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Pulmonary large cell neuroendocrine carcinoma (LCNEC) is an aggressive neoplasm with
poor prognosis. Histologic diagnosis of LCNEC is not always straightforward. In particular,
it is challenging to distinguish small cell lung carcinoma (SCLC) or poorly differentiated
carcinoma from LCNEC. However, histological classification for LCNEC as well as their
therapeutic management has not changed much for decades. Recently, genomic and
transcriptomic analyses have revealed different molecular subtypes raising hopes for more
personalized treatment. Two main molecular subtypes of LCNEC have been identified by
studies using next generation sequencing, namely type I with TP53 and STK11/KEAP1
alterations, alternatively called as non-SCLC type, and type II with TP53 and RB1
alterations, alternatively called as SCLC type. However, there is still no easy way to
classify LCNEC subtypes at the actual clinical level. In this review, we have discussed
histological diagnosis along with the genomic studies and molecular-based treatment
for LCNEC.
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INTRODUCTION

Neuroendocrine tumors (NET) of the lung account for approximately 20% of all lung cancers with a
majority being represented by small cell lung cancer (SCLC) (1–3). Large cell neuroendocrine
carcinoma (LCNEC) is rare, accounting for 1–3% of all lung cancer cases (4, 5). The increasing
incidence has been reported recently, with a rate raised from 0.26 in 2004 to 0.39 per 100,000 people
in 2015 (5–7). Most LCNEC patients are male and their median age is 66 (5–7). There is a high
frequency of cigarette smoking history, up to 98% (4, 6). LCNEC usually occurs in the lung
periphery. Median survival time from diagnosis is 9.7 months and 54.6% of patients have stage IV
LCNEC at the time of diagnosis (7). LCNEC is a unique tumor that shows immunohistochemical
and morphological traits of both SCLC and non-small cell lung carcinoma (NSCLC). Although
LCNEC is currently categorized into NSCLC, due to its overlapping features of SCLC, treatment
protocols for NSCLC and SCLC are used depending on the situations. Also with the rarity of the
disease, no standard treatment for LCNEC has been currently developed. Recently, two main
molecular subtypes of LCNEC have been identified by next generation sequencing (NGS) studies,
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namely type I with TP53 and STK11/KEAP1 alterations (NSCLC
type), and type II with TP53 and RB1 alterations (SCLC type) (8).
These subtypes are currently considered as relevant for prognosis
and selecting the therapeutic regimen. In this review, we will first
introduce current histopathological features of LCNEC and its
criteria to distinguish from other histological types. And then, we
will focus on the molecular subtypes and their influence on
pathological diagnosis. The emphasis will be done on
immunohistochemical subgrouping added by the concise
review of studies about treatment for LCNEC based on
molecular subtype.
CURRENT PATHOLOGICAL DIAGNOSIS
OF LCNEC

The World Health Organization (WHO) 2015 classification of
malignant pulmonary neuroendocrine tumors includes four
major histological types: low-grade typical carcinoid,
intermediate-grade atypical carcinoid, high-grade SCLC and
LCNEC (1). There are tumorlets and diffuse idiopathic
pulmonary neuroendocrine cell hyperplasia (DIPNECH) in the
category of neuroendocrine cell tumors, but both are currently
considered to be the pre-invasive benign lesions. All of these
neoplasms show various levels of organoid growth patterns
(rosette, palisading, trabeculae, ribbons, festoons, lobular
nests), they are distinguished conventionally based on
hematoxylin and eosin (H&E) features such as mitotic rate,
presence of necrosis, and cytologic details including the
presence of large nucleoli and abundant cytoplasm (Table 1,
Figure 1). LCNEC is defined as a NSCLC with neuroendocrine
morphology and the expression of neuroendocrine markers (1).
LCNEC cells are typically more than three times diameter of
small lymphocytes and exhibit abundant cytoplasm, nucleoli or
often with vesicular chromatin. The use of immunohistochemistry
(IHC) for the purpose of detecting neuroendocrine feature,
synaptophysin, chromogranin, and CD56, is mandatory.

The primary differential diagnosis for LCNEC include SCLC
and other types of NSCLC. LCNEC and SCLC are differentially
diagnosed based on cytological appearance including prominent
nucleoli, vesicular to clumped versus finely granular chromatin,
cell size, and more abundant cytoplasm in LCNEC. NSCLC can
be differentiated from LCNEC by absence of neuroendocrine
morphology and IHC expression. Basaloid squamous cell
carcinoma shows nested growth pattern with peripheral
palisading and large areas of necrosis, mimicking LCNEC.
Although p40 is useful squamous epithelial marker to
distinguish LCNEC from basaloid squamous cell carcinoma, it
should be noted that some LCNEC may also show focal staining
(<10% tumor cells labeling) (9). The diffuse and strong p40
positivity is characteristic for basaloid squamous cell carcinoma.

