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Satellite RNAs (satRNAs) are sub-viral agents that may interact with their cognate helper
virus (HV) and host plant synergistically and/or antagonistically. SatRNAs totally depend
on the HV for replication, so satRNAs and HV usually evolve similar secondary or tertiary
RNA structures that are recognized by a replication complex, although satRNAs and HV
do not share an appreciable sequence homology. The satRNAs of Bamboo mosaic virus
(satBaMV), the only satRNAs of the genus Potexvirus, have become one of the models
of how satRNAs can modulate HV replication and virus-induced symptoms. In this
review, we summarize the molecular mechanisms underlying the interaction of interfering
satBaMV and BaMV. Like other satRNAs, satBaMV mimics the secondary structures of
5′- and 3′-untranslated regions (UTRs) of BaMV as a molecular pretender. However,
a conserved apical hairpin stem loop (AHSL) in the 5′-UTR of satBaMV was found
as the key determinant for downregulating BaMV replication. In particular, two unique
nucleotides (C60 and C83) in the AHSL of satBaMVs determine the satBaMV interference
ability by competing for the replication machinery. Thus, transgenic plants expressing
interfering satBaMV could confer resistance to BaMV, and interfering satBaMV could be
used as biological-control agent. Unlike two major anti-viral mechanisms, RNA silencing
and salicylic acid-mediated immunity, our findings in plants by in vivo competition
assay and RNA deep sequencing suggested replication competition is involved in this
transgenic satBaMV-mediated BaMV interference. We propose how a single nucleotide
of satBaMV can make a great change in BaMV pathogenicity and the underlying
mechanism.

Keywords: interfereing, satellite RNA, BaMV, competition, RNA silencing

INTRODUCTION

Satellite RNAs (satRNAs) are short RNA molecules that share no or little sequence homology
to their cognate helper virus (HV) but totally depend on the HV for replication, encapsidation
and efficient movement (Hu et al., 2009; Briddon et al., 2012). The homology sequence between
satRNAs and their HVs often resides at the 5′ and 3′ regions. Usually conserved secondary structure
functions such as the cis-acting element are essential for replicase recognition acting as mimicry of
molecular pretenders at the 5′ and 3′ regions. SatRNA mimicry is mostly conserved in higher-order
RNA structures. As well, satRNAs may adopt different mimicry at different stages of virus infection
such as replication and translation (Huang et al., 2010).

Satellite RNAs have attracted great interest in the past decades because they can modulate
symptoms caused by their HVs (Palukaitis, 1988; Li and Simon, 1990; Collmer and Howell,
1992; Hsu et al., 1998), alter HV RNA accumulation (Buzayan et al., 1986; Gal-On et al., 1995;
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Hsu et al., 1998), enhance HV movement (Zhang and Simon,
2003; Simon et al., 2004) and in at least one case, affect
the infection cycle of their HV, for example, during insect
transmission (Robinson et al., 1999; Taliansky et al., 2000).
One of the most fascinating characteristics of satRNAs is
their interference ability. There are many cases of symptom-
attenuating satRNAs, such as satRNAs of isolates of the species
Bamboo mosaic virus (BaMV), Cucumber mosaic virus (CMV),
Peanut stunt virus (PSV), Grapevine fanleaf virus, Artichoke
mottled crinkle virus, Cymbidium ringspot virus (CymRSV),
Tobacco ringspot virus (TobRSV), and Groundnut rosette virus
(GRV) (Roossinck et al., 1992; Simon et al., 2004).

Satellite RNAs of BaMV (satBaMVs) are well studied.
Natural isolates of satBaMVs have been collected from BaMV-
infected symptomatic bamboo plants worldwide to analyze the
genetic evolution and phylogeny of satBaMVs (Liu et al., 1997;
Wang et al., 2014). The mimicry of satBaMVs among the
5′- and 3′-untranslated regions (UTRs) have been investigated
thoroughly (Annamalai et al., 2003; Huang et al., 2009), and
the biological function of satBaMV-encoded protein elucidated
its role in satBaMV replication (Lin et al., 1996), movement
(Vijayapalani et al., 2006, 2012; Chang et al., 2016) and
interference in BaMV replication (Hsu et al., 2006).

In this review, we focus on studies of interfering satBaMVs
and a possible mechanism of satBaMVs interfering in BaMV
infection.

