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Abstract

Ultrasound imaging has developed into an indispensable imaging technology in medical

diagnosis and treatment applications due to its unique advantages, such as safety, afford-

ability, and convenience. With the development of data information acquisition technology,

ultrasound imaging is increasingly susceptible to speckle noise, which leads to defects,

such as low resolution, poor contrast, spots, and shadows, which affect the accuracy of phy-

sician analysis and diagnosis. To solve this problem, we proposed a frequency division

denoising algorithm combining transform domain and spatial domain. First, the ultrasound

image was decomposed into a series of sub-modal images using 2D variational mode

decomposition (2D-VMD), and adaptively determined 2D-VMD parameter K value based on

visual information fidelity (VIF) criterion. Then, an anisotropic diffusion filter was used to

denoise low-frequency sub-modal images, and a 3D block matching algorithm (BM3D) was

used to reduce noise for high-frequency images with high noise. Finally, each sub-modal

image was reconstructed after processing to obtain the denoised ultrasound image. In the

comparative experiments of synthetic, simulation, and real images, the performance of this

method was quantitatively evaluated. Various results show that the ability of this algorithm in

denoising and maintaining structural details is significantly better than that of other

algorithms.

Introduction

In the medical field, the rapidly developing ultrasound technology has become one of the most

important imaging forms. Compared with CT, X-ray, MRI, PET and other imaging technolo-

gies, advantages of ultrasound technology include its high safety, absence of radioactivity, and

low cost. It has been widely used in clinical diagnosis and treatment [1,2]. It plays an irreplace-

able role in breast, abdominal organs, and fetal development of pregnant women [3–5].

With the development of engineering technology, people apply the dynamic frequency

scanning technology to ultrasound imaging instruments to improve the image quality of ultra-

sound imaging. It can automatically switch the working frequency according to the depth of

the detection target, which improves the penetration depth of the detection while ensuring the
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resolution of ultrasound imaging [6]. However, in the acquisition and transmission of the

ultrasound image, the acoustic impedance of various human tissues is uneven and the spatial

distribution is random, causing the scattering particles to interfere with one another; this phe-

nomenon, coupled with the frequent switching of the working frequency, causes speckle noise

with different brightness to form easily in the image [7]. Speckle noise considerably reduces

the image quality, blurs the edge details, seriously affects the identification and positioning of

the lesion area, and complicates the inspection of the subtle lesions; as such, the accuracy of

image feature extraction, segmentation, registration, and classification is reduced [8,9], thus

increasing the difficulty of medical diagnosis and treatment. Therefore, finding an effective

method of denoising medical ultrasound images [10,11] has become a challenge in current

research. Many medical ultrasound image denoising methods have been continuously pro-

posed. Two types of denoising methods are commonly used. One type based on the spatial

domain includes median filter [12], Lee filter [13], Kuan filter [14], Frost filter [15], OBNLM

[16], SRAD [17], and BM3D [18]. This kind of processing algorithm directly filters the image,

these algorithms are directly applied to the original image for denoising processing, in order to

obtain better noise removal information, the edges of the image are weakened, many high-fre-

quency information such as the fine structure of the image is filtered out, and the resolution of

the image is reduced. The other type is based on the transform domain, which uses mathemati-

cal transformation to convert the image from the transformation domain to the frequency

domain before denoising; examples include wavelet transform and Fourier transform [19,20].

Wavelet transform has a good denoising effect, but the algorithm itself can easily cause blurred

edges and involve the setting up of many parameters.

In 2014, Dragomiretskiy et al. proposed Variational Mode Decomposition (VMD) [21], a

new adaptive signal decomposition method. It addresses the shortcomings of traditional signal

decomposition methods and is widely used in mechanical fault diagnosis and feature extrac-

tion [22,23]; they extended the VMD algorithm to the 2D field. In recent years, 2D-VMD [24]

was introduced into image processing and has become a novel research direction. Suseelan

et al. [25] proposed a method to effectively defog a single image based on 2D-VMD. It can rec-

ognize and remove sub-modal images containing haze, achieve a dehazing effect, and

completely retain the edge information; U. Raghavendra et al. [26] applied 2D-VMD to the

texture feature extraction of ultrasound images, analyzed the structural changes between the

images after decomposition, and filtered out the ultrasound images of heart failure; The above-

mentioned scholars used this decomposition method well to retain the image structure infor-

mation, but it has not been applied to image denoising. Wei Z [27] successfully applied

2D-VMD to the road surface image denoising field of road engineering, retaining the original

image information and improving the signal-to-noise ratio. Xiao et al. [28] proposed a method

of combining 2D variational modal decomposition and mutual information to denoise the

