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Abstract

β-lactoglobulin is one of the most abundant milk whey proteins in many mammal species,

including the domestic horse. The aim of this study was to screen for polymorphism in the

equine LGB1 and LGB2 gene sequences (all exons, introns, and 5’-flanking region) and to

assess potential relationship of particular genotypes with gene expression levels (measured in

milk somatic cells) and milk composition traits (protein, fat, lactose, and total β-lactoglobulin

content). Direct DNA sequencing analysis was performed for twelve horse breeds: Polish

Primitive Horse (PPH), Polish Coldblood Horse (PCH), Polish Warmblood Horse (PWH), Sile-

sian, Hucul, Fjording, Haflinger, Shetland Pony, Welsh Pony, Arabian, Thoroughbred, and Per-

cheron—and revealed the presence of 83 polymorphic sites (47 and 36 for LGB1 and LGB2

genes, respectively), including eight that were previously unknown. Association analysis of the

selected polymorphisms, gene expression, and milk composition traits (conducted for the

PPH, PCH, and PWH breeds) showed several statistically significant relationships; for exam-

ple, the two linked LGB1 SNPs (rs1143515669 and rs1144647991) were associated with total

milk protein content (p < 0.01). Our study also confirmed that horse breed had significant

impact on both gene transcript levels (p < 0.01) and on milk LGB content (p < 0.05), whereas

an influence of lactation period was seen only for gene relative mRNA abundances (p < 0.01).

Introduction

Ruminants, including cattle, sheep, and goats, are the major source of the milk produced and

consumed all over the world. However at present, with the promotion of functional foods,

there has been increased interest in milk from so-called minor dairy species. Special attention

has been paid to mare’s milk, mainly on account of the similarity of its composition to human

breast milk, its numerous health-promoting properties, and its low allergenicity. It is estimated

that around 30 million people consume mare milk regularly, predominantly in Asia, where the

tradition of kumis production continues to this day (such as Mongolia and Kazakhstan), but

also in some European countries (such as Germany and France) [1]. Equine milk has a higher
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degree of compositional similarity to human breast milk than the milk of ruminants, and is

thus considered a potential nutritional substitute for human infants [2]. Mare’s milk has less

fat and protein, but higher lactose concentration, than cow’s milk [3,4]. The protein fraction of

equine milk contains low levels of caseins, a class of proteins that predominates in the milk of

ruminants [4,5]. Due to equine milk’s relatively low allergenic potential compared to cow,

sheep, and goat milk, it would seem to be a valuable alternative for people suffering from

hypersensitivity to the proteins found in ruminants’ milk, which is one of the most common

food allergies globally [6]. Furthermore, because mare’s milk contains high levels of bioactive

substances, such as lysozyme and lactoferrin, it can be used as a supportive treatment for some

human diseases, like gastric ulcers and atopic dermatitis [7,8].

The most abundant components of the predominant whey protein fraction of mare’s milk

are β-lactoglobulin (LGB) and α-lactalbumin (LALBA). Together, these proteins comprise

about 60% of total equine milk whey protein [3]. β-lactoglobulin, the main subject of this study,

is a globular protein found in the milk of various mammals, though not in that of humans, cam-

els, lagomorphs, or rodents [5]. Although LGB was discovered over 80 years ago, its function

remains unclear [9]. It is assumed that β-lactoglobulin plays a role in the transport of various

small molecules; it may facilitate the uptake of lipophilic vitamins and modify enzyme activity.

Similarly to the bovine protein, there are two isoforms of equine LGB, named LGB1 and LGB2.

However, whereas the bovine β-lactoglobulin forms are the result of missense polymorphisms

occurring within the same gene [10], domestic horses—like donkeys and dogs—have two sepa-

rate paralogous genes encoding LGB1 and LGB2 [11]. Both genes are located on chromosome

25 (ECA25) and consist of seven exons. The recently updated horse genome assembly (EquCab

3.0) indicates that the total physical lengths of LGB1 and LGB2 are 4739 bp and 4816 bp, respec-

tively (GenBank NC_009168.3). The equine LGB1 protein is made up of 162 amino acids, just

like bovine LGB, while LGB2 has 163 aa residues. The predicted molecular mass of both forms

is 18.5 kDa (LGB1) and 18.3 kDa (LGB2). The mean level of β-lactoglobulin in mare’s milk is

2.55 g kg-1, which is generally lower than in cow’s milk (~3.2 g kg-1) [4]. However, some differ-

ent values have been found by different investigations. For example, Summer et al. (2005) [12]

found the mean concentration of LGB in equine milk to be 2.8 g L-1, while Markiewicz-

Kęszycka et al. (2013) [13] recorded a slightly lower value (2.6 g L-1).