BAMV AND ITS ASSOCIATED SATBAMVS

Bamboo mosaic virus is a single-stranded positive-sense RNA
virus containing five open reading frames (ORFs) that belongs
to the genus Potexvirus of the family Alphaflexiviridae (Lin
et al., 1994). ORF1 encodes a replicase-related protein with three
functional domains for BaMV replication: methyltransferase (Li
et al., 2001a; Huang et al., 2004), helicase (Li et al., 2001b)
and RNA-dependent RNA polymerase (RdRp) (Li et al., 1998).
ORF2 to four encode triple gene block proteins, which are three
overlapping proteins essential for BaMV movement (Wung et al.,
1999; Lin et al., 2004, 2006). ORF5 encodes a coat protein (CP) for
BaMV encapsidation, movement (Lee et al., 2011) and symptom
formation (Lan et al., 2010) (Figure 1A).

Bamboo mosaic virus causes mosaic symptoms on infected
bamboo leaves and infects at least 13 economically important
bamboo species in Taiwan (Lin et al., 1993). In BaMV-infected
bamboo, small single-stranded positive-sense RNA molecules
that share no sequence homology with BaMV but replicate and
encapsidate associated BaMV are defined as satBaMVs (Lin
and Hsu, 1994). SatBaMV is the only potexvirus-associated
satRNA. It is a 836-nt linear RNA molecule that encodes a
20-kDa non-structural protein (P20) flanked by a 159-nt 5′-UTR
and 125-nt 3′-UTR (Lin and Hsu, 1994; Figure 1A). P20 is
not essential for satBaMV replication (Lin et al., 1996), but it
preferentially binds to satBaMV RNA (Tsai et al., 1999). However,
P20 is necessary for satBaMV long-distance transport in BaMV–
co-infected Nicotiana benthamiana (Vijayapalani et al., 2006,
2012; Chang et al., 2016). In the absence of BaMV, satBaMV RNA

could undergo autonomous long-distance movement in planta
(Chang et al., 2016).

Three phylogenetic satBaMV groups were classified from
natural satBaMV isolates derived from 10 infected bamboo
species in different locations of Taiwan, Hainan Island of China
and Delhi, India (Liu et al., 1997; Yeh et al., 2004; Wang et al.,
2014). Clade I contains all other satBaMVs except most of those
isolated from Ma bamboo (Dendrocalamus latiflorus Munro) and
all populations from Bambusa vulgaris. All satBaMVs in clades
II and III are derived almost entirely from Ma bamboo from
the Taipei Botanical Garden in Taiwan and B. vulgaris in India,
respectively (Wang et al., 2014).

Sequence analysis of satBaMV isolates showed a hypervariable
region with the greatest sequence variation in the satBaMV
5′-UTR but a conserved secondary RNA structure (Yeh et al.,
2004). SatBaMV is totally dependent on BaMV for replication
and encapsidation (Lin and Hsu, 1994). Therefore, 5′- and
3′-UTRs of satBaMV evolved similar RNA secondary structures
and functional RNA elements with BaMV to recruit the RdRp
encoded by BaMV for replication. These features include
GAAA(A) repeats at the 5′-UTR and conserved hexanucleotides
(ACCUAA) and polyadenylation signals (AAUAAA) at the
3′-UTR (Lin and Hsu, 1994; Lin et al., 1994). As well, the
secondary structures of the satBaMV 3′-UTR contain two small
stem-loops (SLA and SLB) and one large stem-loop (SLC) that
are similar to the domains B, C, and D of the BaMV 3′-UTR,
respectively (Cheng and Tsai, 1999; Huang et al., 2009). One of
the alluring properties of satBaMVs is that some natural satBaMV
isolates feature antagonistic ability against BaMV replication
(Hsu et al., 1998, 2006). However, interfering satBaMVs isolated
from different bamboo species and locations are not grouped in
the same phylogenetic clades (Yeh et al., 2004). The mechanisms
underlying satRNA-mediated HV interference is fascinating, but
most cases have not been clearly demonstrated.