Digital Speckle Pattern Interferometry (DSPI) phase map, adaptively extracting noise-free

components to achieve the denoising effect. Liu et al [29] proposed a denoising method of

2D-VMD and adaptive median filtering. After the image was decomposed, only mode one was

selected as the image for subsequent denoising processing, which achieved improved results,

but discarded some high-frequency sub-modes of edge information. Most scholars in the

above-mentioned literature fully used the advantages of 2D-VMD adaptive decomposition,

which can effectively extract the feature information in the decomposed sub-image, and can

separate the noise to the greatest extent for processing, and retain the original image informa-

tion. However, when processing sub-modal images, some researchers disregard or discard

images that contain high-frequency information, resulting in the loss of detailed information.

In the decomposition process, 2D-VMD, similar to VMD, also has problems of over decompo-

sition and under decomposition (the value of K) [30]. However, none of the above-mentioned
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scholars gave a detailed explanation on the selection of the parameter K value and only used

empirical methods to determine or directly use the default value.

At present, the application of 2D-VMD on ultrasonic image denoising processing is not

well studied. In response to the above problems, this paper proposes an algorithm combining

frequency division in transform domain and denoising in spatial domain. First, the ultrasound

image was decomposed into sub-modal images of different frequency bands using 2D-VMD,

and the VIF difference between the sub-modal images is calculated. For the high-frequency

sub-modal images with considerable noise, BM3D is used for denoising, and the denoised

sub-modal images are reconstructed. Based on the difference in the iterative operation, the

appropriate K value is selected adaptively, and in the spatial domain, the low-frequency sub-

modal image is subjected to anisotropic diffusion filtering for denoising, and the final image is

obtained. Finally, compare and verify the synthetic image, simulated image and real image.

The experimental results show that this algorithm is better than other algorithms, while fully

denoising, it preserves the details of the image as much as possible.

The rest of this article is organized as follows: the second section introduces materials and

methods, including noise model, 2D-VMD, anisotropic diffusion filter, and BM3D; the third

section describes in detail the use of VIF to adaptively determine the parameter K value in

2D-VMD; and the fourth section simulation and experimental research and discussion. The

final summary is in Section 5.

Materials and methods

Speckle noise model

At present, the speckle noise in ultrasound images can be described as a multiplicative noise

model [7,31,32].

gðxÞ � f ðxÞZðxÞ ð1Þ

where x is the pixel position, g(x) is the observed image, f(x) is the original image, and η(x) is a

Gaussian noise.

Through logarithmic transformation, the above equation is converted into additive noise

that is convenient to handle, and the following equation is obtained:

logðgðxÞÞ � logðf ðxÞÞ þ logðZðxÞÞ ð2Þ

Many studies have shown that the standard speckle noise model can be accurately defined

as speckle noise in ultrasound images [33], and it has been widely used by many scholars [31–

33]. This model is shown in the following formula:

gðxÞ ¼ f ðxÞ þ f ðxÞnZðxÞ ð3Þ

Where factor is a parameter that defines the type of medical ultrasound image and is a zero

mean Gaussian distribution. In ultrasound image study, n is set to 0.5 because it represents

ultrasound data well. It is most suitable for ultrasound noise images. When n is equal to 1, the

model is the multiplicative noise. Therefore, in subsequent experiments, the above model is

considered to add noise.

2D-VMD theory

In medical ultrasound examination and diagnosis, the dynamic frequency scanning technol-

ogy relies on multi-frequency simultaneous transmission and reception of probes and variable

passband filters to realize the detection of superficial tissues and automatically adopt high
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operating frequencies. This technology is in contrast with traditional ultrasound instruments

that require manual probe replacement, and can work with the increase of tissue depth, result-

ing in the frequency to drop automatically. The multi-frequency simultaneous transceiver

probe can transmit sound waves with different frequency ranges at the same time. The fre-

quency range can reach 1.8–12 MHz, and the variable passband filter can automatically adjust

the passband according to depth. The echo signal in a narrow frequency range should be selec-

tively accepted and amplified, and the image fusion technology should be applied to fuse the

far-field image of the low-frequency signal and the near-field image of the high-frequency sig-

nal into an ultrasound image, which can easily cause noise overlap and accumulate.

2D-VMD was used to decompose and process the image. The overall framework of decom-

position is to construct and solve the mutated problem. We updated the bandwidth of each

mode to minimize the sum of all bandwidths and obtained the center frequency of each mode

and the corresponding mode [24]. 2D-VMD was used to decompose the ultrasound image

non-recursively and adaptively into sub-modal images of different frequency bands, treat the

retained detailed image information as low-frequency sub-images, and treat the images con-

taining significant noise and edge information as high-frequency images for sub-modal

images. The two types of images were separated and denoised separately.