The vast majority of studies to date on the effect of genetic variants on milk yield and com-

position have been conducted for cattle [14–17] and small ruminants [18,19]. Knowledge of

the impact of DNA polymorphisms on domestic horse milk composition is very limited. Of

the genes encoding equine whey proteins, only LYZ (lysozyme), LTF (lactoferrin), and LALBA

(α-lactalbumin) have been “functionally” studied in the context of the influence of particular

genetic variants on gene expression or milk composition [20,21]. Such studies are important

mainly in the search for genetic markers associated with milk yield and composition, and to

better understand the molecular mechanisms related to the regulation of milk protein gene

expression. As β-lactoglobulin is one of the most abundant milk proteins, the encoding genes

are interesting candidates for mammalian milk composition and production traits. Previous

studies of Romanian Simmental cattle have suggested an association between LGB genotypes

and milk yield [17]. Molee et al. (2015) [22] have shown that the specific combination of geno-

types at the GH (growth hormone) and LGB loci can affect milk production and protein con-

tent and can therefore serve as a useful genetic marker in selection programs for crossbred

Holstein cattle. Finally, it was suggested that the LGB gene may also be important in the con-

text of milk processing technology, as particular genotypes are significantly associated with

rennet coagulation time in Brown Swiss cows [23].

Current knowledge of equine LGB1 and LGB2 genes is limited. A recent study by Brink-

mann et al. (2016) [11] of both gene coding sequences found only one polymorphic site in
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LGB1 (a fragment encoding a signal peptide) and eight nonsynonymous variants in the LGB2
gene (ten different protein variants were predicted). However to our knowledge, there has

been no study focusing on the full nucleotide sequences of both genes (including introns and

regulatory regions) aimed at finding the potential association between the detected genetic var-

iants, gene expression, and the composition of mare’s milk. The main aim of this study was

thus to screen for polymorphisms in the structural parts (exons and introns) and the 5’-flank-

ing regions of the equine LGB1 and LGB2 genes, and to analyze their expression in different

horse breeds at three lactation stages (the fifth, tenth, and fifteenth weeks after foaling). The

results were compared to determine the potential relationships between the detected genetic

variants, gene expression, and selected milk composition traits.

Material and methods

Identification and genotyping of genetic variants

Initial detection of the variants involved 96 genomic DNA samples representing animals (both

genders) belonging to twelve different horse breeds: Polish Primitive Horse (n = 8), Polish

Coldblood Horse (n = 8), Polish Warmblood Horse (n = 8), Silesian (n = 8), Hucul (n = 8),

Fjording (n = 8), Haflinger (n = 8), Shetland Pony (n = 8), Welsh Pony (n = 8), Arabian

(n = 8), Thoroughbred (n = 8), and Percheron (n = 8). All DNA samples used in this study

derived from the Horse Genetic Markers Laboratory collection (Poznan University of Life Sci-

ences, Poland), where they had previously been used for routine parentage control analyses.

Screening for polymorphisms included all exons, introns, and about 1000 bp of the equine

LGB1 and LGB2 genes 5’-flanking regions. PCR primer sequence pairs were designed using

the Primer3 tool [24] based on the equine LGB1 and LGB2 genes nucleotide sequence (Gen-

Bank NC_009168.2). Altogether, eleven and twelve overlapping PCR primers pairs, for the

LGB1 and LGB2 genes respectively, were synthesized by Sigma-Aldrich (Germany). In total,

the analysis spanned 6915 bp and 6845 bp of the LGB1 and LGB2 genes respectively.

PCR amplification was carried out in a T-100 thermocycler (Bio-Rad, USA) under the fol-

lowing conditions: initial denaturation (95˚C, 5 min); 35 cycles of denaturation (95˚C, 1 min),

primer annealing (temperature established experimentally, 1 min), elongation (72˚C, 1 min);

and final synthesis (72˚C, 10 min). The amplified DNA samples were stored at 4˚C until fur-

ther analysis. The PCR products specificity was tested by electrophoresis (120 V, 30 min) in

1.5% agarose gel stained with ethidium bromide. Primer sequences and other amplification

details for all investigated fragments are shown in S1 Table.

Prior to the DNA sequencing, PCR products were cleaned of unused primers and nucleo-

tides with Exonuclease I and Thermosensitive Alkaline Phosphatase digestion (Thermo Fisher

Scientific, USA). The following incubation conditions were used: 37˚C, 30 min; 80˚C, 15 min.

The sequencing reaction, based on the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo

Fisher Scientific, USA), was carried out in the T-100 thermocycler (Bio-Rad, USA) using the

following protocol: initial denaturation (95˚C, 5 min); 25 cycles of denaturation (95˚C, 30 s),

primer annealing (50˚C, 10 s), and DNA synthesis (60˚C, 4 min). Samples were then filtered

through a 96-well plate with Sephadex (Sigma-Aldrich, Germany) by centrifugation (3180 × g,

3 min). In the next step, samples were separated electrophoretically in an ABI Prism 3130

Genetic Analyzer instrument (Applied Biosystems, USA). Electropherograms were analyzed

with the Lasergene SeqMan Pro (version 12.2.0) software (DNASTAR, USA). Since both genes

are located in close vicinity on ECA25, the linkage disequilibrium (LD) structure between the

polymorphisms was described using HaploView software [25]. Thirty-nine SNPs from the

PCH, PPH, and PWH breeds, posing sufficient genotype frequencies were selected for this

analysis.
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Gene expression and composition of mare’s milk

This study was approved by the National Commission for Ethics of Animal Experimentation,

and the local Ethics Committee for Animal Research (Poznan, Poland; permission number:

39/2012). During the entire experiment, the mares remained under veterinary control and did

not manifest any symptoms of disease.

