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Abstract

Human behaviour is highly individual by nature, yet statistical structures are emerging which seem to govern the actions of
human beings collectively. Here we search for universal statistical laws dictating the timing of human actions in
communication decisions. We focus on the distribution of the time interval between messages in human broadcast
communication, as documented in Twitter, and study a collection of over 160,000 tweets for three user categories: personal
(controlled by one person), managed (typically PR agency controlled) and bot-controlled (automated system). To test our
hypothesis, we investigate whether it is possible to differentiate between user types based on tweet timing behaviour,
independently of the content in messages. For this purpose, we developed a system to process a large amount of tweets for
reality mining and implemented two simple probabilistic inference algorithms: 1. a naive Bayes classifier, which
distinguishes between two and three account categories with classification performance of 84.6% and 75.8%, respectively
and 2. a prediction algorithm to estimate the time of a user’s next tweet with an R2&0:7. Our results show that we can
reliably distinguish between the three user categories as well as predict the distribution of a user’s inter-message time with
reasonable accuracy. More importantly, we identify a characteristic power-law decrease in the tail of inter-message time
distribution by human users which is different from that obtained for managed and automated accounts. This result is
evidence of a universal law that permeates the timing of human decisions in broadcast communication and extends the
findings of several previous studies of peer-to-peer communication.
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Introduction

The dynamics of many social, technological and economic

phenomena are driven by individual human actions, therefore the

quantitative understanding of human behaviour is becoming a

central question in neuroscience, economics and social sciences.

Human behaviour is highly variable from trial to trial [1], yet

appears highly stereotyped (e.g. we can recognise a mime’s

actions). In neuroscience, the variability in human decision making

and motor behaviour has been found to display a characteristic

variability structure [2] than can be used to predict the

behavioural decisions and performance of individuals [3]. We

are investigating here to what extent these computational

neuroscience approaches can be applied to analyse human

communication decisions on the online social network Twitter,

specifically to understand the timing of tweeting. We follow a very

simple, easily interpretable approach using non-parametric

Bayesian statistics to analyse and then predict the nature of the

tweeter, i.e., is the tweeter a genuine individual or somebody or

something else. We focus here on the statistical structure of

broadcast communication by employing a large anotated dataset

collected from Twitter, with the aim of better understanding the

timing of human actions in this type of communication and how

individual or different they are from each other. While past

research has largely focused on using tweets as a representation of

collective behaviour [4–6], our individual-based approach takes a

neuroscience perspective of reality mining [7,8] and uses Twitter

data to study users individually and make predictions about them

in real life.

Since its creation in 2006, Twitter has become an increasingly

popular medium enabling over 500 million active users (Summer

2012) who produce 65 million tweets per day. The popularity of

Twitter makes it an important tool for journalism, marketing,

political campaigns and social change. It is therefore of immediate

interest to be able to determine if the user generating the tweets

(irrespective of tweeted content) is 1. a genuine individual, 2. a

group of people appearing as one Twitter user (e.g. a corporation

or celebrity having a dedicated PR team handling their ‘personal’

tweets) or 3. an automated system (‘bot’) that generates tweets. We

approach this by creating a non-parametric naive Bayes classifier

based on tweeting time. This classification can be very helpful in

the recognition and filtering of spammers and malicious accounts,

and can therefore assist in understanding the online community

and help us recognise who is actually tweeting.
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The first step in the development of our study was the collection

of data from multiple Twitter users through a web crawler. For

this purpose, we created the Twitter Reality Miner application, a

Twitter crawler which allowed us to retrieve data in an efficient

way while conforming to the request limit imposed by the Twitter

API. After data collection, we studied tweeting patterns and the

probability distributions of timestamps and time intervals in

between posts. We then used this information to classify user

accounts into three different groups (personal, managed and bot-

controlled) and to predict the probability distribution of the time

delay before the next tweet of a user was posted.

Related Work
With the growing popularity of online social networks and other

means of interaction, recent research has taken advantage of the

large amounts of freely available digital data in order to investigate

several aspects of human behaviour. The novel field of reality

mining, for instance, applies machine-sensed environmental data

to the study of human activities in real life. Eagle et al. have used

data from 100 mobile phone users in an American educational

institution including call logs, Bluetooth devices in proximity, cell

tower IDs and phone status, and found that mobile phone usage

consistently correlates with users’ activities. The authors apply this

data to accurately predict real-life friendships and individual-level

measures such as job satisfaction [7]. In a different study, the

authors extract the mobile phone dataset’s principal components

and use them to predict user activity on the same day with 79%

accuracy [8].

In addition, related studies of human communication behaviour

have studied modern e-mail communications and web browsing,

as well as Einstein and Darwin’s documented correspondence

patterns. All these studies consistently find that human commu-

nication intervals are governed by an underlying statistical

structure, which largely dictates how and when these actions are

performed, regardless of the individual characteristics of each

person [9]. Barabási and colleagues studied e-mail communication

patterns in order to understand how humans prioritise their

activities and proposed a priority model which predicts that inter-

event times should display a heavy-tailed distribution, as found in

power-laws [10]. These distributions arise from individuals

displaying long periods of inactivity which alternate with bursts

of intense activity, a behaviour characteristic of the timing of many

human actions, from communication to entertainment and work

patterns [11–13]. Later, this work was extended to studying

Darwin’s and Einstein’s patterns of correspondence and compar-

ing them with today’s e-mail exchanges [14]. The authors found

that the probability that a letter would be replied to in t days is

well approximated by a power-law, thus following the same scaling

laws as current e-mail communication. Dezsö et al. [15]

investigated the topology and features of dynamically changing

human interaction networks by analysing the visitation patterns of

a major news portal. They showed that the timing of the browsing

process is not the commonly assumed Poisson process, but instead

suggests that heavy tails are a part of a universal scaling law,

representing a fundamental pattern of human decision making

dynamics.