In the 2D case, a half-plane of the frequency domain was set to zero, which is equivalent to

a vector, denoted as ωk. The 2D analytical signal is defined in the frequency domain as [24].

ûAS;kðo
!Þ ¼

2ûkðo
!Þ; if o!� o!k > 0

ûkðo
!Þ; if o!� o!k ¼ 0

0; if o!� o!k < 0

8
>><

>>:

ð4Þ

According to the frequency domain definition and Fourier transform characteristics of the

2D analytical signal, the relationship between the 2D analytical signal uAS,k(x) and the modal

function uk(x) was obtained as follows:

ûAS;kðo
!Þ ¼ ukð x

!Þ � dðh x!; o!kiÞ þ
i

pð x!; o!kÞ

� �

� ðh x!; o!k;?iÞ ð5Þ

Where � indicates convolution and ωk indicates the reference direction for calculating the

analytical signal. The corresponding constrained mutated model can be expressed as

min
X

k

akkr½uAS;kð x
!Þe� jho

!
k; x!ki�k

2

2

( )

s:t:
X

k

uk ¼ f ð6Þ

The constrained mutated of bandwidth was converted into an unconstrained mutated solu-

tion:

Lðfukg; fokg; lÞ≔
X

k

ak r½uAS;kðxÞe
� jhok ;ti�

�
�
�

�
�
�

2

2

þ f ðxÞ �
X

k

ukðxÞ
�
�
�
�

�
�
�
�

2

2

þ

�

lðxÞ; f ðxÞ �
X

k

ukðxÞ
�

ð7Þ

Where α is the penalty factor and λ is the Lagrangian multiplier. The alternating direction

method of multiplication operator was used to solve the above mutated problem and obtain

the saddle point of the above formula by alternately updating unþ1
k , onþ1

k , l
nþ1

k . Pasval Fourier
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isometric transform was used for conversion to the frequency domain

ûnþ1
k ðo
!Þ ¼ f̂ ðo!Þ �

X

i6¼k

ûkðo
!Þ þ

l̂ðo!Þ

2

 !
1

1þ 2ajo!� o!kj
2

8o!2 Ok : Ok ¼ fo
!jo!� o!k � 0g

ð8Þ

Similarly, the update formula of o!nþ1
k frequency domain can be obtained as follows:

o!nþ1

k ¼

Z

Ok

o!jûkðo
!Þj

2

do!

Z

Ok

jûkðo
!Þj

2

do!
ð9Þ

Where ûnþ1
k ðoÞ is the result of Wiener filtering, onþ1

k is the center of gravity of the power

spectrum of the modal function; After performing the inverse Fourier transform on fôkðoÞg,

the corresponding real part {uk(t)} is obtained.

The specific process steps of the 2D-VMD algorithm are as follows [24]:

Initialize n = 0 for fû0
kg, fô

0
kg, fl̂

0
kg.

Update according to the following formula uk in the frequency domain:

ûnþ1
k ðo
!Þ ¼ f̂ ðo!Þ �

X

i6¼k

ûkðo
!Þ þ

l̂ðo!Þ

2

 !
1

1þ 2ajo!� o!kj
2

8o!2 Ok : Ok ¼ fo
!jo!� o!k � 0g

Update ωk according to o!nþ1
k ¼

Z

Ok

o!jûkðo
!Þj

2

do!

Z

Ok

jûkðo
!Þj

2

do!

Update value λ, where l̂nþ1ðoÞ  l̂nðoÞ þ t f̂ ðoÞ �
X

k

ûnþ1

k ðoÞ
� �

Until

X

k

kûnþ1

k � ûnkk
2

2

kûnkk
2
2

< Ke is satisfied, the iteration ends.

Anisotropic diffusion filtering

Traditional filters can remove the noise information in the image effectively and smoothen the

image. However, these filters weaken the edge information, and as the number of iterations of

the filtering operation continues to increase, the boundary contour may be completely lost. To

solve this problem, Perona and Malik proposed anisotropic diffusion filter after exploring the

characteristics of the thermal diffusion equation [34]. This filter has good noise resistance and

is superior to other methods in preserving the edge information of the original image. It has

been widely used in various image processing fields, including medical images [17,35]. Its

principle is the treatment of the initial image as a heat field, and each pixel in the image is

regarded as a heat flow. According to the gradient value of the current pixel and surrounding

pixels and the gradient threshold value to determine whether to diffuse to the surroundings,

the neighborhood weighted average is used to removes small gradient changes caused by

noise. When a large difference exists between the pixels in a certain area and the current pixels,

the pixels in this area may contain the edge information of the picture. The current pixels will
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not diffuse in this direction, so the edge of the image is preserved while filtering information.