THE DETERMINANT OF SATBAMV
INTERFERENCE RESIDES IN THE 5′-UTR
APICAL HAIRPIN STEM LOOP (AHSL)

Two satBaMV isolates, BSF4 and BSL6, exhibit different
phenotypes in N. benthamiana co-infected with BaMV and
satBaMV (Hsu et al., 1998). Attenuated BaMV-induced
symptoms were found associated with reduced BaMV level (Hsu
et al., 1998). The sequence of the BSF4 and BSL6 5′-UTR shares
92% identity, with only 13 mismatches (Figure 1B), but the
secondary structures greatly differed, as revealed by enzymatic
probing with RNases A, T1, T2, and V1. The secondary structures
of the non-interfering BSF4 5′-UTR contain a large stem loop
(LSL) and a small stem loop (SSL) (Figure 1C; Annamalai
et al., 2003), whereas the interfering BSL6 5′-UTR contains
five SSLs (Figure 1D; Chen et al., 2007). However, the 5′-UTR
hypervariable region of both BSF4 (in LSL) and BSL6 (SSL-III)
features a conserved apical hairpin stem loop (AHSL) structure
including two internal loops (ILs; IL-1 and I-2) (Figures 1C,D;
Annamalai et al., 2003; Chen et al., 2007). In silico secondary
structure prediction of the 5′-UTR of natural satBaMV isolates
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FIGURE 1 | Genome map of satellite Bamboo mosaic virus (satBaMV) and BaMV (A), sequence alignment of BaMV, BSF4, and BSL6 5′-UTR (B) and
secondary structures of 5′-UTR of satBaMV, BSF4 (C) and BSL6 (D) and 5′-termini of BaMV (E) and their derived mutants. ∗ indicates identical nucleotide. Different
nucleotides between BSF4 and BSL6 sequence are marked by gray shade. The apical hairpin stem loop (AHSL) structures of satBaMV and BaMV are boxed, and all
contain an apical stem loop (ASL) and two internal loops (IL-1 and IL-2). The common GAAA(A) repeats in the 5′-UTRs are indicated. The AUG sequence indicates
the start codon of the BaMV open reading frame 1 (ORF1). Green and red indicate the non-interfering and interfering type. LSL, large stem loop; SSL, small stem
loop.
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by MFOLD revealed that most of the analyzed satBaMV isolates
retained an identical AHSL structure despite their grouping
into different phylogenetic clades (Yeh et al., 2004). Moreover,
the RNA sequence in the AHSL region of BSF4 and BSL6 is
interchangeable, and chimeric satBaMVs can replicate to a
similar level as BSF4 and BSL6 when co-infected with BaMV in
N. benthamiana protoplasts, so maintaining a conserved AHSL
structure but not the sequence itself is essential for satBaMV
replication (Yeh et al., 2004).

To elucidate the determinant of BSL6 interference of both
BaMV-induced symptoms and BaMV level, chimeric satBaMV
mutants with different combinations of BSF4 and BSL6 between
the 5′-UTR, most coding regions of P20 and the 3′-UTR were
investigated. All mutants containing the 5′-UTR of BSL6 could
reduce BaMV level in both positive (+) and negative (−) strands
without altering satBaMV level in N. benthamiana protoplasts
and caused symptomless infection in N. benthamiana plants
(Hsu et al., 2006). Moreover, both a BSL6 mutant expressing the
truncated form of P20 and a frameshift mutant could reduce
BaMV level, so P20 is not required for BSL6-mediated BaMV
interference (Hsu et al., 2006). Furthermore, the BSL6 5′ UTR
alone was sufficient to interfere with (+)- and (−)-strand BaMV
level and BaMV-caused symptoms when expressed in a BaMV
vector driven by a sub-genomic promoter in Chenopodium
quinoa (Hsu et al., 2006). Thus, the BSL6 5′-UTR is the
determinant of the interference in BaMV replication and the
interference is independent of P20 translation.