Here we look at broadcast communication, an aspect of human

interaction that has not been studied before in this context. We test

and apply our analysis by focusing on identification and

classification of specific types of users on Twitter. This classifica-

tion can be useful for a variety of reasons, from focusing

advertisement and political campaigns, to filtering spam and

malicious accounts. With a large occurrence of spamming and

political campaigning on Twitter, recent research has focused on

methods for identifying certain types of behaviour that are

characteristic of spammers or propagandists. In [16], Lumezanu

et al. aim to understand how Twitter is used to spread propaganda.

They studied the Twitter behaviour of propagandists, users who

consistently express the same opinion or ideology, and focused

their work on hyperadvocates, who show a consistent lack of

impartiality in their messages. Four publishing patterns were found

to amplify the effect on hyperadvocacy on Twitter. Another

example of Twitter account classification can be found in [17]:

Chu et al. observe the differences between Twitter accounts

controlled by humans, bots, and cyborgs, which refer to either bot-

assisted humans or to human-assisted bots. The authors studied

tweeting behaviour, tweet content and account properties in order

to characterise the automation feature of Twitter accounts, then

used this information to build a classifier for the three account

categories. Despite attaining a high correctness rate, the system

created has the limitation of heavily relying on processing the

contents of tweets in order to identify them as spam, which can be

an expensive and time-consuming process.

Methods

Data Collection
The first step in the development of our study was the collection

of data from multiple Twitter accounts through a web crawler. For

this purpose, we created the Twitter Reality Miner, a Twitter

crawler application which allowed us to retrieve Twitter data in an

efficient way while conforming to the request limit imposed by the

Twitter API. After data collection, we studied tweeting patterns

and the probability distributions of timestamps and time intervals

in between posts. We then used this information to classify user

accounts into the three different groups (personal, managed and

bot-controlled) and to predict the probability distribution of the

time delay before the next tweet of a user is posted.

The application was developed in Python script language with

the aid of a variety of third-party libraries (python-twitter, oauth2,

httplib, json, psycopg and pyparsing), the details of which are

omitted from this paper. The whole TRM application consists of

four Python modules: crawler, rateLimiter, databaseAccess and

errorReport. The full source code and the data collected (in text

and spreadsheet files) can be obtained from the following GitHub

repository: www.FaisalLab.com/TRM.

Access to Twitter was possible due to the Twitter Application

Programming Interface (API), a specification that allows commu-

nication between the crawler and Twitter itself. One significant

shortcoming in using this API for data retrieval is its restrictive

limit policy, which only allows clients to make 150 requests per

hour. Even if a client makes calls to the API within the allowed

limit, Twitter may throttle the account when too many calls are

made repeatedly. For this reason, we created a wrapper module

for the API, called rateLimiter, in order to add small time intervals

in between requests, thus preventing the account from being

‘‘black listed’’ by Twitter. During data collection, the crawler was

given a list of screen names of manually selected user accounts to

process. Both tweets and retweets in the timelines were collected,

up to a total of 800 posts per user account.

Classifying Tweeters
We have developed two classification algorithms with similar

implementation: the 2-Classifier distinguishes between personal

and managed accounts, while the 3-Classifier distinguishes

between personal, managed and bot-controlled accounts. Both

our classification systems are based on the maximum a posteriori

(MAP) decision rule:

Scaling-Laws of Human Communication from Twitter
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C(f )~arg max
c

p(F~f DC~c)f g ð1Þ

where c is a specific class and f is a feature value for a particular

sample [18]. According to this rule, a test sample is assigned to the

class in which its features yield the largest probability value.

Four attempts of classification were made, applying different

probability distributions: 1. using the inter-tweet delay marginal

distribution (ITD); 2. using the tweet time marginal distribution

(TT); 3. using the joint distribution of the two variables assuming

independence (JI); and 4. using the joint distribution of the two

variables not assuming independence (JNI). We began by applying

leave-one-out cross validation to our dataset. In each cross-

validation loop, N{1 sample accounts were grouped into their

respective classes, then the probability density function for each

class was computed. To classify the left-out account, the feature

values (inter-tweet delay, tweet time, or both) of each one of that

account’s tweets were interpolated into the distribution of each

class.

The classification score of a given class for a given account was

then computed as the sum of the logarithm of the probabilities

obtained for all the sample tweets of that account, when

interpolated into the class distribution. For each of the four

attempts, the classification score Sc(i) of class c for sample i was

computed as:

Sc(i)~
X

t in T(i)

log(interpolate(t,pdf(c))) ð2Þ

where T(i) is the set of tweets for sample account i, and

interpolate(t,pdf(c)) is the spline interpolation of the value of t
into the probability density function of class c. Once all class scores

had been computed, the user was classified into the class with the

highest score. Since scores were computed separately for each

classification attempt, a different outcome was obtained for each

attempt, resulting in four different classification outcomes for each

user account.