After repeated iterations, the noise of the image is removed. For medical ultrasound images,

the edge information covers some subtle tissue information, which is extremely important for

doctors. The decomposed low-frequency sub-modal image contains most of the image infor-

mation, and the pixel changes are complex. The filter transforms the corresponding diffusion

intensity value according to the size of the pixel gradient value to obtain a better denoising

effect. The size refers to the difference between the gradient values of adjacent pixels, according

to the difference between this value, change the corresponding diffusion intensity value. The

filter selects the corresponding diffusion intensity value according to the difference between

the gradient values of adjacent pixels. The edge information is protected, so this method

should be considered to denoise the de-noising low-frequency sub-modal image. The denois-

ing model is defined as follows:

@Iðx; yÞ ¼ Div½cðjrIjÞ � I�

Iðx; y; 0Þ ¼ I0ðx; yÞ
ð10Þ

Where I(x, y, t) is the image signal at time t, div is the divergence operator,r is the

gradient operation, krk is the gradient amplitude, and ckrk is the spread function.

BM3D theory

BM3D is currently one of the most effective algorithms in image noise reduction. It uses the

similarity in the image itself to effectively combine non-local methods and change domain

methods. It is applied to ultrasound images, taking advantage of the small change in gray value

in the image, Utilizing the characteristics of small gray value changes in ultrasound images and

high similarity after image segmentation, applying BM3D to ultrasound images can obtain sig-

nificant denoising effects and can effectively protect image details [36,37].

The algorithm is divided into two stages: preliminary and final estimation [18]. The first

stage obtains a basic estimate of the noisy image: firstly, the image is divided into a number of

image blocks of equal size, each image block is found similar image blocks within the set search

range, the currently processed block is used as a reference block, after that each reference

block and its similar blocks are stacked into a three-dimensional array according to the simi-

larity. The greater the similarity, the closer to the reference block. Then we perform the three-

dimensional transform domain hard threshold filter method for the three-dimensional array

to reduce the noise, after that we use the three-dimensional inverse transform to obtain the

estimated value of the grouped tiles, each similar block may contain multiple estimated values,

and the basic estimation of the image is obtained after the weighted average of the multiple

estimated values; The second stage is to further improve the denoising performance: firstly the

image obtained in the basic estimation are searched for similar blocks to form a new three-

dimensional group, Then 3D group is processed by Wiener filtering in 3D transform domain,

we perform Wiener filter processing on the 3D group in the basic estimated image corre-

sponding to the original image 3D group, the estimated value of the image is obtained after

inverse transformation, and the final estimated value of the image is obtained by weighted

average on the overlapping part of the image block. The specific flowchart is as Fig 1.

Proposed algorithm

Based on the above theory, this paper proposes a VIF-based adaptive 2D-VMD frequency divi-

sion denoising method. The flowchart is as Fig 2.

PLOS ONE Frequency division denoising algorithm based on VIF adaptive 2D-VMD ultrasound image

PLOS ONE | https://doi.org/10.1371/journal.pone.0248146 March 10, 2021 6 / 22

https://doi.org/10.1371/journal.pone.0248146


Step 1: Use 2D-VMD (pre-set a K value) to decompose the acquired medical ultrasound image

to obtain K sub-modal images.

Step 2: Calculate the VIF value of each image, and adaptively determine the value of K.

Step 3: In the final decomposed sub-modal image, the first sub-modal image contains more

low-frequency information of the image and is processed by denoising with anisotropic dif-

fusion filtering, and the high-frequency image information is decomposed. Use BM3D pro-

cessing to remove more noise in other sub-images.

Step 4: Finally, reconstruct the processed sub-modal image based on the 2D-VMD reconstruc-

tion method, and complete the denoising process to obtain the final denoised image.

Optimization of the K value

In the research and application of VMD, many scholars have found that the K value is impor-

tant. When the selected K value is too small, multiple modes of the signal may coexist in the

Fig 1. BM3D image denoising flow chart.

https://doi.org/10.1371/journal.pone.0248146.g001

Fig 2. Flow chart of the proposed algorithm.

https://doi.org/10.1371/journal.pone.0248146.g002
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same sub-mode; thus, some information cannot be effectively separated and identified, result-

ing in under-decomposition [31,38]. Similarly, this kind of problem also exists in 2D-VMD;

when K is too small, the decomposition is insufficient, and many high-frequency information

cannot be separated reasonably and overlapped in the same sub-modal image, making the sub-

sequent denoising insufficient. When K is too large, it leads to over-decomposition, which

causes continuous decomposition at similar center frequencies, and highly similar sub-modal

images appear. For the decomposed ultrasound sub-modal images, especially in high-fre-

quency images, the changes in their mutual brightness, distribution, and organizational struc-

ture are weak. A method that can calculate the degree of information sharing between the sub-

modal images and the original image, judge similar images, select the appropriate K value, and

can fully process the K sub-modal images should be sought to prevent blurring of the recon-

structed denoising images, and the apperance of ghosting. Therefore, whether the K value is

set reasonably or not has a crucial influence on the final denoising result. However, many

researchers rarely discuss and study the value of K when using 2D-VMD.

