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Abstract: Studying the stress–strain relationship of fiber-reinforced polymer (FRP)-confined rubber
concrete (RuC) plays an important role in its application in engineering projects. Most of the existing
stress–strain relationship models are established based on the test data of FRP-confined rubber
concrete with circular cross-sections, and the effect of the section shape is not considered. Therefore,
an analysis-oriented stress–strain model of FRP-confined circular and square rubber concrete columns
was studied in this paper for the first time. A database that includes the rubber particle content and
section shape on the peak stress-peak strain and axial–lateral strain relationship of FRP-confined
rubber concrete was established by collecting 235 test data from the literature. By modifying the key
parameters in the existing FRP-confined normal concrete stress–strain relationship model, a unified
stress–strain relationship model of FRP-confined RuC with circular and square columns is established.
The proposed model is verified, and a good accuracy of the model is proven.

Keywords: FRP; rubber concrete; stress–strain relationship; analytical model; confined concrete

1. Introduction

Rubber concrete (RuC) has the characteristic of low compressive strength compared
to normal concrete, which limits its application in building structures. Although steel
has been historically used to provide the required lateral confinement, fiber-reinforced
polymers (FRP) have been used extensively over the last 20 years as a strengthening
solution to enhance the ultimate compressive strain of concrete cylinders [1–3]. FRP has the
advantages of high strength and good durability [4–6], and its lateral confinement effect
can effectively improve the compressive strength of RuC [7], which makes it possible to
apply RuC in engineering projects as structure building materials.

Thus, much experimental research and theoretical analyses on the mechanical proper-
ties of FRP-confined rubber concrete have been performed by many researchers. Moustafa
et al. [8] conducted experimental research on the stress–strain relationship of FRP-confined
rubber concrete and normal concrete under different strain rates. The results implied that
FRP could provide greater confinement stress to rubberized concrete than normal concrete.
Gholampour et al. [9] performed monotonic and cyclic axial compression tests of actively
confined rubber concrete cylinders and found that the stress–strain relationship, peak stress,
and peak strain of the specimens were significantly affected by a rubber volume replace-
ment ratio and lateral confined stress. Based on the experimental data of FRP-confined
rubber concrete with a circular section, Chan et al. [10] proved that the confined stress
of FRP can improve the mechanical properties of RuC and that the compressive strength
model of FRP-confined RuC was established. Bompa et al. [11] studied the mechanical
behavior of FRP-confined rubber concrete with a circular cross-section and proposed a
stress–strain model of FRP-confined rubber concrete columns. Cao et al. [12] studied the

Materials 2022, 15, 1832. https://doi.org/10.3390/ma15051832 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15051832
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma15051832
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15051832?type=check_update&version=2


Materials 2022, 15, 1832 2 of 11

stress–strain relationship of FRP-confined rubber concrete cylinders under axial cyclic
compression and proposed a stress–strain relationship model under axial cyclic compres-
sion. Compared with FRP-confined rubber concrete columns, there are few studies on
FRP-confined rubber concrete square columns. Wang et al. [13] analyzed the mechanical
properties of FRP-confined RuC square columns and proved that the cross-section shape
has a significant effect on the confinement of FRP but did not establish the corresponding
stress–strain relationship model. Although many scholars have proposed a stress–strain
relationship model of rubber concrete, it has only been for FRP-confined rubber concrete
circular columns, with no scholars having proposed a stress–strain model suitable for
square-sectioned rubber concrete. This leads to a lack of corresponding theoretical basis
and technical standards for the structure of FRP-confined RuC square columns, which
limits further development and application. Therefore, exploring the axial compressive
mechanical properties of the specimens of FRP-confined RuC square columns has a very
important theoretical significance and engineering value, as rubber concrete can be applied
to structures and provide a calculation basis for improving the seismic performance of
structures.

This paper aims to propose a new model for predicting the stress–strain of FRP-
confined circular and square rubber concrete columns. The database contained 235 experi-
mental data and was built to establish the peak stress and peak strain model of FRP-confined
columns. After evaluating the axial–lateral strain relationship model of FRP-confined RuC
proposed by Chan et al. [10], the axial–lateral strain relationship model was established
for FRP-confined circular and square rubber columns. Finally, the unified stress–strain
model is proposed for FRP-confined circular and square rubber concrete columns, and the
accuracy of the model is verified by the test data.