The difficulty of distinguishing between LCNEC and SCLC is
that there are cases showing borderline features (Figure 2A). Use
of IHC to distinguish LCNEC and SCLC is with limited benefits.
There are currently no entirely sensitive and specific IHC
markers to separate LCNEC and SCLC. Some markers
Frontiers in Oncology | www.frontiersin.org 2
including CK7, 8, 18, and 19 were reported to be significantly
weaker in SCLC than in LCNEC. In SCLC, these cytokeratins
typically show dot-like cytoplasmic staining (10–12), however,
similar staining patterns can also be seen in LCNEC. One of the
potential useful markers is napsin A. Based on the literature,
focal and weak staining can be seen in up to 15% of LCNECs,
whereas SCLC is consistently negative for this marker (13, 14).
Therefore, there are significant interobserver variability.

One of the important pathological judgements outside the
pulmonary NETs is distinguishing some types of poorly
differentiated NSCLC, which can be difficult to distinguish
solely by H&E observation (Figure 2B). Usually, it is possible
to distinguish between NSCLC and pulmonary NETs by the
presence or absence of neuroendocrine marker expression
(synaptophysin, chromogranin A, and CD56). However, it is
important to know that neuroendocrine markers are not always
clear to separate those two types since 15-23% of high-grade
neuroendocrine carcinomas are stained negative even with a
combination of all three markers and nearly 15% of NSCLCs are
positive for one of these neuroendocrine markers (15, 16).
Identifying neuroendocrine morphology along with confirming
diffuse staining for neuroendocrine markers occupying the
majority of the whole tumor area are critical (Figure 3).

Recently, a new category of tumors called SMARCA4-deficient
undifferentiated thoracic tumor has been reported. These tumors
show undifferentiated round cells or rhabdoid morphology (17, 18).
Although these tumors do not show neuroendocrine architecture,
they are diffusely positive for synaptophysin in 70% of cases (17).
They also show geographic necrosis, high mitotic and Ki-67 rate.
Therefore, it should be also noted that in a crushed biopsy, these
features may closely mimic LCNEC. Other immunostaining is
useful to distinguish between the two in such cases. Typical
immunohistochemical features for SMARCA4-deficient
undifferentiated thoracic tumor is the lack of claudin 4 expression
and low or absent keratin immunostaining, in addition to the loss of
SMARCA4 (BRG-1) (17–20).

Recently, several new immunohistochemical markers, such as
Insulinoma-associated protein 1 (INSM1) and Achaete-scute
homolog-1 (ASCL1) have been reported as neuroendocrine
markers with nuclear expression (16, 21–27). INSM1 has been
reported to have excellent sensitivity and specificity for the
diagnosis of lung NETs (26, 27), and no cases of NSCLC have
reported to be positive for ASCL1 immunostaining so far (16).
An important benefit of these markers is their staining
localization. Nuclear staining is suggested optimal for lung
NET diagnosis since many specimens of these tumors obtained
by transbronchial biopsy show strong crush artifacts gotten at
the time of sampling (Figure 4) and, for that occasion, evaluation
of cytoplasmic (synoptophysin, chromagranin A) and
membranous (CD56) immunoexpression is difficult.

Extrapulmonary NETs are graded as G1, G2, or G3 based on
mitotic count, Ki-67 labeling index (LI) and presence of necrosis
(28). Because Ki-67 LI is overlapped among different grades in
pulmonary NETs without clear cutoff, the main utility of this
biomarker is to distinguish the carcinoids from high grade
pulmonary NETs (29). Ki-67 LI can be used to separate LCNEC
April 2021 | Volume 11 | Article 671799
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TABLE 1 | Main clinicopathological characteristics of neuroendocrine tumors of the lung.

ical carcinoid SCLC LCNEC

(mean 55yrs) mean 67 yrs mean 66 yrs
no male male

oking smoking smoking

more peripheral compared centrally in the major airways upper lobe, periphery

5% 15-57%

tomatic; occasionally
me, Cushing syndrome, and

fatigue, cough, dyspnea, decreased
appetite, weight loss, pain and
hemoptysis

chest pain with hemoptysis,
dyspnea, cough, fever, weight
loss;
up to 1/4 asymptomatic

features
erate amount of eosinophilic
es seen

small size (less than the diameter of
three small lymphocytes);
cytoplasm: scant;
nuclei: finely granular nuclear
chromatin;
nucleoli: absent or faint

large size (more than the
diameter of three small
lymphocytes);
cytoplasm: abundant;
nuclei: vesicular of fine
chromatin;
nucleoli: frequent

) + (frequent) +
2mm² ≥11/10 HPF or 2mm² (median:80) ≥11/10 HPF or 2mm²

(median:70)
high (80-100%) high (> 40%)

83-100% 80-87%
4.2-47% 9-57%
79-100% 36-90%
77-90% 38-75%
79% 73%

endocrine carcinoma; HPF, high power field.
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DIPNECH typical carcinoid aty
Clinical characteristics