VIF theory

This work proposes a method for adaptively selecting K values based on VIF and an effective

full-reference image quality measurement based on natural scene statistics (NSS) theory, and

for estimating the quality of the image by measuring the amount of information shared

between the reference image and the test image [39]. First, the natural image is decomposed

into several sub-bands, and each sub-band is parsed into blocks (in order to obtain more accu-

rate sharing information between images, this article sets the block size to 3�3). Then, the

mutual information in different models of each block is calculated, and each subband is used

to measure visual information. Finally, the image quality value is measured by integrating the

visual information of all blocks and all sub-bands. Here, VIF combines the following three

models [40,41].

The first model is the image source model. The Gaussian scale mixture (GSM) model is an

NSS model in the wavelet domain. A GSM is a random field (RF) that can be expressed as a

product of two independent RFs and expressed as follows:

C ¼ S � U ¼ fSi � Ui : i 2 Ig ð11Þ

Where C denotes the RF of the reference signal in a sub-band, S is an SF of positive scalars,

U is a Gaussian vector RF with mean zero and covariance CU, and I denotes the set of spatial

indices for the RF.

The second is the distortion model. It uses signal attenuation and additive noise model to

describe all possible distortion types as follows:

D ¼ gC þ V ¼ fgiCi þ Vi : i 2 Ig ð12Þ

Where D enotes the RF from the corresponding sub-band from the test (distorted) signal; g

is a deterministic scalar gain field, and V is a stationary additive zero-mean Gaussian noise RF

with variance Cv.

The third is the Human Visual System Model, which models the HVS as a distortion chan-

nel limiting the amount of information that could pass through it. The HVS model aims to

quantify the uncertainty factors that HVS adds to the image signal. The reference image E and

the test image F are modeled by HVS as follows:

E ¼ CþN ð13Þ
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F ¼ CþN’ ð14Þ

Among them, E and F denote the visual signal at the output of the HVS model from the ref-

erence and the test images in one sub-band, respectively, N and N’ are additive noises and its

visual distortion model can be modeled as:

CN ¼ CN0 ¼ s
2

nI ð15Þ

The mutual information I(C; E) of C and E is calculated to estimate the amount of reference

image information that is transmitted to the brain via the HVS channel. The mutual informa-

tion I(C; F) of C and F is also computed to estimate the amount of distorted image information

that is transmitted to the brain through the HVS channel compared with that of the reference

image.

IðCN ;EN jsNÞ ¼
1

2

XN

i¼1

log
2

js2i CU þ s
2
nIj

js2
nIj

� �

ð16Þ

Deduced in the same way.

IðCN ; FN jsNÞ ¼
1

2

XN

i¼1

log
2

jg2
i s

2
i CU þ ðs

2
v þ s

2
nÞIj

jðs2
v þ s

2
nÞIj

� �

ð17Þ

Where N represents the number of local blocks in the image band. Based on the above

model, the final VIF index is defined as follows:

VIF ¼

X

j¼subbands

IðCN;j; FN;jjsN;jÞ
X

j¼subbands

IðCN;j;EN;jjsN;jÞ
ð18Þ

Adaptive selection of K value

We propose a method of adaptively determining the K value, based on the characteristics of

the decomposed image and the above theory, the flowchart is shown in Fig 3.

Step1: Set an initial K value, use VIF to calculate the decomposed K sub-modal images, and

obtain their respective VIF values.

Step2: Sort the series of values and calculate the difference between adjacent values.

Step3: Judge whether δ is less than the set threshold of 0.001; if not, increase K by 1 and return

to re-decomposition; yes to the next step.

Step4: Calculate the number n of δ<0.001, judge whether n is equal to 1; if not, reduce K by 1

and return to the central decomposition; if yes, the output value is K-1, end.

Under different noise levels, many experiments were carried out on different images, and

finally, the threshold was determined to be 0.001. The VIF difference between two adjacent

images should be less than or equal to 0.001, and the image information between them is simi-

lar. For this composite image, the calculated value of K is 4, and the exploded view is shown in

Fig 4.

