:

H[x] � ∫p(x) ln p(x)dx (2)

The correlation between pairs of atoms xi and xj can be
calculated using the marginal Shannon entropy H[xi], H[xj],
and the joint entropy term H[xi, xj] as the Eq. 3:

MI[xi, xj] � H[xi] +H[xj] −H[xi, xj] (3)
TheMI[xi, xj] values can be further normalised to obtain the

normalised generalised correlation coefficients (GCij) as the
Eq. 4:

GCij �
⎧⎪⎪⎨⎪⎪⎩1 − e−

2MI[xi ,xj]
d

⎫⎪⎪⎬⎪⎪⎭
−1
2

(4)

where d represents the dimensionality of xi and xj.

Cross-Correlation Analysis
Based on Pearson coefficients between the fluctuations of the Cα
atoms, the cross-correlation matrix (CCij) was calculated to
describe the coupling of the motions between the protein
residues (Li et al., 2020b; Aledavood et al., 2021; Hernández-
Alvarez et al., 2021; Wang et al., 2021). CCij was computed using
the following Eq. 5,

C(i, j) � c(i, j)
c(i, i)1/2c(j, j)1/2 (5)

The positive CCij values indicate the two atoms i and jmoving
in the same direction, whereas the negative CCij values indicate
the anti-correlated motions between the two atoms i and j.

Community Network Analysis
Community network was analyzed to uncover the inter-
community interactions using the Network View plugin in
VMD (Sethi et al., 2009; Marasco et al., 2021). In this analysis,
the Cα atoms in the STK17B were selected as nodes to represent

their corresponding residues. Edges were described between
nodes whose distances are within a cut-off of 4.5 Å occupying
>75% of simulation time. The edge between nodes was calculated
using the Eq. 6:

di,j � −log(∣∣∣∣Ci,j

∣∣∣∣) (6)
where i and j represent the two nodes.
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