Age 50-60 <60 (mean 45yrs) <6
Gender predilection female no

Risk factor unrecognized pulmonary
injury

MEN1 (<5%) MEN1 (<5%), sm

Site periphery central airways central airways,
to TC

Prognosis (5-year
survival)

rarely die rarely die (even with regional metastasis) 71-76%

Symptoms 1/3 asymptomatic;
1/2 asthma-like
symptoms (cough,
wheezing, dyspnea);
decreased respiratory
function

most are asymptomatic; occasionally
carcinoid syndrome, Cushing syndrome, and
acromegaly

most are asymp
carcinoid syndro
acromegaly

Pathological findings
Microscopic findings NE cell hyperplasia and/or

multiple tumorlets
uniform cytologic features; cytoplasm:
moderate amount; of eosinophilic;
nucleoli: inconspicuous or absent

uniform cytologi
cytoplasm: mod
nucleoli: sometim

Necrosis – – + (often punctat
Mitotic rate <2/10 HPF or 2mm² <2/10 HPF or 2mm² 2-10/10 HPF or

Ki-67 index low (< 10-20%) low (< 10-20%) Low (< 20%)
Immunoexpression of neuroendocrine markers
Synaptophysin 100% 100% 79-100%
Chromogranin A 100% 94-100% 79-89%
CD56 74% 60-100% 57-100%
TTF-1 100% 28-94% 29-100%
ASCL1 100% 65% 64%

DIPNECH, diffuse idiopathic pulmonary neuroendocrine cell hyperplasia; SCLC, small cell lung cancer; LCNEC, large cell neuro
p
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from typical and atypical carcinoid tumors where LCNEC typically
display LI >40% whereas that of carcinoid tumors is < 20% (9, 29)
(Figure 5). Ki-67 LI has been proposed as a prognostic factor in
surgically resected specimens of typical and atypical carcinoids, with
Frontiers in Oncology | www.frontiersin.org 4
cutoff values ranging from 2.5% to 5.8% (29). Our group showed
that scoring hot sports is mandatory for survival prediction in
NSCLC (30). However, studies exploring prognostic utility of Ki-67
in LCNEC could not find statistically significant correlation between
A B

C D

FIGURE 1 | Morphology of neuroendocrine tumors of the lung. (A) Typical carcinoid shows solid nests with zellballen patterns; the tumor cells are uniform with a
moderate amount of eosinophilic cytoplasm. (B) Atypical carcinoid with rosette formation. (C) SCLC showing sheets of small cells with scant cytoplasm, finely
granular chromatin, and mitoses. (D) LCNEC displays organoid nesting and palisading patterns; tumor cells have abundant eosinophilic cytoplasm, coarsely granular
chromatin, and prominent nucleoli. Magnification: ×40.
A B

FIGURE 2 | Difficulties in differential diagnosis of LCNEC. (A) This tumor is LCNEC that needs to be differentiated from SCLC; cell size is larger than that of SCLC.
(B) This LCNEC needs to be differentiated from adenocarcinoma; the tumor shows pseudoglandular structures forming cribriform pattern. Magnification: ×40.
April 2021 | Volume 11 | Article 671799
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LI and overall survival and disease-free survival (31, 32). Additional
well-powered studies with standardized scoring approach are
needed to elucidate a role of Ki-67 as diagnostic and/or
prognostic biomarker in LCNEC.

The histological diagnosis of LCNEC is challenging in small
biopsy specimens unless a full-developed morphology consistent
with LCNEC diagnosis is disclosed. The major reason is tissue
heterogeneity of the tumor due to admixture of other patterns (32).
Therefore, WHO does not recommend rendering pathological
diagnosis of LCNEC on the small biopsies, instead the diagnosis
should be limited to surgically removed specimens. However,
considering the unignorable frequency of advance disease status at
the time of presentation and the importance of histological
diagnosis to select the best therapeutic regimen, the improvement
Frontiers in Oncology | www.frontiersin.org 5
of accurate diagnosis of LCNEC for the small biopsies such as
transbronchial lung biopsy, needle biopsy, and cryobiopsy is
important. There indeed are several cases showing convincing
morphological and IHC features to make diagnosis of LCNEC
(Figure 6). Accumulating evidence to prove diagnostic feasibility for
biopsy samples with combination of H&E and IHC panels is
mandatory. For those occasions, molecular classifiers including
new IHC markers described in below sections may be useful.
MOLECULAR FEATURES

Genetic background of LCNEC has been widely studied,
particularly, with a reference to molecular signature of NSCLC.
A B C

FIGURE 3 | Focal expression of CD56 in squamous cell carcinoma. (A) Tumor cells form solid nests with occasional keratinization. (B) Diffusely positivity for p40
(nuclear) and CK14 (cytoplasmic). (C) Focal expression of neuroendocrine marker CD56. Magnification: ×20.
A B

FIGURE 4 | Extensive crush artifact in small cell lung carcinoma. SCLC is often crushed during biopsy, which affects appearance on routine staining (A, H&E) and
immunohistochemistry (B, synaptophysin). Magnification: ×40.
April 2021 | Volume 11 | Article 671799
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The common molecular alterations are shown in Table 2.
Among tumor suppressor genes altered in LCNEC, the TP53
mutation is the most common (64-92%), followed by the RB1
mutation (19-42%) (Table 2) (8, 9, 33–44).