Fig 4 shows that the first sub-modal image is a low-frequency one and contains much

image information; other sub-modal images contain much noise and obvious edge structure

information, which are high-frequency images. To verify the above K value selection method,
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Fig 3. Flow chart of selecting K value.

https://doi.org/10.1371/journal.pone.0248146.g003
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within the range of different noise intensity, we decomposed and calculated the synthesized

image to obtain the values shown Table 1. Similar values in the table have been marked in

bold. When the K value is equal to 5, only one group of adjacent sub-modal images has close

VIF values, and the difference is less than or equal to 0.001. When the K value is equal to 6, the

adjacent sub-modal images have two groups. The VIF value of the image is close, and the K

value of the decomposition of the current composite image is 4, which is consistent with the

conclusion drawn by the adaptive calculation.

Experimental studies on the proposed method

Starting from the theoretical descriptions in the above sections and according to the character-

istics of speckle noise in medical ultrasound images, a denoising algorithm based on adaptive

2D-VMD frequency division combined with spatial technology was proposed; this algorithm

is theoretically superior to other algorithms. This section shows the three different types of

comparative experiments on synthetic graphs, simulated graphs, and actual graphs conducted

further verify the performance of the algorithm.

In the comparison experiment, 10 denoising algorithms (Lee [13], Frost [15], Kuan [14],

Wavelet [19], BF [42], Median [12], OBNLM [16], FNLM [43], SRAD [17], and BM3D [18])

were analyzed and compared, and search or experiment was conducted to find the optimal

parameters of each comparison algorithm. The window size of the Lee, Frost, Kuan, Median,

and BF filters measures 3 × 3.The patch size of the FNLM and OBNLM filters is 5 × 5. The iter-

ations of the SRAD is 200,4t = 0.25 for Wavelet, wavelet = ‘coif1’, and Window size 3 × 3; the

Fig 4. Decomposition effect diagram of composite.

https://doi.org/10.1371/journal.pone.0248146.g004

Table 1. VIF value of each sub-modal image.

Noise variance K VIF

0.2 4 0.1389 0.1321 0.0751 0.0715

5 0.1518 0.1309 0.0805 0.0799 0.0740

6 0.1509 0.1289 0.0838 0.0779 0.0769 0.0761

0.4 4 0.1138 0.0962 0.0643 0.0620

5 0.1229 0.0723 0.0707 0.0676 0.0667

6 0.1087 0.0702 0.0662 0.0643 0.0633 0.00628

0.6 4 0.1146 0.0651 0.0642 0.0594

5 0.1089 0.0769 0.0636 0.0622 0.0617

6 0.1085 0.0731 0.0644 0.0641 0.0635 0.0622

0.8 4 0.1076 0.0708 0.0625 0.0617

5 0.1021 0.0704 0.0589 0.0585 0.0573

6 0.1009 0.0717 0.0619 0.0600 0.0589 0.0589

https://doi.org/10.1371/journal.pone.0248146.t001
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filter sigma is 20. All algorithms are implemented in MATLAB R2016a on a personal computer

with a 2.70 GHz Intel Pentium CPU and 8 GB of RAM.

For quantitative comparison, two objective parameters, the peak signal-to-noise ratio

(PSNR) and the structural similarity index measure (SSIM), were used to evaluate and com-

pare various denoising algorithms. PSNR is related to image quality. The larger the PSNR

value, the higher the image quality, which means that the image after denoising is closer to the

original image as a whole; it can be calculated using the following formula:

PSNR ¼ 10� log
10

2552

Xm

i¼1

Xn

j¼1

½f ði; jÞ � f̂ ði; jÞ�2
ð19Þ

SSIM is a method that uses the structural information of images to measure the similarity

between images [44]. The value range of SSIM is [0,1], which evaluates the relationship

between the image and the image in terms of brightness, structure, and contrast. The similarity

of the original image, the closer its value is to 1, the more similar the image after denoising is

to the original image. The following formula was used for calculation:

SSIMðf ; f̂ Þ ¼
ð2mfmf̂ þ c1Þð2sf f̂ þ c2Þ

ðm2
f þ m

2

f̂
þ c1Þðs

2
f þ s

2

f̂
þ c2Þ

ð20Þ

Among them: f(x,y) represents the original image, and f̂ ðx; yÞ represents the denoised

image. μf is the average of f, m̂ f is the average of f̂ , s2
f is the variance of f, sf̂ 2 is the variance of

f̂ , sf f̂ is the covariance of f and f̂ . c1 = (k1L)2 and c2 = (k2L)2 are used to maintain the stability

constant, and L is the dynamic range of the pixel, k1 = 0.01, k2 = 0.03.