On further analyzing the RNA secondary structure of natural
satBaMV isolates, an identical AHSL structure was found shared
by all natural interfering satBaMVs. SatBaMV mutants that swap
the AHSL region of BSF4 and BSL6 revealed that the AHSL
in the 5′-UTR is the determinant of satBaMV-mediated BaMV
interference (Hsu et al., 2006). To further clarify whether the
structure or sequence of AHSL is more important for BSL6-
mediated interference, BSL6-derived mutants with disrupted
AHSL structure or only sequence substitution were used to test
BaMV interference. On co-inoculation with BaMV, all mutants
with disrupted AHSL structure lost the ability to reduce BaMV
level. Moreover, an identical AHSL structure with the sequence
(81UGC83) in IL-1 was found in all natural interfering satBaMVs,
whereas a less-conserved AHSL structure or identical AHSL
structure but with different sequence (81UGU83) in IL-1 was
found in non-interfering satBaMVs (Chen et al., 2007). Further
analysis revealed that only one nucleotide substitution in U82 to
C82 or C83 to U83 of BSF4 or BSL6, respectively, could change
the phenotype (Chen et al., 2007). Another nucleotide C60 in
IL-2 was also essential for BSL6-mediated interference. BSL6
C60U no longer reduced BaMV level (Chen et al., 2007). Thus,
both the AHSL structure and two nucleotides C60 in IL-2 and
C83 in IL-1 are essential for BSL6-mediated BaMV interference
(Figures 1C,D).

Different hosts also feature a one-nucleotide substitution
altering satRNA-induced symptoms or their ability to modulate
HV-induced symptoms. With CMV in tomato, C215, C286 and
A330 of WLM2-satCMV could independently affect necrosis
induction with different CMV strains (Wu and Kaper, 1992; Sleat
et al., 1994), and the satCMV Y-strain nucleotide 185/186 caused

yellow mosaic symptoms in tobacco (Jaegle et al., 1990). For the
PSV system, U226 and C262 determine symptom attenuation of
PSV G-satRNA in tobacco (Naidu et al., 1992). These examples all
imply that the pathogenicity of satRNAs result from the complex
interaction between the host, HV and satRNAs.

However, only an approximate idea was proposed for the
altered RNA secondary or tertiary structure being essential
for necrosis induction of WLM2-satCMV caused by a single
nucleotide change (Sleat et al., 1994). How a single nucleotide
of satBaMV results in such a great change in the interference of
BaMV-induced symptoms and BaMV replication is a fascinating
mystery that remains to be solved.

CONSERVED SECONDARY
STRUCTURES IN THE 5′-UTR OF BAMV
AND SATBAMV ARE INVOLVED IN
COMPETITION FOR REPLICATION
COMPLEXES

Because of the HV RdRp-dependent replication of satRNAs,
competition for viral RdRp between satRNAs and HV was
the first hypothesized and demonstrated as a mechanism
for CMV and satCMV (Wu and Kaper, 1995). However,
the authors used in vitro replication assay, which may not
reflect the complex interaction between CMV and satCMV
in co-infected plants (Wu and Kaper, 1995). Although many
satRNAs reduce HV accumulation, no further studies have
implied RdRp competition as the determinants of satRNAs-
mediated interference. In contrast, a more complete analysis
of the conserved secondary structure of BaMV and satBaMV
implied that replication complex competition could be the major
mechanism of satBaMV-reduced BaMV level.

First, interfering satBaMV is dominant among progeny
populations in protoplasts with mixed-infected BaMV and
non-interfering satBaMV (Chen et al., 2012). In addition,
an in vivo replication system revealed that the replication
efficiency is higher for BSL6 than BSF4 when the two are
individually supported by abundant BaMV ORF1-encoded RdRp
for replication in N. benthamiana protoplasts (Chen et al., 2012).
Hence, replication is more competent with interfering satBaMV
than BaMV and non-interfering satBaMV.

Both BaMV and satBaMV depend on BaMV RdRp for
replication, so whether BaMV contains a similar AHSL structure
in the 5′-UTR is of interest. The 5′-UTR RNA secondary
structures of all natural BaMV isolates were analyzed by MFOLD
but showed no secondary structure because of a highly repetitive
sequence. The conserved AHSL in LSL was found only when the
sequence extended to the ORF1 region (1-173 nt) (Figure 1E;
Chen et al., 2012). This secondary structure of BaMV-S was
confirmed by enzyme probing (Chen et al., 2010). As predicted,
all analyzed BaMV isolates showed an identical AHSL structure
with C86 in IL-1 and C64 in IL-2 regardless of whether
satBaMV was associated with their replication or whether the
associated satBaMV was interfering or non-interfering (Chen
et al., 2012). The C60 in IL-2 and C83 in IL-1 of BSL6
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(corresponding nucleotide C86 in IL-1 and C64 in IL-2 of
BaMV) are essential for satBaMV-mediated BaMV interference
(Figure 1D; Chen et al., 2007) and also important for BaMV
replication (Chen et al., 2012). The BaMV-C86U mutant lost
replication ability in N. benthamiana protoplasts and C. quinoa.
The replication efficiency was reduced with BaMV-C64U–mutant
infection as compared with BaMV infection alone. Thus, BaMV
C86 is essential and C64 is important for BaMV replication.
Furthermore, non-interfering satBaMV BSF4 could reduce the
number of local lesions and BaMV-C64U level on co-infection in
C. quinoa, so BSF4 may be more competent than BaMV-C64U for
replication. In addition, increased level of BaMV was associated
with reduced BSL6 level in the mixed inoculum (Chen et al.,
2012). These results demonstrate that satBaMVs interfere with
BaMV replication in a dose-dependent manner via replication
complex competition.