During the cross-validation phase, our best results were

obtained when using the joint distribution of the inter-tweet delay

and tweet time variables assuming independence (JI), as shown in

the Results section below. We have therefore applied this

classification system in our next stage: splitting the data into

separate training and test sets, using the training set to generate the

probability distributions, then classifying the test samples by

interpolating their values into the generated distributions [19]. To

test the robustness of the algorithms, we varied the size of the

training dataset between 5% and 70% of the user accounts (while

the remaining accounts were using for testing). In each of these set

ups, we repeated the experiment 10 times, each time reshuffling

the samples among each class.

Predictive Model for Tweet Time Distribution
Our next step was to create a probabilistic model to predict

when a user’s next tweet would be posted, based on the inter-tweet

delay distribution of that user’s account class. Again, we started by

applying leave-one-out cross validation to our dataset, which

comprised 67 accounts from each class, resulting in 201 accounts

in total. At each of the N iterations, N{1 accounts were used to

generate the model, while the left-out account was used to validate

the model. This allowed us to maximise the number of samples

used in the model generation.

In our first predictive model, we used the inter-tweet delay

distribution of each class in order to generate a corresponding

cumulative distribution function (CDF). The CDF of the inter-

tweet delay t describes the probability that a tweet will occur given

that t seconds have passed since the last tweet. The actual

(observed) inter-tweet delay of the tweet we wanted to predict

(among the left-out sample’s tweets) was then used to compute a

step function as follows:

step(t)~

0 if tvt

1 if t§t

8><
>: ð3Þ

where t is the actual inter-tweet delay of the left-out sample’s

tweet, which we aimed to predict. This step function represents the

observed cumulative probability of a tweet occurring t seconds

after the previous tweet: because the tweet occurred exactly after t
seconds, this probability is 0 before t, and 1 after t. For each tweet

of the sample user account, a different step function was

computed. In order to evaluate the predictive model, each step

function was compared to the class CDF using the coefficient of

determination R2. The R2 between each step function (observed

data) and the class CDF (predictive model) was calculated as

1{SSerr=SStot, where SSerr is the sum of squares of residuals, and

SSerr is the total sum of squares.

As an illustrative example, the prediction for 5 sample tweets in

the personal accounts class is demonstrated in Figure 1. Figure 1

(a) shows the CDF computed for the personal accounts class using

N{1 accounts (in red), as well as the step functions computed for

5 tweets of the left-out account (in blue). In order to evaluate how

well the CDF fits each step function, we show in Figure 1 (b) a 3-

dimensional histogram where the axis on the left of the plane

corresponds to the value of the CDF obtained for the inter-tweet

delay (predicted value), and the axis on the right corresponds to

the value of the step function obtained for the same delay (actual

value, which is either 0 or 1). A perfect predictive model would

have all data points grouped in bins f0,0g and f1,1g, indicating

that the CDF models the step functions exactly and thus all

predicted and actual values coincide. The fact that these bins have

much higher probabilities than all others in the histogram

illustrates the model’s accuracy.

In addition to cross-validation, we also tested our single-

distribution predictive model using separate training and test

datasets. We varied the sizes of the training and test sets, starting

with 30% and 70% of the samples, respectively, then increasing

the training set by 10% in each experiment, until we had 70% of

samples for training and 30% for testing. In each of these set ups,

we repeated the experiment 10 times, each time reshuffling the

samples among each class. The results of these experiments are

presented in the next section.

In a slightly more elaborated version of the predictor, we used

the same predictive model but with separate inter-tweet delay

distributions for each hour of the day. Each inter-tweet delay data

point was associated with an hour of the day based on the

timestamp of the tweet that occurred before that delay. This

resulted in in 24 different probability distributions for the inter-

tweet delay, one for each hour of the day. After computing the 24

distributions, we selected which distribution to use according to

the timestamp of the sample user’s last tweet. Although they do not

follow a standard model for prediction, both our models are based

on simple probability and statistics principles [18].

Scaling-Laws of Human Communication from Twitter
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Results

Tweeting Activity Analysis
We now present the statistical analysis of the dataset retrieved

through our Twitter crawler application. This dataset contains 100

manually identified and verified Twitter accounts for each of the

three account classes, namely ‘‘personal’’, ‘‘managed’’, and ‘‘bot-

controlled’’, and was used for analysing and comparing the

behaviour of users in each account class. All managed accounts

selected are maintained by large, well-known corporations, and

the bot-controlled accounts were chosen based on online lists of

Twitter bots. Apart from manual selection, the collected data was

not filtered in any way. Table 1 shows the average, minimum and

maximum number of days that accounts were active for each class.

We present an analysis of the periodicity of tweets in Figure 2,

which contains the periodogram power spectral density estimation

of tweeting activity for each account class. No relevant predom-

inant frequencies were found in this analysis.

The two main properties of the data studied in this paper were

the tweet time (hour of the day in the respective timezone and day

of the week) and the inter-tweet delay, i.e., the amount of time

elapsed between two consecutive tweets by the same user. The

timestamps of tweets were adjusted to the timezone of each user

and users who did not specify their timezone were hence discarded

from this analysis. Consequently, our dataset was reduced to 86

personal accounts, 91 managed accounts and 67 bot-controlled

accounts, and we used a total of 51,924 tweets from personal

accounts, 67,436 tweets from managed accounts and 45,615

tweets from bot-controlled accounts.