Synthetic image experiment

To fully verify the performance of the proposed denoising algorithm objectively, we consid-

ered including circular arc, angle, pixel value, and edge changes in the composite image, and

we increased the complexity of image information as much as possible to ensure the validity of

the experiment and comprehensiveness. The size of the composite image is 302�302. For this

noise-free composite image, the added noise comes from the multiplicative noise model men-

tioned in section 2.1. The different algorithms mentioned above were used to denoise sepa-

rately, and the results obtained were compared and analyzed. Fig 5 only shows a comparison

of denoising effects with a variance of 0.6 given the space limitation.

As shown in Fig 5, under the noise variance of 0.6, Fig 5(C), 5(D), 5(E) and 5(G) are not

effective in denoising, and the denoised image still contains much noise. The protection of the

original image structure information is not good; the wavelet coefficients in the wavelet high-

frequency sub-band are mistaken for the noise coefficient and removed. A small amount of

noise remains in Fig 5(F), and the details, such as edges and textures, are lost. SRAD contains a

small amount of noise but blurs much image information, and the corners and edge points

have been rounded. The median filter retains part of the edge information. In the denoising

process, the image information and noise are blurred and shaped like snowflakes, and the

overall image is not clear. The OBNLM and FNLM methods have insufficient denoising

ability under strong noise. Much noise is shown in Fig 5(I) and 5(J). Compared with OBNLM,

FNLM destroys the structural features of the original image. BM3D has strong denoising abil-

ity. Fig 5(L) has a good visual effect but shows obvious noise on the graph. Noise is not obvious
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in Fig 5(M). The details are more complete and clearer, and the more texture information is

shown compared with the contrast method.

In order to further test the performance of the method proposed in this article, we consid-

ered conducting comparative experiments under different noise variance conditions to further

test the performance of the method proposed in this article. The noise variance range is 0.1–

0.8 with an interval of 0.1. The experimental results are shown in Figs 6 and 7.

Fig 6 shows that in different noise environments, the method proposed in this paper has the

highest values among all methods. In the low noise range, the variance is less than 0.2, and

BM3D and FNLM are not much different from the proposed method. With increasing noise,

the denoising performance of the method in this paper gradually becomes prominent, which is

far better than that of the other methods. Under the strong noise level, the PSNR value of this

method can be maintained above 27dB, which has a good visual effect, and the maximum dif-

ference between other methods is approximately 7dB. Fig 7 shows that the SSIM value of the

method proposed in this article is always higher than that of other methods, showing that the

denoised image has a similar structure and performs well in terms of structural feature

Fig 5. Composite image denoising effect diagram (variance 0.6).

https://doi.org/10.1371/journal.pone.0248146.g005
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retention. Although the BM3D and the current method have close values when the noise vari-

ance is less than 0.4, the advantages of the current method becomes apparent after the noise

continues to increase, and the gap between the two gradually increases. As far as other meth-

ods are concerned, the structure retention performance is still better at low noise, but as the

noise becomes stronger, the ability to maintain characteristics is reduced while blindly pursu-

ing the denoising effect, which cannot achieve the best balance.

Ultrasound simulation image experiment

To further simulate ultrasound images, we used a simulated kidney image created from the

Jensen Field II program by using Tupholme–Stepanishen method [45]. This phantom can be

downloaded from Jensen’s website (http://field-ii.dk/). The following fig shows the denoising

Fig 6. PSNR value of each algorithm under different noise.

https://doi.org/10.1371/journal.pone.0248146.g006
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effect of different methods, and Table 2 shows the comparison of the PSNR and SSIM indica-

tors of each method.

From the third section, the parameter value K is 3 when the simulation image is decom-

posed. From the visual effect, Fig 8(A) is the original ultrasound kidney image, and Fig 8(B) is

the image obtained after adding noise. Fig 8(C)–8(M) show the denoising effect of different

methods. Fig 8(D) and 8(F) have remarkable noise, and the removal effect is not good. Fig 8(I)

and 8(M) are compared with other images, and their noise reduction is obvious, and part of

the outline appears. The difference in denoising effects of other images is almost invisible to

the naked eye.

The performance parameters in Table 2 show that the PSNR value of the method proposed

in this article is more than 16, ranking first. The PSNR value of BF, Wavelet, and OBNLM is

less than 15, and the denoising ability is not good. The values of other methods are between

15–16, with a slight difference.

Fig 7. SSIM value of each algorithm under different noises.

https://doi.org/10.1371/journal.pone.0248146.g007

Table 2. Denoising PSNR and SSIM values of each method are relative to the simulation diagram.