TRILATERAL INTERACTION AMONG
BAMV, SATBAMV AND HOST PLANTS:
POSSIBLE INVOLVEMENT OF RNA
SILENCING IN SATBAMV-MEDIATED
BAMV INTERFERENCE

Interfering satRNAs attenuating HV-caused symptoms and
reducing the HV level are complex interactions between the host
plant, HV and satRNAs. However, the model of competition
for replication complexes explains the interaction between only
the HV and satRNAs. No other mechanisms were proposed and
proven until large studies of RNA silencing and the generation
of a large amount of next-generation sequence data from
virus-infected samples. These “big” data reveal the trilateral
interactions of host, HV and satRNAs. For example, small RNAs
(sRNAs) of satRNAs (sat-sRNAs) can target HV and induce
silencing of HV for CMV (Zhu et al., 2011); the satCMV
of SD-CMV can reduce level of RNA-4A, which encodes the
viral suppressor of RNA silencing 2b (VSR2b) protein, thereby
diminishing the viral counter-defense strength by host immunity
(Hou et al., 2011). In addition, Y satRNAs (Y-sat) of CMV can
interfere in the function of VSRs by saturating the sRNA binding
capacity of VSR (Shen et al., 2015). All this evidence shows that
satRNAs take advantage of the host defense system and RNA
silencing to interfere in HV replication.

RNA silencing is the major antiviral defense mechanism
operating in a sequence-specific manner in plants (Ding, 2010).
In general, double-stranded RNA formed during virus replication
or the highly structured viral RNA can trigger RNA silencing by
recognizing and dicing into 20- to 24-nt viral sRNAs (vsRNAs) by
RNase III-like proteins, Dicer-like (DCLs) (Blevins et al., 2006).
These vsRNAs are then recruited by ARGONAUTE proteins
(AGOs) (Mallory and Vaucheret, 2010) and target the viral RNA
or host genes with a complementary sequence. The viral RNAs or
target genes would be cleaved and silenced by vsRNAs via RNA
degradation. However, viruses also evolve to have the counter-
defense mechanism by encoding a VSR. VSRs suppress RNA
silencing by four major mechanisms. The most straight-forward

and common way is by binding sRNAs. Second, they prevent
the recognition and dicing of viral RNA by inhibiting DCLs.
Third, they prevent the assembly of the RNA-induced silencing
complex by targeting its components, such as AGOs. Finally,
they inhibit the amplification of antiviral signals by interacting
with RdRp or its interacting complexes (Burgyan and Havelda,
2011).

Satellite RNAs are both inducers and targets of RNA silencing.
Highly structured satRNAs or satRNA-replication intermediate
double-stranded RNAs induce RNA silencing and produce
sat-sRNAs (Du et al., 2007; Lin et al., 2010). These sat-sRNAs can
direct RNA cleavage of host genes (Shimura et al., 2011; Smith
et al., 2011) or the HV genome (Zhu et al., 2011) and cause DNA
methylation of host genes (Wang et al., 2001). However, unlike
the HV, no satRNA encoded proteins were reported as VSRs.
How interfering satBaMV manipulates the host RNA silencing
immune system to reduce HV replication remains largely
unknown, although strategies mediated by different satCMVs
have been reported (Moriones et al., 1992; Hou et al., 2011; Shen
et al., 2015). From small-RNA sequencing data, BaMV-derived
sRNA (BaMV-sRNA) levels were not increased in BaMV and
BSL6 co-infected samples, and no specific satBaMV-sRNAs of
BSL6 could target BaMV genome (Lin et al., 2010). Although
the 5′-UTR of BaMV contains a stretch of homologous sequence
from nucleotides 1 to 30 (Figure 1B), BaMV-sRNAs and
satBaMV-sRNAs of BSF4 and BSL6 generated from this region
are extremely low in number (Lin et al., 2010). The sRNA
hotspots within the 5′-UTR of BaMV and BSF4 located in the
region from nucleotides 80 to 120 formed SLB and SLC and one
strand of the stem region of SLC (Lin et al., 2010). Hence, RNA
silencing may not be directly involved in satBaMV-mediated
reduction in BaMV infection.