2. Database

In this study, the database contains 235 stress–strain curves of FRP-confined circular
and square rubber columns, including 75 square columns and 160 circular columns. There
are two types of FRP-confined rubber concrete columns: concrete-filled FRP tubes (CFFT)
and FRP-wrapped rubber concrete columns (“Wrap”). The test database mainly consists of
three material types of FRP: carbon fiber-reinforced polymer (CFRP), glass fiber reinforced
polymer (GFRP), and aramid fiber reinforced polymer (AFRP). Two specimen sizes are
included: 100 × 200 mm and 150 × 300 mm. The rubber content (volume replacement
ratio) Rf varies from 0% to 75%. The strength, fco, and its corresponding axial strain, εco, of
unconfined rubber concrete are 6.8~69.5 MPa and 0.00069~0.0027, respectively. The section
corner radius ratio (2r/b) of the specimens is between 0.2 and 1. If the section corner radius
ratio is 2r/b = 1, then the specimen’s cross-section is circular, as shown in Figure 1. The
database can be seen in Table 1.
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Table 1. Database for model calibration.

Reference Number of
Specimens FRP Type Rf εco (×10−3) fco (MPa) b × h (mm) Retrofit

Method 2r/b

Hou [14] 64 CFRP 0–0.6 1.6–2 16–45 150 × 300 Wrap 1
Zhang [15] 72 CFRP 0–0.6 1.1–2.2 10.3–37.2 150 × 300 Wrap 0.2–0.8

Chan et al. [10] 8 GFRP 0–0.75 2.2–2.7 13.9–53 150 × 300 Wrap 1
Cao et al [12] 12 CFRP 0–0.3 2.1–2.6 18.3–25.4 150 × 300 Wrap 1
Bompa [11] 22 AFRP 0–0.6 1.37–2.61 7.1–69.5 150 × 300 Wrap 1

Oprisan et al [16] 3 AFRP 0.4 0.69 10.97 100 × 200 Wrap 0.12
Hassanli et al. [17] 9 CFRP 0–0.4 1.7–1.95 20.7–32.0 100 × 200 Wrap 1
Youssf et al. [18] 12 CFRP 0–0.5 1.71–1.95 21.6–64.4 150 × 300 Wrap 1
Youssf et al. [19] 14 CFRP 0–0.2 1.67–2.43 39.2–62.5 100 × 200 CFFT 1
Tufail et al. [20] 9 CFRP 0.5 1.75 8–19 150 × 300 CFFT & Wrap 1

Raffoul et al. [21] 10 CFRP & AFRP 0.6 1.35 6.8–8.2 100 × 200 &
150 × 300 Wrap 1

Note: Rf is the rubber content (volume replacement ratio), fco and εco are the peak stress and its corresponding
strain, respectively, h is the height of the specimen, b is the cross-section width, and r is the section corner radius.

3. Analytical Modeling

There are currently a large number of analytical stress–strain relationship models for
FRP-confined concrete [22–26], which consist of three types of functions:

(1) The stress–strain relationship function of actively confined concrete with undeter-
mined parameters (peak stress and peak strain) proposed by Richart [27] and Popovics [28],
shown as Equations (1)–(3);

(2) The concrete type, the cross-section shape of the concrete columns, and the number
of FRP layers can affect the lateral confinement of concrete, resulting in changes in the peak
stress and peak strain. Therefore, it is necessary to define the functional expression of peak
stress and peak strain, namely Equations (4) and (5);

(3) The relationship between the axial strain and lateral strain, as shown in
Equation (6);

Based on the above three groups of formulas and the experimental stress–strain curve
of FRP-confined rubber concrete, the stress–strain model of FRP-confined concrete can be
obtained by using a nonlinear regression method or mathematical iterative method. In
most existing models, the axial–lateral strain relationship f a−l Equation (6) is generally
obtained by nonlinear regression of the experimental data. The key parameters of the active
confined model, i.e., peak stress and peak strain Equations (4) and (5), can be obtained by
combining the axial–lateral strain model Equation (6) and the active confined stress–strain
relationship model Equations (1)–(3).

The active confined concrete stress–strain model can be expressed as:

fc =
fcc,wxr

r− 1 + xr (1)

where
x =

εc

εcc,w
(2)

r =
Eco

Eco − fcc,w
εcc,w

(3)

fcc,w(2r/b, fl/ fco) = 0 (4)

εcc,w(2r/b, fl/ fco) = 0 (5)

The axial–lateral strain relationship can be written as:

fa−l(εc, ε l , σl) = 0 (6)

where εc, ε l , σl , σc are the axial strain, lateral strain, confinement stress, and axial stress,
respectively; fcc,w and εcc,w are the peak stress and corresponding strain of concrete under
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active confinement, respectively; Eco is the elastic modulus of concrete; and fc and εc are
the compressive stress and its corresponding strain, respectively. Eco is the elastic modulus
of rubber concrete when using Equations (1)–(3) to calculate the stress–strain relationship
of FRP-confined rubber concrete, which can be calculated via Bompa’s model [29], which is
suitable for rubber concrete:

Ec = 12,000( fco/10)2/3 (7)