We begin by studying the inter-tweet delay distributions in each

class. Figure 3 shows, for each class, a scatter plot of individual

inter-tweet delay standard deviations vs. inter-tweet delay means

(black line denotes linear proportionality). The linear fits show that

the variability of inter-tweet delay is closely proportional to mean

inter-tweet delay, i.e. inter-tweet delays exhibit signal-dependent

noise characteristics. Figure 4 (a) shows the probability density

function (PDF) for the inter-tweet delay in each class, while

Figure 4 (b) shows the complementary cumulative distribution

function (CCDF) for each class (blue curve - personal; pink curve -

managed; orange curve - bot), as well as the power-laws fitted to

the tail of each class distribution.

The power-law decrease in the tail we have observed for this

instance of broadcast communication is in accordance with results

previously obtained for peer-to-peer communication, such as inter-

letter, inter-email and inter-webpage delay [10,14,15]. To

correctly fit the power-laws, we adopted maximum likelihood

estimators and a goodness-of-fit approach for estimating the lower

cutoff of the power-laws [20]. For the personal accounts inter-

tweet delay distribution we obtained a slope of -2.38, from which

we conclude that the tail of this distribution is well approximated

by a power-law P(t)!t{a, where a~2:38+0:059. For managed

accounts, typically controlled by more than one person, we

obtained a~2:88+0:16, and for bot-controlled accounts we

obtained a~2:71+0:18. The detailed statistics of the power-law

fit for each account class are shown in Table 2. In order to verify

that these distributions were not generated by the same model, we

performed the two-sided Kolmogorov-Smirnov test between each

pair of classes, which rejected the null hypothesis at the 5%

significance level in each pair. Thus, the inter-tweet delay

distributions were statistically significantly different.

We analysed the time of day tweet statistics for each user in each

class using circular statistics and fitted a von Mises distribution to

each account. To characterise tweet time variability around the

mean, we converted the concentration parameter k of the von

Mises distribution into a dispersion measure (s~

ffiffiffi
1

k

r
), which is

unit equivalent to standard deviations for the Gaussian distribu-

tion. Figure 5 shows, for each class, a polar plot of tweet hour of

the day means (in the accounts local time zone) against individual

tweet time variability.

Figure 1. Plots illustrating the methods used for the computation and evaluation of the predictive algorithms. (a) The CDF computed
for the personal accounts class using N{1 accounts is shown in red, while the step functions computed for 5 tweets of the left-out account are
shown in blue. The CDF corresponds to the probability that a tweet will be posted t seconds after the previous tweet (predicted probability), while
the step functions correspond to the observed probability for the occurrence of tweets (observed or actual probability). A perfect prediction for a
specific tweet would mean that the CDF coincides exactly with the step function for that tweet. (b) In this histogram, the axis on the left of the plane
corresponds to the value of the CDF obtained for the inter-tweet delay (predicted value), while the axis on the right corresponds to the value of the
step function obtained for the same delay (actual value, which is either 0 or 1). A perfect predictive model would have all data points grouped in bins
f0,0g and f1,1g, indicating that the CDF models the step functions exactly and thus all predicted and actual values coincide. The fact that these two
bins have much higher probabilities than all others in the histogram illustrates the model’s accuracy.
doi:10.1371/journal.pone.0065774.g001
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Figure 6 shows the pooled empirical PDFs for the hour of the

day for all tweets in each class. We can observe that personal

accounts increase their tweeting activity level as the day

progresses, peaking at 9pm. Managed accounts tend to tweet

more during work hours, between 9am and 6pm. The dip in the

distribution at 12pm can probably be explained by lunch hour

breaks. Finally, the distribution for bot-controlled accounts

exhibits a variety of peaks, which is probably because their

behaviour is not associated with a structured daily routine.

The weekly tweeting patterns for the 65 most active users from

each class are shown in Figure 7, where each tile is associated with

a user and a day of the week, and the tile’s colour intensity is

proportional to the amount of tweets posted by that user on that

day. Managed accounts have higher tweeting activities during

work days, while personal accounts present a homogenous

behaviour throughout the week. The activity for most bot-

controlled accounts shows little correlation with the days of the

week. We do not distinguish between week days and weekends in

our analysis since we are interested in the global timing behaviour

of each user, regardless of the day of the week. The hourly

tweeting patterns for the same users are shown in Figure 8, where

each tile is associated with a user and an hour of the day, and the

tile’s colour intensity is proportional to the amount of tweets

posted by that user at that hour. In this figure we can clearly

observe the differences in behaviour between the three classes:

personal accounts tend to tweet more in the afternoons and

evenings; managed accounts tweet more during work hours; and

bot-controlled accounts either have a regular behaviour, tweeting

at an approximately constant rate throughout the day, or display a

low tweet rate with a very high peak at one or a few specific hours.

These behavioural plots show that the tweeting patterns for both

personal and managed accounts are intrinsically related to a real

life daily routine, whereas bot-controlled accounts exhibit an

artificially designed behaviour. The very distinct patterns obtained

for the three account classes allowed us to use tweeting behaviour

as a classification criterion.