The most common alterations in driver genes are KRAS
mutations (4-24%), with a much less frequency of EGFR, ALK,
RET, and absence of others driver mutations associated with
NSCLC, such as BRAF and ROS1 (9, 34, 39, 46). Genomic
mutations associated with the PI3K-AKT-mTOR pathway are
found in LCNECs, including PTEN (4–5%), PIK3CA
(3%), AKT2 (4%), PICTOR (5%), mTOR: (1%), NF1 (5%),
INSR (3%), TSC2 (2%), and PRCTR (2%) (34, 45).
Amplifications in NK2 homeobox 1 (NKX2-1, also known as
TTF-1; 10–20%), v-myc avian myelocytomatosis viral oncogene
homolog gene (MYC; 5-13%), v-myc avian myelocytomatosis
viral oncogene lung carcinoma derived homolog gene (MYCL1;
12%), SRY-box 2 gene (SOX2; 11%), fibroblast growth factor
receptor 1 (FGFR1; 4–7%), insulin receptor substrate 2 (IRS2; 3–
4%) and v-myc avian myelocytomatosis viral oncogene
neuroblastoma derived homolog gene (MYCN; 2%) have also
been identified. Cyclin-dependent kinase inhibitor 2A
(CDKN2A) deletions were reported with a frequency of 4% to
8% (8, 9, 45).
Frontiers in Oncology | www.frontiersin.org 6
In addition to gene mutations, chromosomal alterations have
been reported in LCNEC; in particular, alterations greater than
10 Mb, losses of 1p, 3p, 4p, 4q, 5q, 8p, 10q, 13q, 17p and gains of
3q, 5p, 8q, 18q, were found to be much more frequent in
LCNECs as compared to pulmonary carcinoid tumors (47).
MOLECULAR SUBTYPES

George et al. reported the existence of two LCNEC genomic
subtypes with specific transcriptional patterns, which they
categorized as type I (NSCLC type) with TP53 and STK11/
KEAP1 alterations and type II (SCLC type) with TP53 and RB1
alterations, which is introduced in the upcoming 2021 WHO
classification (8). Although type I LCNEC shares genomic
alterations with pulmonary adenocarcinomas and squamous cell
carcinomas, no transcriptional relationship was found, and it was
divided into transcriptional subgroups (ASCL1high/DLL3high/
NOTCHlow) with similarity to SCLC. TP53 and RB1 are tumor
suppressor genes, and mutations have been reported in LCNEC as
well as in SCLC. One of the hallmarks of SCLC is bi-allelic
alterations in TP53 and RB1 (48, 49). While type II LCNECs
reveals genetic resemblance to SCLC, these tumors are markedly
A B

C D

FIGURE 5 | Proliferation index in atypical carcinoid vs. LCNEC. Representative examples of atypical carcinoid (A, B) and LCNEC (C, D). (A) The tumor shows nests
of carcinoid tumor cells. (B) The Ki-67 proliferative index is approximately 20%. (C) The tumor shows nests and palisading patterns of LCNEC tumor cells. (D) The
Ki-67 proliferative index is approximately 60%. Magnification: ×40.
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different from SCLC transcriptional subgroups (ASCL1low/
DLL3low/NOTCHhigh). Therefore, the distinction between type I
and type II LCNECs from SCLC is important to be able to evaluate
the response of patients to treatment options.

Major Genes Involved in Transcriptional
Signatures of LCNEC
Serine/threonine kinase 11 (STK11) encodes liver kinase B1 (LKB1)
and is a commonly altered tumor suppressor that frequently occurs
in NSCLC (50). LKB1 directly phosphorylates and activates
adenosine monophosphate-activated protein kinase (AMPK) (51).
In response to energetic stress, AMPK alters the cellular metabolism
to restore nicotinamide adenine dinucleotide phosphate (NADPH)
concentrations (52). It also regulates the activity of mTOR. Under
Frontiers in Oncology | www.frontiersin.org 7
energetic stress, the LKB1-AMPK axis plays a critical role in
modulating cell growth and proliferation to maintain adequate
ATP and NADPH levels (53).

Kelch-like ECH-associated protein 1 (KEAP1) forms a protein
complex and ubiquitinates the N-terminal domain of NRF2, an
oxidative stress-responsive transcription factor (54). Oxidative stress
induces the oxidation of KEAP1 at key cysteine residues which
causes a conformational change in KEAP1 releasing NRF2, resulting
in translocation and nuclear accumulation of NRF2. In the nucleus,
NRF2 forms a heterodimer with its partner sMAF (v-Maf avian
musculoaponeurotic fibrosarcoma oncogene homolog) and binds to
antioxidant responsive element (ARE) sequences to regulate the
transcription of target genes (55). A major NRF2 transcriptional
target is NADPH (56, 57). KEAP1 is not only a tumor suppressor
A

B C

FIGURE 6 | Transbronchial lung biopsy of LCNEC. A small-sized specimen featuring tumor cells with abundant eosinophilic cytoplasm, coarsely granular chromatin,
and prominent nucleoli. H&E (A, B); CD 56 (C) Magnification: ×10 (A); ×40 (B, C).
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gene, but also a metastasis suppressor gene (58). KEAP1 mutations
co-occur with mutations in STK11, which have also been associated
with poor response to immune checkpoint blockade in lung
adenocarcinoma (59–61). Therefore, STK11/KEAP1 mutations
can be expected as predictive biomarkers for anti-PD-1/PD-
L1 therapy.