APPLICATION OF INTERFERING
SATBAMV IN BAMV RESISTANCE

Bamboo mosaic virus infects more than 90% of bamboo plants
with pachymorph rhizomes in Taiwan, which results in great
economic loss (Lin and Chen, 1991; Lin et al., 1993). Because
bamboo is usually vegetatively propagated, the use of indexed,
non-infected bamboo generated from meristem tip culture as
propagation materials would greatly improve BaMV disease
control (Hsu et al., 2000). However, BaMV spread may be
through unknown vectors, mechanical injury or contaminated
tools used for propagation or harvesting. How to eliminate BaMV
infection in healthy plants in the field is critical. One of the
promising strategies is the use of virus-resistant cultivars.

Because satRNAs can attenuate HV-induced symptoms
and/or reduce HV replication, they are good candidates as
biological-control agents. In the late 1980s, satCMV transgenic
plants showing CMV resistance were established despite the
underlying mechanism remaining unknown (Harrison et al.,
1987). Interfering satBaMV could attenuate symptoms and
reduce the BaMV level in co-infected plants. Thus, transgenic
plants expressing interfering satBaMV would be a feasible
approach to alleviate infection with BaMV. In transgenic
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N. benthamiana expressing BSL6 satBaMV, two phenotypes
were observed after BaMV infection: one group showed mild
BaMV symptoms, and another group was symptomless (Lin
et al., 2013). Moreover, BSL6 transgenic plants were resistant
to both BaMV viral-RNA and virion infection and with better
resistance to BaMV viral RNA than virion. The transgene, BSL6
replicon, was expressed at a relatively low level in transgenic
lines but was highly induced after BaMV infection. Thus, highly
inducing the transgene only after BaMV infection could avoid
the highly expressed transgene-induced silencing in plant growth
and development. Moreover, BSL6-transgenic plants are highly
resistant whether under attack by BaMV viral RNA or virions.
With all these features, interfering satBaMV-transgenic plants
may be a good option for BaMV disease control.

RNA silencing may not be involved in the mechanism
of satBaMV-mediated BaMV resistance in transgenic plants.
Moreover, the plant innate immune system involving salicylic
acid and jasmonic acid pathways was also not enhanced in
satBaMV-transgenic plants. However, the resistance of satBaMV
transgenic plants to BaMV was associated with the transgene
expression level in transgenic lines under the mock condition.
Non-replication satBaMV transgenic plants could not reduce
BaMV replication (Lin et al., 2013). Thus, competition for
replication complexes with BaMV is the possible mechanism
in BaMV-resistant transgenic plants expressing interfering
satBaMV.

PERSPECTIVES

The AHSL secondary structure and two unique nucleotides (C60

and C83) of satBaMV 5′-UTR are critical for the interfering
satBaMV reducing BaMV level and infection in plants. This
AHSL structure and the critical nucleotide C in IL-1 is conserved
in the BaMV 5′-UTR and also important for replication.
Moreover, interfering satBaMV dose-dependently reduces BaMV
level. Thus, interfering satBaMV-reduced BaMV level competes
for the replication complex.

How a single nucleotide determines the interference ability
of satBaMV deserves further investigation. Here we propose the
possible underlying mechanism.

Long-Distance RNA–RNA interaction
Viral RNAs are four-dimensional because of the complex tertiary
interactions with the host and viral factors in specific viral
infection stages. These long-distance RNA–RNA interactions
control virus replication, translation and sub-genomic RNA
transcription (Miller and White, 2006). Whether C60 in IL-2
and C83 in IL-1 interact with a terminal or internal element
of satBaMV or BaMV critical for BaMV interference remains
unknown. However, a BaMV chimeric mutant expressing the
BSL6 5′-UTR driven by a sub-genomic promoter is sufficient to
reduce both (+) genomic and sub-genomic RNA level without
affecting (−) sub-genomic RNA level. As well, the reduced (+)
genomic RNA level is greater than the (+) sub-genomic RNA
level (Hsu et al., 2006). This result may imply that possible long-
distance RNA–RNA interaction of satRNAs and BaMV affects

only activation or assembly of an RdRp complex competent for
(+)- but not (−)-strand synthesis.