Automatic Recognition of User Account Types
We now analyse the results obtained with our classification

algorithms. In the cross-validation phase, four attempts of

classification were made with each algorithm: using only inter-

tweet delay distributions (ITD); using only tweet time distributions

(TT); using the joint distribution of both features as independent

variables (JI); and using the joint distribution of both features as

non-independent variables (JNI). Table 3 shows the percentage of

correct classification for the 2-Classifier in each of the four trials,

with 86 samples from each class. We can see from this table that

using the marginal distribution for tweet time yielded better results

than using the one for inter-tweet delay (78.5% vs. 71.5%), which

is reasonable since the tweet time distributions, presented in

Figure 6, exhibit particularly distinct shapes among the three

tweeter classes. As one would expect, using both ITD and TT

features yielded better results than using only one feature (83.1%

vs. 71–79%). Moreover, the classifier using the joint distribution of

the two variables under the independence assumption, with 83.1%

correctness, generated better results than the one with the non-

independence assumption, with 82.6%. We believe this is due to

subsampling of the joint distribution, which causes interpolation to

be poor.

Table 4 shows the percentage of correct classifications for the 3-

Classifier, in which we used 67 samples from each class. The 3-

Classifier performed slightly worse than the 2-Classifier due to the

larger number of classes. From this table, we can see that again the

tweet time marginal distribution led to better classification results

than the inter-tweet delay distribution and that in the 3-Classifier

this difference was even more pronounced (70.6% vs. 54.2%).

Similarly, the variable independence assumption again yielded

better results than the non-independence assumption (73.1% vs.

52.7%). The good performance under the independence assump-

tion suggests that the tweet time and inter-tweet delay variables are

Figure 2. Power spectral density estimation of tweeting activity for each class. Log-log plots showing power spectral density (power per
frequency in units of dB/Hz) vs. frequency (Hz) for each account class. This scale-free relationship suggests that there are no relevant dominant
frequencies in tweeting activity.
doi:10.1371/journal.pone.0065774.g002

Table 1. Number of days ‘‘on duty’’ for each account class.

Personal Managed Bot

Average 477+357 290+368 464+638

Minimum 24 0:5 0:8

Maximum 1556 1527 3994

Average + SD, minimum and maximum number of days that accounts were
active (posting tweets that were collected by our crawler) in each class.
doi:10.1371/journal.pone.0065774.t001

Scaling-Laws of Human Communication from Twitter
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rather independent in terms of account class. To check for

independence, we performed both Pearson and Kendall’s t tests

between the values obtained for these variables in each class. As

shown in Table 5, the correlation values obtained for the two

variables was very low in all cases, which proves that they are

indeed independent.

We also used separate training and test datasets in order to

evaluate the performance of our most successful classification

system, which uses the joint distribution of both inter-tweet delay

and tweet time features as independent variables. The samples in

the training set were used to generate the probability distributions,

then each sample in the test set was classified following the

procedure described in the Methods. Figure 9 shows the average

percentage of correct classification obtained with the 2-Classifier

and the 3-Classifier when varying the training dataset size from

5% to 70% of the total number of user accounts. Both

classification algorithms are shown to be robust to the decreasing

size of the training dataset.

To further verify the validity of ours models, we compared their

performance to that of randomised models, created by randomly

shuffling the data across the 3 classes, thus generating probability

distributions that included data from all classes. The performance

of these randomised models was therefore governed by chance,

yielding an average 52:2%+18:2% correct classification for the

randomised 2-Classifier and an average 32:3%+5:6% correct

classification for the randomised 3-Classifier. Despite having an

expected decrease in classification correctness as we decreased the

size of the training dataset, both our algorithms performed well

above the randomised models, even when the training dataset

comprised only 30% of the samples (81.2% vs. 52.2% for the 2-

Classifier, and 70.8% vs. 32.3% for the 3-Classifier).

Previous research applying content-based classification achieved

correctness ratios from 82.8% to 94.9% when distinguishing

Figure 3. Scatter plots of inter-tweet delay standard deviation vs. mean. Scatter plots showing, for each individual, the inter-tweet delay
standard deviation vs. the inter-tweet delay mean (A: 86 personal accounts, B: 91 managed accounts, C: 67 bot accounts). Linear fits (the black line
denotes the unit slope) show that variability of inter-tweet delay is closely proportional to mean inter-tweet delay, i.e. inter-tweet delays exhibit
signal-dependent noise characteristics.
doi:10.1371/journal.pone.0065774.g003

Figure 4. Distributions for the inter-tweet delay and fitted power-laws. (a) Probability density function (PDF) for the inter-tweet delay of
each class. The distributions were created using 100 logarithmically spaced bins between decades 100 and 108. The power-laws fitted to the tails of
the distributions have an exponent a~2:38+0:059 for personal accounts, a~2:88+0:16 for managed accounts, and a~2:71+0:18 for bot-
controlled accounts. (b) The complementary cumulative distribution function (CCDF) for the inter-tweet delay in each class is shown along with the
power-law distribution fitted to the tail. The full statistics of the power-law fits are presented in Table 2.
doi:10.1371/journal.pone.0065774.g004
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between human, bot and cyborg users [17]. In contrast, our

approached using the timing of tweets alone resulted in an average

75:8%+4:8% correctness when distinguishing between personal,

managed and automated accounts (using 70% of samples for

training). The classification correctness percentage we have

obtained is only slightly worse than those presented in related

Table 2. Inter-tweet delay distributions power-law fit
statistics.