ASCL1 is a transcription factor and is selectively expressed in
normal fetal pulmonary neuroendocrine cells. ASCL1 is highly
expressed in SCLC and LCNEC, where it acts to maintain
neuroendocrine features (62). The Notch pathway likewise
plays an important role in the developing respiratory system
and regulates neuroendocrine versus epithelial cell fate decisions
(63). Notch genes encode single transmembrane receptors that
mediate short-range communication between cells (64, 65).
When Notch binds to its ligand (delta-like ligands: DLL1,
DLL3 and DLL4, jagged ligands: JAG1 and JAG2) expressed
on adjacent cells, Notch receptors (Notch1–4) release the Notch
intracellular domain (NICD). NICD activates transcription of
HES1 (hairy and enhancer of split 1 and HEY1 [hairy and
enhancer of split-related protein 1]), which encodes
transcriptional repressors of ASCL1 (66). On the other hand,
DLL3 is a transcriptional target of ASCL1 (62, 67). And unlike
Frontiers in Oncology | www.frontiersin.org 8
other Notch ligands (DLL1, DLL4, JAG1 and JAG2), DLL3
without the conserved N-terminal module of agonistic Notch
ligands can antagonize DLL1-Notch signaling (68). Thus, ASCL1
both activates Notch signaling and is repressed by it. DLL3
predominantly localizes to the Golgi apparatus, where it retains
other Notch members and redirects them to endosomes for
degradation (69). Some DLL3 is expressed on the cell surface,
which is not expressed in normal lung tissue (70). Thus, DLL3
protein has emerged as a very promising drug target.

Mutations Associated With
LCNEC Subtypes
We reviewed the frequency of mutations associated with
molecular subtypes of LCNEC. PubMed was searched for
papers with keywords: lung, LCNEC and molecular/genetic
alterations. Initially, we retrieved 94 papers. After excluding
review papers and case reports, the remaining 17 studies
containing information on alterations for TP53, RB1, STK11,
KEAP1, NOTCH, ASCL1 and DLL3 were analyzed (8, 9, 24, 33–
44, 71, 72). A summary of these studies is shown in Table 3 (raw
data provided in Supplemental Table 1).

The most common alterations were TP53, followed by RB1
and STK11 (Table 3). No alterations were found in DLL3 and
ASCL1. All alterations of TP53, RB1, STK11 and KEAP1 were
examined in 205 cases, of which 26 cases could be classified as
type I LCNEC (TP53 and STK11/KEAP1 alterations), and 71
cases could be classified into type II LCNECs (TP53 and
RB1 alterations).
Therapy for Molecular Subtypes
Chemotherapy treatment for LCNEC remains a subject of
debate. In patients with advanced LCNEC, the chemotherapy
regimens used in SCLC are still the standard of treatment, but
results are not satisfactory (73). The type I (with TP53 and
STK11/KEAP1 alterations) and type II LCNECs (with TP53 and
RB1 alterations) may have a heterogeneous response to
chemotherapy. Derks et al. reported patients with LCNEC
tumors that carry a wild-type RB1 gene or express the RB1
protein do better with NSCLC type chemotherapy (platinum-
gemcitabine or paclitaxel) than with SCLC type chemotherapy
(platinum, etoposide). In contrast, no difference was observed in
LCNEC cases with the RB1 mutation (35). Another study found
that patients with NSCLC-like LCNEC treated with NSCLC-
gemcitabine/taxane-platinum regimen had significantly shorter
progression-free survival and overall survival than those treated
with SCLC-etoposide-platinum regimen (44). It is not entirely
clear why the above studies produced conflicting results. Baseline
characteristics of the patients and combination therapy with
irradiation could be contributing factors. Future studies in larger
cohorts are needed to establish optimal protocols of
chemotherapy in patients with different molecular subtypes
of LCNEC.

The first antibody-drug conjugate in which DLL3 was
investigated as a therapeutic target in SCLC patients is
rovalpituzumab-tesirine (Rova-T) (74). Rova-T demonstrated
encouraging single-agent antitumor activity with a manageable
TABLE 2 | Molecular alterations in LCNEC.