RNA methylation
Another hypothesis for a single nucleotide of satBaMV causing
a great change in interference in BaMV-induced symptoms and
BaMV replication is methylation of this specific nucleotide.
Ribonucleotides are ubiquitously methylated in life at nitrogen,
the oxygen of the 2′OH moiety at fifth-position carbon atoms
in pyrimidine, and second- and eighth-position carbon atoms
in adenosines (Motorin and Helm, 2011). Methylated cytosine
(m5C) is the most privileged. Cytosine can be easily transformed
into uracil via deamination. However, m5C cannot be converted
to uracil. Cellular RNAs containing m5C include transfer RNA
(tRNA), ribosomal RNA, mRNA and non-coding RNA in both
eukaryotes and prokaryotes (Squires et al., 2012; Edelheit et al.,
2013; Hussain et al., 2013; Burgess et al., 2015; Delatte et al.,
2016). Also, m5C was found in some animal viruses (Dubin
and Stollar, 1975; Sommer et al., 1976). M5C is important
for stabilization and Mg2+ binding of tRNA (Basti et al.,
1996; Stuart et al., 2003; Helm, 2006), translation of mRNA
(Strobel and Abelson, 1986) and weakening stimuli to the human
innate immune system (Kariko et al., 2005). In adenovirus-
infected HeLa cells, m5C was found only in adenovirus RNA
(Sommer et al., 1976) but not mRNA (Furuichi et al., 1975;
Salditt-Georgieff et al., 1976). As well, the tRNA-like structure
of an isolate of Turnip yellow mosaic virus injected into
Xenopus oocytes could be methylated at cytosine (Brule et al.,
1998).

How viral RNAs are specifically methylated and the biological
function of m5C in viral RNA needs further study. Here, we
propose two hypotheses. One is that m5C60 and m5C83 may
appropriately and efficiently dock into the active site of key
factors of replication complexes. Alternatively, the methylation
of cytosine in the tRNA-like structure of BaMV 3′-UTR may
be critical for the interaction between replication complexes,
BaMV 5′-UTR and 3′-UTR, and this interaction may be affected
by the interfering satBaMV 5′-UTR during replication, thus
reducing BaMV replication at both the (+)- and (−)-strand
level. Bisulfite sequencing (Schaefer et al., 2009) could be used
to elucidate whether C60 and C83 of satBaMV and C of BaMV
3′-UTR are methylated or not. However, the biological function
of these methylated satBaMVs on BaMV replication is difficult
to prove. A putative methyltransferase was found to interact
with BaMV RdRp and suppress BaMV replication (Cheng
et al., 2009). The involvement of RNA m5C methyltransferases
in satBaMV-mediated BaMV interference is worthy of further
investigation.

Host factors or miRNAs involved
Whether specific host factors are recruited by interfering
satBaMV for interference remains unknown but could be
tested by comparing the protein profiles bound to the 5′-
UTR of BSF4 and BSL6. The specific AHSL-interacting
proteins can be detected by using the 5′-UTR of BSF4
and BSL6 as probes, followed by mass spectrometry
identification.
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Moreover, sRNA sequencing and array analysis revealed that
the plant innate immune system is not involved and RNA
silencing may not be directly involved in the mechanism of
satBaMV-mediated BaMV interference. However, interfering
satBaMV-induced specific microRNAs (miRNAs) or specific
satBaMV-sRNAs may likely target the host gene, which is
important for BaMV replication or essential effectors of the host
innate immune system other than RNA silencing. Thus, the
involvement of RNA silencing in BSL6-mediated interference
remains an open question. It could be evaluated by using
plant mutants defective in key components of RNA silencing
or plants overexpressing VSRs and further analyzing satBaMV-
induced specific satBaMV-sRNAs, miRNAs and other types
of host endogenous small RNAs. The mechanism underlying
interfering satBaMV reducing BaMV level and host symptom

development remains a fascinating question requiring long-term
study.
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