Personal Managed Bot

a (exponent) 2:38+0:059 2:88+0:16 2:71+0:18

xmin (lower cutoff) 3:92|105 3:97|105 8:59|105

p 0:137 0 0:62

Power-law fits to the tail of each class inter-tweet delay distribution in terms of
power-law exponent (mean a+SD and cut-off value xmin above which power-
law tails are observed). The p-value for the fit statistics was obtained by using
the Kolmogorov-Smirnov statistic as a distance measure between the data and
the fitted power-laws.
doi:10.1371/journal.pone.0065774.t002

Figure 5. Polar plots of mean tweet time of the day and variability. Polar plots showing, for each individual of each class (A: 86 personal
accounts, B: 91 managed accounts, C: 67 bot accounts) on the polar axis the mean tweet time hour of the day (in local time zone) and on the radial
axis the circular dispersion of the von Mises distribution (equivalent to the standard deviation). Note that the three subfigures have different
dispersion ranges.
doi:10.1371/journal.pone.0065774.g005

Figure 6. Probability density functions for tweet times. The
horizontal axis corresponds to the hours of the day, in hourly bins from
0 (midnight) to 23 h (11pm). All timestamps are in the local time zone
of each user.
doi:10.1371/journal.pone.0065774.g006

Scaling-Laws of Human Communication from Twitter

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e65774



work, with two important advantages: we did not decide a priori

what features were characteristic of each account class, and our

classification is based solely on tweeting behaviour and does use

any other account feature or require parsing of tweet contents.

The fact that both our classifiers generated good results when

operating under the assumption that the inter-tweet delay and

tweet time variables are conditionally independent is an

unexpected yet interesting result. Intuitively, it is reasonable to

assume that these two variables are closely related, since the

amount of time a user waits before tweeting must be influenced by

the time of the day when their last tweet was posted. However, our

results in both the classification algorithms and the correlation tests

indicate that these two variables are in fact not so closely related,

which could be explained by the existence of external factors

which influence them more strongly than they influence each

other. For the tweet time, this external factor is probably the daily

routine of a user, which has a much bigger impact on the time of a

user’s tweet than the inter-tweet delay. For the inter-tweet delay,

we conjecture that this factor is the universal laws that govern the

timing of many human activities, as found in previous research in

other modes of communication [10,14,15,21] and observed in our

own data analysis.

Figure 7. Number of tweets on each day of the week for each account class. Rows correspond to 65 individual accounts and columns
correspond to the days of the week. The mean tweet count for each tile is represented by the colour scale. The 65 most active accounts from each
class are shown, and users are sorted by increasing total number of tweets collected, thus accounts have the same order as in Figure 8.
doi:10.1371/journal.pone.0065774.g007

Figure 8. Number of tweets at each hour for each account class. Rows correspond to 65 individual accounts and columns correspond to the
hours of the day. The mean tweet count for each tile is represented by the colour scale. The 65 most active accounts from each class are shown, and
users are sorted by increasing total number of tweets collected, thus accounts have the same order as in Figure 7.
doi:10.1371/journal.pone.0065774.g008
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Prediction of Next Tweet’s Time Distribution
We can predict, using a simple method, the time to the next

tweet, based on the time that has passed since the last tweet with

good accuracy. We tested two ways of predicting tweet times, 1. a

simple one using just the inter-tweet-time distribution for each

class and 2. a more complex representation that accounts for the

inter-tweet-time distribution on a given time-of-the-day. This

means that the first prediction method would ignore for an

individual’s next tweet time prediction whether the person may be

currently in the middle of their night or in their working hours.

Surprisingly the first method is about as good in prediction

performance as the second prediction method. In these algorithms,

we used 67 samples from each class, and computed the coefficient

of determination R2 as a goodness of fit measure between our

simple model and the data. Table 6 shows the average R2

obtained for each account class by our predictive models.

Differences between the two methods were negligible for

individual and managed accounts (R2~0:66 vs 0:66 and

R2~0:72 vs 0:72, respectively), or small for robot accounts

(R2~0:52 vs 0:57).

The average R2 results of 0:66+0:07 for personal accounts and

0:72+0:09 for managed accounts are in a good range for human

data. In order to evaluate the statistical significance of these results,

we applied the same predictive model (CDFs generated for each

account class) to predict randomly generated data. We used a

pseudo-random number generator, drawing numbers from a

uniform distribution over range 1 to 1,000,000, thus creating

random test samples. In these tests, the average R2 obtained when

measuring the fit of the CDF to the test samples’ step functions was

0:33+0:08, which is much lower than any of the values obtained

for the real data. Conversely, we used the randomly generated

data to create a null model and used this model to predict our real

test samples. In these tests, we again obtained average coefficients

of determination well below our prediction results, as shown in

Table 6. We can conclude that our results are statistically

significant, but could potentially be improved by the use of

additional information about the tweeting patterns observed.

To test the robustness of our single-distribution predictive

model, we performed experiments using separate training and test

datasets. We varied the sizes of the training and test sets, starting

with 30% and 70% of the samples, respectively, then increasing

the training set by 10% in each experiment, until we had 70% of

samples for training and 30% for testing. In each of these set ups,

we repeated the experiment 10 times, each time reshuffling the

samples among each class. Table 7 shows the average R2 obtained

in these experiments. We can see from these results that the

predictive model is robust to the decreasing size of the training

dataset. Furthermore, the lower average R2 and larger standard

deviations obtained for the bot-controlled class indicate that the

behaviour of these accounts in less predictable by the model than

those of human-controlled accounts. This is expected, since bot-

controlled accounts have programmed activities and are therefore

less uniform in their behaviour.