Gene Prevalence References
Gene mutations

Cell cycle TP53 64–92% (8, 9, 33–44)
RB1 19–42% (8, 9, 34–44)
CDKN2A 4–8% (8, 9, 45)

MAPK pathway STK11 17–33% (8, 9, 33, 35–37, 39, 40,
44)

KEAP1 19–31% (8, 9, 35, 36, 40, 44, 45)
Cell adhesion ADAMTS12 20% (8, 9, 45)

ASAMTS2 15% (8)
Neurogenesis GAS7 12% (8)

NTM 10% (8)
Notch pathway NOTCH1 10–16% (8, 34, 38, 39, 44, 45)

NOTCH2 4–7% (8, 34, 38, 40, 41, 43, 45)
NOTCH3 4–6% (8, 34, 38, 43, 45)
NOTCH4 6–8% (8, 38, 45)

Driver genes KRAS 4–24% (9, 34, 39, 46)
EGFR 0–4% (9, 34, 39, 46)
ALK 0–2% (34, 46)
RET 2% (46)

PI3K-AKT-mTOR
pathway

PTEN 4–5% (34, 45)

PIK3CA 3% (34, 45)
AKT2 4% (34, 45)
PICTOR 5% (34)
mTOR 1% (34)
NF1 5% (45)
INSR 3% (45)
TSC2 2% (45)
PRCTR 2% (45)

Gene amplifications
NKX2-1 10–20% (8, 9, 45)
MYC 5–13% (8, 9, 45)
MYCL1 9–12% (8, 45)
SOX2 3–11% (9, 45)
FGFR 3–7% (8, 45)
IRS2 3–4% (8, 9, 45)
MYCN 1–2% (9, 45)
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safety profile in a phase 1 trial. Unfortunately, modest clinical
activity with associated toxicities led to the discontinuation of
Rova-T in later studies (75). Two other novel DLL3-targeted
therapies are anti-DLL3/CD3 bispecific antibodies (AMG 757)
and DLL3-binding chimeric antigen receptor-modified T cells
(AMG 119) (76, 77). Clinical evaluation of these therapies in
SCLC patients is ongoing (NCT03319940 and NCT03392064).
Since type I LCNECs show high neuroendocrine expression
(ASCL1high/DLL3high/NOTCHlow) similar to SCLC, such
tumors may also be susceptible to this agent.

Recently, it was reported that the high tumor mutational
burden is related to better efficacy of immunotherapy (78, 79).
The tumor mutational burden is high in LCNEC (>8 mutations/
Mb) and was shown to be related to PD-L1 expression (8, 9, 80).
Moreover, some LCNEC cases with negative PD-L1 expression
but high tumor mutat ion burden may respond to
immunotherapy (81, 82). PD-L1 expression was reported in
10–22% of studied LCNEC cases (80, 83–85). Although PD-L1
expression is known to be distinctly higher in NSCLCs as
Frontiers in Oncology | www.frontiersin.org 9
compared to SCLCs, Hermans et al. reported PD-L1
expression was equal in RB1 mutates (SCLC-like) and RB1
wildtype (NSCLC-like) cases. None of the seven STK11-
mutated samples in this study harbored PD-L1 expression. The
co-occurrence of KEAP1 and STK11 mutations has also been
reported to be associated with poor response to immune
checkpoint inhibition (13, 14, 47). Therefore, the effect of
immunotherapeutic treatment might be reduced in type I
LCNECs. George et al. also reported type II LCNECs exhibited
a pattern of gene expression with upregulation of immune
related pathways, which may impact the response of patients
to immunotherapy. Clinical trials of immunotherapy in LCNEC
patients are ongoing (NCT03591731, NCT02939651), but it will
be necessary to consider other factors, including gene expression,
in the future.
OTHER EMERGING THERAPIES

Rekhtman et al. reported that at least one alteration potentially
targetable by investigational agents was present in 65% of
LCNECs (30/45), being more common in RB1 wild type
LCNEC than in RB1 mutated LCNEC (84% vs. 50%,
respectively). Several case reports described a good response to
EGFR-tyrosine kinase inhibitor (gefitinib/icotinib) in LCNEC
with an activating EGFR gene mutation (exon 19) (86–88). Two
case reports demonstrated that treatment with crizotinib of
LCNEC with EML4-ALK rearrangement was ineffective or
achieved only partial response (89, 90). On the other hand, a
case of LCNEC with PLB1-ALK rearrangements reported to be
sensitive to crizotinib (91). We anticipate that future studies with
larger cohorts of LCNEC patients will produce more consistent
results on the effect of the above targeted treatments.

The PI3K-AKT-mTOR pathway has been reported to be
overactivated in lung NETs (85). Phase II clinical trials of
mTOR inhibitors (everolimus) in low-to-intermediate NETs
(including lung) showed encouraging results (92). Moreover,
everolimus in combination with chemotherapy (carboplatin and
paclitaxel) has been reported to be effective for patients with
metastatic LCNEC (93). Therefore, evaluation of gene mutations
in the PI3K-AKT-mTOR pathway may be useful for a targeted
treatment in LCNEC.

Poly-ADP ribose polymerase (PARP) inhibitors are also
being studied in combination with chemotherapy in SCLC
(94). Recently, coiled-coil-domain containing 6 (CCDC6) has
been indicated as a prognostic biomarker, which is also
predictive of a possible response to treatment with PARP
inhibitors in NSCLC (95). The CCDC6 levels are modulated
by deubiquitinase ubiquitin specific protease 7 (USP7) (96).
Malapelle et al. has reported that the immunostaining of
pulmonary NET, including LCNEC, showed the intensity of
CCDC6 staining correlated with the levels of USP7 expression
(71). Moreover, the inhibition of USP7 by P5091 accelerated
the degradation of CCDC6 versus control in cycloheximide
treated SCLC cells in vitro and sensitized the cells to PARP
inhibitors alone and in combination with cisplatin (71). This
TABLE 3 | Frequency of gene alterations associated with LCNECmolecular subtypes.