3.1. Peak Stress and Peak Strain

In the analysis-oriented stress–strain model for FRP-confined concrete, the peak stress,
fcc,w, is usually modeled by using the ultimate strength fcc data of FRP-confined concrete
specimens [22,30,31]. Therefore, the ultimate compressive strength fcc of FRP passively
confined RuC is also used as the peak stress fcc,w of rubber concrete under active confine-
ment. Most of the ultimate strength models of FRP-confined concrete are proposed based
on Richart et al.’s model [27], where the function expression is:

fcc = fco

[
1 + k

(
fl
fco

)α]
(8)

fl =
2E f rpt f rpε l

b
(9)

where fcc and fco are the ultimate compressive strength of FRP-confined concrete and
unconfined concrete, respectively, k and a are the coefficients to be determined, fl is the
confinement stress of FRP, Efrp is the elastic modulus of FRP material, tfrp is the thickness of
wrapped FRP, and εl is the corner lateral strain of FRP material.

Existing studies show that the section shape of the specimens is one of the important
factors affecting the compressive strength of FRP-confined normal concrete [32–36], FRP-
confined rubber concrete [13,16], and FRP-confined recycled concrete [37,38]. The influence
of the specimen section shape on FRP confinement can be modified by the parameter corner
radius ratio (2r/b) [35,36], therefore Equation (4) can be rewritten as:

fcc,w = fco

[
1 + a1

(
2r
b

)a2
(

fl
fco

) f (R f )
]

(10)

where f
(

R f

)
is a coefficient related to the rubber content, which can be written as f

(
R f

)
=

a3 + a4R f , and a1, a2, a3, and a4 are the parameters that need to be determined. Through the
nonlinear numerical regression analyses of Equation (10) based on the test data in Table 1,
the values of a1, a2, a3, and a4 in Equation (10) can be obtained: a1 = 3.5, a2 = 0.3, a3 = 0.9,
and a4 = −0.17. Therefore, Equation (10) becomes

fcc,w = fco

[
1 + 3.5

(
2r
b

)0.3( fl
fco

)(0.9−0.17R f )
]

(11)

It can be seen that the proposed peak stress model of actively confined concrete has a
good performance, as shown in Figure 2. AV and IAE are adopted in this work to estimate
the accuracy of the peak stress model [12,32,39].

AV =

n
∑
1

Theo i
Expei

n
(12)

IAE =

n
∑
1

[
(Expei − Theo i)

2
]1/2

n
∑
1
|Expei|

(13)
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Theo and Expe are the theoretical value and experimental value, respectively, and n
is the total number of data points; when the AV is closer to 1 and the IAE is closer to
0, the theoretical value is more accurate. Figure 2 shows that the proposed model has
good performance in predicting the ultimate stress of rubber concrete circular and square
columns. The AV and IAE are 0.117 and 1.055, respectively.

In the analysis-oriented stress–strain model, another governing parameter is the peak
strain εcc,w for actively confined concrete. The confinement stress, the strength of concrete,
and the corresponding strain have an important influence on the peak stress of actively
confined concrete [24,32]. The peak strain is usually linear with the peak stress [27], and
the formula can be assumed to be:

εcc,w = εco

[
1 + b1

(
fl
fco

)b2

·
(

2r
b

)b3
]

(14)

where b1, b1, and b3 are the parameters that need to be determined. Equations (11) and (14)
are substituted into Equation (1) through a nonlinear numerical regression analyses using
the test database in Table 1. The coefficients b1, b2, and b3 are 18.7,1.09 and 0.44, respectively.
Equation (14) then becomes:

εcc,w = εco

[
1 + 18.7

(
fl
fco

)1.09
·
(

2r
b

)0.44
]

(15)

Because there are no peak strain data of square rubber concrete under active confine-
ment, the accuracy of Equation (15) is evaluated by using the test data of circle rubber
concrete under active confinement [9]. Figure 3 shows the evaluation results.
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3.2. Axial–Lateral Strain Relationship

Chan et al. [10] modified Dai et al.’s [40] axial–lateral strain relationship of FRP-
confined concrete by testing GFRP-wrapped rubber concrete and proposed an axial–lateral
strain relationship of FRP-confined rubber concrete, as shown in the Equation (16). Cao
et al. [12] proved that Chan et al.’s axial–lateral strain model [10] could be accurately used
for circular rubber concrete under static loading.

εc

εco
=

(
1.0 + 8.0

fl
fco

)
kR

[
1.024

(
ε l
εco

)0.350
+ 0.089

(
ε l
εco

)]
(16)

where εc is the axial compressive strain, ε l is the lateral strain, fl is the lateral confinement
stress related to ε l , and kR is the parameter related to rubber content, which is defined as:

kR = 1− 0.73R f (17)

Figure 4 shows the accuracy of Chan et al.’s [10] model in predicting the axial–lateral
strain relationship of FRP-confined circle rubber concrete. It can be seen from Figure 4 that
Chan et al.’s model has high accuracy in predicting the axial–lateral strain of circular rubber
concrete columns (corner radius ratio is 1). However, Chan et al.’s model is obtained from
the test data of FRP-confined rubber concrete with circular section, and the mechanical
properties and deformation of FRP-confined square section concrete are different from
those of circular concrete; therefore Chan et al.’s model is not suitable for FRP-confined
square section rubber concrete and it is necessary to propose an axial–lateral strain model
that is suitable for square-section rubber concrete.
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Figure 4. Performance of Chan et al.’s axial–lateral strain model [10].