Discussion

We have investigated the nature of broadcast communication

by first developing a system to collect large-scale datasets from

Twitter, then studying the behaviour of different types of user

accounts: personal, belonging to a single individual; managed,

belonging to a corporation; and bot-controlled, which are

administered by a computer program. We examined the inter-

tweet delay and tweet time distributions for each account class,

and found that they present very distinct tweeting patterns,

allowing us to distinguish between them in an automated manner.

We also found that the distribution of a user’s tweets throughout

the day is closely related to their daily routine, and that the

distribution of the inter-tweet delay, i.e., the time interval between

two consecutive tweets by the same user, displays a power-law

decrease in its tail. This last result agrees with and extends the

findings of many other studies in Computational Social Science

[9,10,14,15,21,22], reinforcing the idea that a bursty, fat-tailed

behaviour is characteristic of the time of many human actions.

All three classes of Twitter accounts considered, even the bot-

controlled one, did not exhibit a characteristic time scale in their

tweet periodicity, but rather a scale-free behaviour. Characterising

the fluctuations in tweet activity, we found that inter-tweet delay

variability scales in proportion to the mean inter-tweet delay,

known as signal-dependent noise in neuroscience [1]. This abstract

decision to post a tweet thus shows the same characteristic

variability structure of both neuronal and behavioural variability

(reviewed in [1]). We found that the power-law distributions of

inter-tweet delays, particularly the tails of the distribution, exhibit

a pronounced difference across the three classes of Twitter

Table 3. 2-Classifier correctness.

ITD 71.5%

TT 78.5%

JI 83.1%

JNI 82.6%

Correct classification percentage for the 2-Classifier in four attempts during the
cross-validation phase: using the marginal distribution for inter-tweet delay
(ITD), using the marginal distribution for tweet time (TT), using the joint
distribution of both properties as independent variables (JI), and using the joint
distribution of both properties as non-independent variables (JNI).
doi:10.1371/journal.pone.0065774.t003

Table 4. 3-Classifier correctness.

ITD 54.2%

TT 70.6%

JI 73.1%

JNI 52.7%

Correct classification percentage for the 3-Classifier in four attempts during the
cross-validation phase: using the marginal distribution for inter-tweet delay
(ITD), using the marginal distribution for tweet time (TT), using the joint
distribution of both properties as independent variables (JI), and using the joint
distribution of both properties as non-independent variables (JNI).
doi:10.1371/journal.pone.0065774.t004

Table 5. Correlation between tweet time and inter-tweet
delay variables.

Personal Managed Bot

Pearson 0:0047 0:0133 0:0048

Kendall’s t {0:0247 {0:0023 {0:0646

To test for independence between the tweet time and inter-tweet delay
variables, we performed Pearson’s and Kendall’s t correlation tests using all
samples in each account class. All tests resulted in very low values, proving that
the two variables are indeed independent.
doi:10.1371/journal.pone.0065774.t005

Scaling-Laws of Human Communication from Twitter

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | e65774



accounts considered. Bot accounts describe a more unstructured

tweet time behaviour both throughout the day and the week, when

compared to human-driven accounts. Personal accounts tweeted

more evenly throughout the week and on each day more tweets

were recorded during typical awake time hours (7am to midnight).

Managed accounts were more active during the 5 working days

and during reasonable working hours (8am-8pm). Thus, our

Twitter activity analysis showed that there are different patterns of

tweeting activity across the Twitter account classes, suggesting that

classification of account holders is possible without having to parse

the content of tweets.

We created two naive Bayes classification algorithms based on

the empirical probability tweet time distributions, the first one to

distinguish between personal and managed accounts, and the

second one to classify all three types of accounts studied (personal,

managed and bots). Both classifiers performed well, resulting in

84:6%+2:2% correctness for the 2-Classifier and 75:8%+4:8%
for the 3-Classifier, with the best results being generated by the use

of joint probability distributions of inter-tweet delays and tweet

times, assuming independence of the two variables. The fact that

our classification algorithms performed well under the assumption

that these two properties are independent indicated that they are

not closely related, which we have proved by performing

correlation tests between the two variables for all three account

classes. Previous research using contextual analysis and tweet

content analysis achieved correctness ratios from 82.8% to 94.9%

[17]. In contrast, our approached using tweet timing alone

resulted in 75:8%+4:8% correctness when distinguishing between

the three account classes studied.

Additionally, we implemented two predictive models in order to

attempt predicting when the next tweet of a user would be posted.

In these probabilistic models, we used the inter-tweet delay

distribution of a given class in order to predict the next delay for a

user of the same class. In our first attempt at probabilistic

prediction, we used only the inter-tweet delay distribution of a

given class in order to predict the next delay for a user of the same

class. We then tried using separate distributions for each hour of

the day, adding to our model the information about the time of the

tweets. The use of separate prediction hours based on the time-of-

day only marginally improved the prediction results, if at all.