Gene/alteration +ve -ve total

TP53 427 99 526
mutations 329
CNV 5
CAN 2
LOH 2
n/s 89
mutations+(CNV/CNA/LOH) 15

RB1 224 313 537
mutations 131
CNV 3
CNA 3
LOH 4
homozygous deletion 14
n/s 69

STK11 70 340 410
mutations 38
CNV 1
CNA 4
n/s 27
nonsense + CNA 2

KEAP1 61 261 322
mutations 40
CNA 1
n/s 20

NOTCH1 40 212 252
mutations 16
CNV 18
n/s 6

NOTCH2 16 230 246
mutations 13
n/s 3

NOTCH3 10 163 173
mutations 5
n/s 5

NOTCH4 4 67 71
mutations 1
n/s 3
CNV, copy number variation; CNA, copy number alteration; LOH, loss of heterozygosity;
n/s, not specified.
Bolded "+ve" = gene alteration-positive cases, bolded "-ve" = gene alteration-negative
cases, bolded "total" = total number of cases for each gene.
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suggests that CCDC6 and USP7 have a predictive value for the
clinical usage of USP7 inhibitors in combination with PARP
inhibitors in SCLC. This can be expected to be effective in
LCNEC, and further research in larger cohorts is desired in
the future.

The enhancer of zeste homolog 2 (EZH2) is a histone
methyltransferase that forms the polycomb repressive
complex 2 (PRC2) (97). In SCLC, EZH2 is upregulated upon
inactivation of the E2F/Rb pathway and leads to aberrant
methylation of its target (98). Poirier et al. reported that
inhibition of EZH2 suppressed tumor growth in vivo and in
vitro in both SCLC cell lines and patient derived xenograft
mouse models (99). Clinical trials of EZH2 inhibitors in SCLC
patients are currently ongoing (NCT03460977). Noteworthy,
high EZH2 expression in SCLC and LCNEC was reported in
studies using IHC (100, 101). Therefore, EZH2 inhibition may
provide new therapeutic perspectives for LCNEC as well
as SCLC.
DISCUSSION

Although there have been remarkable scientific updates such
as molecular subtyping, pathological diagnosis of LCNEC has
not changed much since the release of the 2004 WHO
classification (102). The diagnostic yield is limited to
surgical material while small biopsies are frequently
insufficient and unreliable for a definite diagnosis. However,
the majority of LCNEC cases are found at the late stage of the
disease progression, which makes small biopsies the common
modality for tissue sampling. To improve the treatment of
LCNEC, the diagnostic approach to this entity by the use of
molecular classifiers or, ideally, by its cheap and robust IHC
alternative has been long anticipated. There has been a large
debate over whether patients with LCNEC should be treated as
NSCLC or SCLC. At present, just a few clear solutions have
been established through clinical trials. With this background,
the recent conceptual separation of LCNEC into two different
subtypes, NSCLC-like type I and SCLC-like type II, is hoped to
be a promising stratification to provide better therapeutic
options to patients.

In their seminal paper, Rekhtman et al. genotyped 45
LCNECs and found 56% of tumors displayed NSCLC-like
molecular features, characterized by KRAS or KEAP1
mutations alone or concurrently with TP53 mutations (9).
Remaining 40% of LCNECs exhibited a SCLC-like genomic
profile, characterized by RB1/TP53 co-alteration. Additionally,
less common molecular alterations seen almost exclusively in
the NSCL-like LCNEC involved the BRAF, MAP2K1, ERBB2,
and CDKN2A genes, and those seen exclusively in the SCLC-
l i k e LCNEC inc luded MYCL1 amp l ifi c a t i on and
PTEN mutations.

In the same study, SCLC-like LCNEC had higher Ki-67 rates
and a spectrum of morphologic features closer to SCLC than
NSCL-like LCNEC (9). Other groups also addressed a
proliferation index detected by Ki-67 IHC for stratification of
Frontiers in Oncology | www.frontiersin.org 10
LCNEC. Milione et al. reported that LCNECs with co-mutation
of TP53 and RB1 (SCLC-like) were significantly enriched in cases
with a Ki-67 ≧55%, while the tumors with KRASmutations were
enriched in cases with Ki-67 <55% (39). Such findings along with
molecular data suggest that there is an overlap between the two
subtypes of LCNEC, and proliferation alone cannot predict
genomic features.

A continuing interest in surrogate biomarkers to substitute
genetic testing (i.e., in a context of LCNEC, to render molecular
subtyping) is explained by the high costs of genotyping. For
instance, compared to NGS, immunostaining is a simple method
that can be performed in virtually any pathology laboratory.
Several IHC biomarkers have been evaluated with this regard.
RB1 immunoexpression was considered as a promising
biomarker alternative to molecular subtyping, however, Derks
et al. reported that RB1 expression was completely lost not only
in almost all RB1-mutated LCNECs, but also in 47% of the wild-
type cases (35).