Methods PSNR SSIM

Lee 15.4166 0.3896

Frost 15.3696 0.36

Kuan 15.3064 0.3009

OBNLM 14.6619 0.3012

FNLM 15.3055 0.306

SRAD 15.4716 0.3906

BF 13.9911 0.194

Wavelet 14.8351 0.1722

Median 15.3842 0.3946

BM3D 15.5129 0.4132

Proposed 16.1197 0.4464

https://doi.org/10.1371/journal.pone.0248146.t002
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Real image experiment

This work aims to evaluate the performance of the filter in real scenes. Therefore, we consid-

ered different methods to denoise clinical medical ultrasound images, including the fetus, gall

bladder, breast, and kidney. All clinical images used were provided by the First Affiliated Hos-

pital of Baotou Medical College, Inner Mongolia University of Science and Technology, and

the patients participating in our study provided written consent.

Fig 8. Denoising comparison of simulation diagram.

https://doi.org/10.1371/journal.pone.0248146.g008
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For the real ultrasound image, it is also based on the adaptive optimization method pro-

posed in Section 3, and the optimal parameter value K = 4 is obtained through the process of

Fig 3. From the Fig 10 above, the proposed method has good effects on medical ultrasound

images of different organs. Fig 9(A) is a fetal ultrasound image, and Fig 9(E), 9(F), 9(G) and 9

(I) have no obvious denoising effect, which is consistent with the simulation results. Fig 9(B), 9

(C), 9(D) and 9(H) show denoising while reducing the overall clarity. All other algorithms

have good performance: the noise was also considerably reduced, and the edge information

could be better preserved compared with the original image. At the same time, for better visual

comparison, we framed and selected a specific area for magnified view processing. From a sub-

jective visual point of view, the proposed method also has a good performance.

Given that a noise-free ultrasound image does not exist in reality, the aforementioned refer-

ence quality evaluation indicators, such as PSNR and SSIM, are not suitable for evaluation.

Therefore, using non-reference evaluation indicators should be considered. Natural Image

Quality Evaluator (NIQE) [46], a completely blind algorithm, uses a large number of high-

Fig 9. Effect of fetal ultrasound denoising.

https://doi.org/10.1371/journal.pone.0248146.g009
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fidelity natural images to extract natural scene statistics in the spatial domain to reflect the

quality characteristics of the image. It does not require prior knowledge and image distortion

type information, and the evaluation effect is better than full-reference quality evaluation indi-

cators, such as PSNR and SSIM. This evaluation index is in line with the judgment of the

human visual system. The higher the NIQE metric, the better the quality of the denoised

image. The NIQE value of the denoised image for four sample ultrasound organs images is

shown in Table 3.

The result of the above Table 3 shows that the proposed method obtained a satisfactory

NIQE value. Thus, compared with other denoising methods, the method in the present work

has a better effect in suppressing speckle noise and can produce an image with better quality

after denoising. The findings are consistent with the conclusions of the above synthetic graph

and simulation graph experiment. It can effectively remove noises of different intensities in

real medical ultrasound images, while retaining fine edge structure information, and maintain

stability. For the average execution time, the proposed method does not perform very satisfac-

torily, and it has a slight increase compared to BM3D. Therefore, it is necessary to consider

streamlining the calculation in the future to improve the efficiency of the algorithm.

Fig 10. The proposed method to denoise the three organs (left is the original image, and the right is the denoising

image).

https://doi.org/10.1371/journal.pone.0248146.g010
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Conclusions

This work proposes a VIF-based adaptive 2D-VMD ultrasound image frequency division

denoising algorithm to address the serious effect of noise on the quality of medical ultrasound

images. The main findings are as follows:

1. On the basis of VIF, a method of adaptively determining the parameter K value was

designed. This method prevents the under- or over-decomposition of 2D-VMD, which lays

the foundation for de-noising after decomposing and strengthens the denoising ability.

2. The information among the sub-images considerably varied after decomposition. The

image was divided into low- and high-frequency images, and anisotropic diffusion filter

was used to remove a small amount of noise in the low-frequency image, thereby resulting

in the maximum retention of low-frequency information. BM3D with strong denoising

ability was used to process high-frequency images that protected most edge details while

removing a considerable amount of noise.

Various experiments on synthetic, simulated, and real images were performed, and the 10

other denoising methods were compared and analyzed through quantitative evaluation indica-

tors. The experimental results showed that the algorithm has strong denoising ability, is stable

in maintaining the edge structure, and has an overall performance that is far better than those

of other algorithms. Thus, it can be effectively applied to clinical ultrasound images. The success

of the proposed algorithm lays the foundation for the parameter optimization of 2D-VMD and

helps to expand the development of denoising ultrasound images in the transform domain.
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