Interestingly, we were better able to predict human-driven next-

tweet times than for the robot-driven accounts. Thus the fact that

robot-driven tweet times are less predictable than human tweet

times may be the result of a. bot-controlled accounts having

programmed activities which vary considerably across individual

bots and are therefore less uniform in their behaviour or b. the

result of bot-controlled accounts being more driven in a reflexive

mode responding to external events (e.g. news). To the best of our

knowledge, there has been no previous research attempting to

predict the timing of tweeting activity or related human activities,

and we present our model results here as a first benchmark.

The identification and classification of specific types of users on

Twitter can be useful for a variety of purposes, from the

computational social sciences, focusing advertisement and political

campaigns, to filtering spam, identity theft and malicious accounts.

The occurrence of spamming and campaigning on Twitter has

prompted several studies on methods for identifying certain types

of behaviour that are characteristic of ‘manipulators’. Chu et al.

Figure 9. Classification correctness obtained with varying
training dataset size. We evaluated the robustness of our
classification algorithms by testing with different sizes for the training
and test datasets. The horizontal axis shows the percentage of user
accounts used for training, as well as the number of accounts used for
training in the 2-Classifier (in blue) and in the 3-Classifier (in red). The
remaining accounts were used for testing. Both algorithms perform well
above a randomised model in all experiments, even when the training
dataset comprised only 30% of the samples (81.2% vs. 52.2% for the 2-
Classifier, and 70.8% vs. 32.3% for the 3-Classifier). In these experiments,
we used the joint distribution of inter-tweet delay and tweet time as
independent variables, and used a total of 86 accounts from each class
in the 2-Classifier and 67 accounts from each class in the 3-Classifier.
Each experiment was repeated 10 times, and at each time the samples
were randomly shuffled among each class.
doi:10.1371/journal.pone.0065774.g009

Table 6. Predictive model average R2.

Personal Managed Bot

Single Distribution 0:66+0:07 0:72+0:09 0:52+0:21

Multiple Distributions 0:66+0:08 0:72+0:08 0:57+0:23

Null Model 0:34+0:06 0:34+0:09 0:39+0:07

Average + SD coefficient of determination (R2) obtained for each class by the
two probabilistic prediction models during cross-validation. We compare the
performance of our models to the results of a null model, which was created
with random samples generated from a uniform distribution over range 1 to
1,000,000.
doi:10.1371/journal.pone.0065774.t006

Table 7. Tweet-time predictive model R2 for varying training
set sizes.

Personal Managed Bot

30% 0:62+0:10 0:65+0:12 0:57+0:25

40% 0:63+0:08 0:67+0:10 0:58+0:26

50% 0:64+0:07 0:69+0:10 0:58+0:24

60% 0:66+0:05 0:70+0:09 0:60+0:23

70% 0:66+0:05 0:71+0:09 0:61+0:23

Average + SD for the coefficient of determination (R2) obtained for each class
by the predictive model when varying the size of the training dataset, starting
with 30% of samples and increasing up to 70% of samples (the remaining
samples were used for testing).
doi:10.1371/journal.pone.0065774.t007
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[17] investigated the differences between Twitter accounts

controlled by humans, bots, and cyborgs by studying the message

content of tweeting behaviour, tweet content and account

properties. Despite attaining a high classification success rate,

the system heavily relies on processing the contents of tweets,

which can be expensive and amenable to manipulation as in

email-based spam. Similarly, Lumezanu et al. [16] investigated

how Twitter is used to spread propaganda by studying the Twitter

behaviour of ‘‘hyperadvocates’’. In contrast to these studies, which

rely on context and content-parsing to operate, we used the timing

of tweet actions as only variable, abstracting away from

complications of natural language processing and context-factors.

We were able to reliably detect the difference between true

individuals and public-relations managed accounts – ultimately

due to the nature of one being personal activity, the other resulting

from an employment type activity. Moreover, we can reliably

distinguish these human tweeters from robot-based tweeters on

their relative tweet-timing distributions.

In the context of computational approaches to study human

behaviour, we have used a free, publicly harvestable resource to

study human behaviour patterns. We have measured and shown

that Twitter-using individuals have a distinct and characteristic

structure in their tweeting behaviour, characterised by the tails of

their inter-tweet time distribution and their rather more unstruc-

tured hourly tweet probability. Related work in Computational

Social Science [10,14,15] has been concerned with the timing of

peer-to-peer human communication, such as emails, letters and

phone calls, for which the power-law slopes obtained were

between 1 and 1.5, while our results show 2:38+0:059 for

personal accounts and 2:88+0:16 for managed accounts. In

contrast to previous studies, we have obtained results for broadcast

communication that extend the general conclusions about the

nature of human communication behaviour to this more novel

form of personal communication. Our findings may be easily

applied and extended to other forms of broadcast communication

in public spaces, be it social networks or information sources such

as blogs. Our work suggests that inter-communication intervals

may show characteristic scaling-law exponents in human broad-

cast communication and may also be applied to the analysis of

animal and plant broadcast communication timings, as in the case

of mating calls or chemical signals. The finding that individual

communication and broadcast communication are markedly

different in human electronic communication may suggest that

different (neuronal) mechanisms are at play in decision making

about communication initiation, however this would need to be

verified and compared to non-electronic forms of interaction. We

note that the inter-event statistics of electrical impulses (spikes) of

single neurons exhibit the same variability structure and power-

law tails in their inter-event statistics. Thus, some of the statistical

features we observe in our broadcast communication data and

others in peer-to-peer communication, may be a more general

feature of distributed communication networks, applicable from

neural circuits to human society.
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