The subtyping of LCNEC may be better accomplished by
considering the biomarkers directly connected to the therapeutic
targets. One such candidate is an expression of DLL3. Evaluating
the effectiveness of DLL3 expression as a therapeutic biomarker,
ideally by immunostaining, may provide a pivotal progress in
the field.

Saunders et al. reported that immunohistochemical
expression of the DLL3 protein was completely negative in
normal lung parenchyma, but was observed in 65% of LCNEC
cases (103). Several studies have reported a positive correlation
between DLL3 and ASCL1 IHC expression in SCLC (21, 23).
Hermans et al. has reported that DLL3 H-score and ASCL1 H-
score were correlated in LCNEC (24). They demonstrated that
DLL3 is highly expressed in STK11- and KEAP1-mutated type I
subtype and in TP53 wild-type tumors, as well as in tumors
positive for ASCL1 and more than two neuroendocrine markers
(24). Moreover, they did not find any relationship between DLL3
expression and RB1 mutation status or Rb immunostaining.
Brcic et al. analyzed high-grade pulmonary NETs and cell
cultures using different DLL3 antibodies. They found no
correlation between the expression of TP53 and RB1 and DLL3
expression in LCNEC (104).

On DLL3 IHC staining, the majority of tumors show
cytoplasmic/membranous sta ining (Figure 7) , but
perinuclear dot-like staining has also been reported (24). So
far, it is unclear whether the pattern of staining predicts a
response to DLL3-targeted therapy. These studies (24, 104)
have some limitations (e.g., size of cohorts, NGS not performed
in all patients, cut-off value, etc.), therefore further research is
needed to verify utility of DLL3 immunostaining for adoption
in practical use.

We have done a review of 205 published LCNEC
cases stratified by molecular subtype limited to alterations in
four genes (TP53, RB1, STK11 and KEAP1). There were
108 cases (52.7%) that were not identified as either type I or
type II LCNECs (Table 4). This suggests that the molecular
spectrum of LCNEC is more heterogeneous and complex
than expected.
April 2021 | Volume 11 | Article 671799

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yoshimura et al. Molecular Pathology of LCNEC
Carcinoid tumors have distinct epidemiology and molecular
pathogenesis from LCNEC. Rekhtman et al. reported carcinoid-
like LCNEC, which was characterized by MEN1 alterations and
low overall mutation burden (9). Very recently, a new entity of
pulmonary carcinoids named supra-carcinoids has been
discovered in an integrative genomic analysis study. Supra-
carcinoids appeared morphologically as atypical carcinoids, but
their molecular signature corresponded to the molecular cluster of
LCNEC (40, 105). In addition to sharing the molecular features of
LCNEC, supra-carcinoids also showed worse prognosis, similar to
survival rates in LCNEC – 10-year overall survival of 33% and 19%,
respectively (vs. 59% in conventional atypical carcinoid) (105, 106).
However, histological and clinical characteristics of carcinoid-like
LCNEC and supra-carcinoids are yet to be defined. This suggests
the possibility of molecular link between pulmonary carcinoids
and LCNEC.

It is obvious that comprehensive molecular analysis in well-
defined large cohorts yields additional genotypic, phenotypic,
Frontiers in Oncology | www.frontiersin.org 11
and prognostic signatures within a family of lung NETs. We may
predict that new types/subtypes of LCNEC other than the
A B

C D

FIGURE 7 | DLL3 immunophenotype of LCNEC. Representative cases with positive (A, B) and negative (C, D) expression of DLL3. Note a cytoplasmic pattern of
immunostaining (B). Magnification: ×40.
TABLE 4 | Results of a review of LCNEC molecular subtypes.

Molecular subtype n (%)

Type I: TP53 + STK11 ± KEAP1 26 (12.7%)
Type II: TP53 + RB1 71 (34.6%)
Other combinations, including: 108 (52.7%)
RB1-, TP53-, STK11-, KEAP1- 18
RB1+, TP53 +, STK11+, KEAP1+ 1
RB1+, TP53+, STK11+ 6
RB1+, TP53+, KEAP1+ 17
STK11+, KEAP1+ 2
RB1+, KEAP1+ 1
RB1+ 5
TP53+ 49
STK11+ 6
KEAP1+ 3
Total 205 (100%)
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recently introduced types I–II will enter the classification scheme
in the future.
CONCLUSION

With the rising impact of molecular pathology, the interest for
reliable biomarkers grows, which can help to subclassify
LCNECs and also enable personalized treatment for patients.
In this review, we have discussed recent LCNEC genomic studies
and treatments for LCNEC based on molecular subtype. To
summarize, type I (NSCLC-like) LCNEC can be expected to
respond to a DLL3 inhibitor, and type II (SCLC-like) can be
expected to respond to immunotherapy. Classification of
LCNECs will become important in choosing treatments.
However, according to our literature review, there are many
LCNECs that belong to groups other than these two categories.
Moreover, there is no easy way to classify LCNEC subtypes at the
clinical level. In the future, it will be necessary to study specific
treatment and classification methods, and examine indicators for
determining the efficacy of such methods.
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