In this work, the peak strain model of FRP-confined rubber concrete with circular
and square cross-sections can be developed by modifying and extending the form of
Equation (16), which is written as

εc

εco
=

(
1.0 + 8.0

fl
f ′co

)
kR

[
1.024

(
ε l
εco

)0.350
+ 0.089

(
ε l
εco

)]
ϕ

(
2r
b

, R f

)
(18)

ϕ
(

2r
b , R f

)
is a coefficient related to the corner radius and rubber content, which must

be determined. ϕ
(

2r
b , R f

)
=
( 2r

b
) f (R f ), where f

(
R f

)
is a coefficient related to rubber

content, which can be expressed as f
(

R f

)
= α1 · ( fl/ fco)

α2 ·
(

1− α3R f

)
, where a1, a2, and

d a3 are coefficients that need to be determined.
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According to the data of the FRP-confined circular and square columns in Table 1,
Equation (18) can be written in the form of Equation (19).

εc

εco
=

(
1.0 + 8.0

fl
f ′co

)
kR

[
1.024

(
ε l
εco

)0.350
+ 0.089

(
ε l
εco

)](
2r
b

)0.187(
fl

fco
)

0.364
(1−6.143R f )

(19)
Figure 5 is the evaluation result of Equation (19) and the evaluation data adopted from

Zhang [15]. The data in Figure 5a,b show the change in the axial–lateral strain relationship
with the corner radii under the same rubber content. Figure 5c,d compare the cases with
the same corner radius. The higher the rubber content is, the smaller the hoop strain is. In
other words, the proposed axial–lateral strain relationship model can be well-applied to
square rubber concrete.
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3.3. Stress–Strain Relationship

The proposed stress–strain model of FRP-confined concrete columns can be deter-
mined by an incremental iterative process. The iterative process can be expressed as follows
and the programme flow chart is shown in Figure 6:
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(1) Given a small initial lateral strain of concrete ε l ;
(2) The axial strain εc corresponding to the lateral strain is calculated by Equation (19);
(3) The peak strain, εcc,w, and peak stress, fcc,w, under confinement can be obtained;
(4) The peak stress, fcc,w, and peak strain, εcc,w, are substituted into the active confined

model Equation (1) to calculate fc;
(5) Increase the lateral strain ε l value and repeat steps (1)–(5) if the lateral strain is not

greater than the FRP ultimate strain ε f ;
(6) The stress fc corresponding to each axial strain εc can be obtained.

4. Model Prediction

Based on the analysis, some selected experimental stress–strain curves collected from
the literature in Table 1 are used to evaluate the performance of the different stress–strain
relationships, as shown in Figure 7.

Figure 7 shows the stress–strain curves of FRP-confined rubber concrete and normal
concrete with circular and square sections. Figure 7a–f shows the accuracy of the model
in predicting FRP-confined concrete with different rubber contents, corner radii, and FRP
layers. Figure 7a shows that the model has good accuracy in predicting different FRP
wrapping methods, and Figure 7b shows that the theoretical value of the model has good
agreement with the experimental value under different rubber content. It can be seen
from Figure 7c that the prediction value of the model is very accurate in predicting the
stress–strain relationship with different FRP layers. From Figure 7d, the accuracy of the
FRP-confined square columns is still very accurate with the increase in rubber content
under the small corner radius. Figure 7e,f show that the proposed analytical model has
good accuracy in predicting the stress–strain model of plain concrete and rubber concrete
with different corner radii. In general, the model proposed in this paper has high accuracy
in predicting normal concrete square columns and rubber concrete square columns.
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5. Conclusions

Based on the database of 235 FRP-confined rubber concrete circular and square
columns, the axial–lateral strain relationship and stress–strain relationship of FRP-confined
concrete with different rubber content and corner radii were analyzed. The following
conclusions can be drawn:

1. There are no available axial–lateral strain relationships suitable for square rubber
concrete. Based on the data of existing circular and square rubber concrete columns, an
axial–lateral strain relationship model suitable for different corner radii and different
rubber contents is established. The calculation results of this model were compared with
the existing test data with a good performance.
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2. An analytical model suitable for normal concrete and rubber concrete of circular
and square cross-sections is established, and the model is verified by the test data, which
shows that the analytical model has a good accuracy.
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