Mare milk samples used in this study came from four Polish national studs (Kobylniki, Siera-

kow, Racot, and Nowe Jankowice). The horses belonged to the three phylogenetically distinct

breeds: PPH (n = 20), PWH (n = 27), and PCH (n = 27). All animals were kept under similar

environmental conditions. Milk samples were collected manually in the morning (7–9 a.m.)

three times during lactation (in the fifth, tenth and fifteenth weeks postpartum). During milking,

the mares and foals remained in visual contact. After milk collection, 15 ml of the sample was

frozen in liquid nitrogen for the gene expression studies, and the rest was stored at -20˚C for the

milk composition analysis. A total of 222 equine milk samples of 100 ml each were collected.

Total RNA from milk somatic cells (MSC) was obtained by extraction using TriPure Isola-

tion Reagent (Roche, USA), according to a previously described procedure [26]. cDNA synthe-

sis was performed with a Transcriptor High Fidelity cDNA Synthesis Kit (Roche, USA)

according to manufacturer’s instructions. The standard curve based method was applied to

LGB1 and LGB2 genes expression quantification, using real-time PCR technique. Firstly, the

proper fragments of all analyzed genes were PCR amplified and visualized on 1.5% agarose gel

stained with ethidium bromide. Each PCR product was extracted from the gel and purified

using the GeneJET Gel Extraction Kit (Thermo Scientific, USA). After the DNA concentration

assessment using Nanodrop 2000 system (Thermo Scientific, USA) a serial, 10-fold dilutions

(standards) have been prepared. Afterwards, the standards were used as template for real-time

PCR amplification, in order to create the appropriate standard curves. The relative transcript

level measurements using a LightCycler 480 real-time PCR instrument (Roche, USA) were car-

ried out in duplicate for the LGB1 and LGB2 genes and four reference genes (ACTB, GAPDH,

TOP2B, and KRT8). Selection of internal control genes was conducted using the GeNorm and

NormFinder tools, as previously described [26]. Primers and TaqMan probe sequences for

real-time PCR were designed and synthesized by TIB MolBiol (Germany) (S1 Table). Each run

of amplification contained the tested samples, proper DNA standard and the negative control

(without cDNA). The following cycling conditions were applied: initial denaturation (95˚C /5

min) followed by 45 cycles of amplification (95˚C/10 s; 60˚C/30 s; and 72˚C/1 s). Afterwards

samples were cooled (40˚C/30 s). The results obtained for the LGB1 and LGB2 genes were nor-

malized to the geometric mean of mRNA abundances of the above listed reference genes, in

line with the protocol recommended by Vandesompele et al. (2002) [27].

The basic composition of mare’s milk as protein, fat, and lactose content was determined

by automated infrared analysis in a Milkoscan FT2 instrument (Foss Electric, Denmark). The

milk β–lactoglobulin content was established using an Agilent 1100 Series reverse phase high-

performance liquid chromatograph (Agilent Technologies, Germany), following the method-

ology described by Puppel et al. (2016) [28]. LGB peaks were identified by comparison with

BLGA Lot100M7026V and BLGB Lot048K7003V bovine standards (Sigma-Aldrich, USA).

Separation was performed at room temperature using a solvent gradient on a Jupiter C18

300A column (Phenomenex, Torrance, USA) with chromatographic conditions as follows: sol-

vent A was acetonitrile (Merck, Germany), water (Sigma-Aldrich, USA), and trifluoroacetic

acid (Sigma-Aldrich, USA) in a ratio of 50:950:1 (v/v/v); solvent B was acetonitrile, water, and

trifluoroacetic acid in a ratio of 950:50:1 (v/v/v); the total run time was 44 min, the flow rate

was 1.2 mL min-1, and the detection wavelength was 220 nm; the injection volume of the final

solution was 25 μl.
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Statistical analyses

After elimination of records with missing phenotypic data, the total number of 213 observa-

tions (derived from 73 animals) have been subjected to association studies (all tested genotypes

and phenotypes are shown in S5 Table). Mixed ANOVA was used to determine the effect of

the LGB1 and LGB2 gene polymorphisms on their relative transcript level in milk somatic

cells, total milk β–lactoglobulin content, and the concentrations of the milk’s basic compo-

nents (protein, fat, and lactose). We use a model incorporating the fixed effect of breed and

sampling time (fifth, tenth, or fifteenth week postpartum) as a repeated-measure factor. The

unknown variance components were estimated with the restricted maximum likelihood

(REML) method [29]. Before final analysis, each factor included in the statistical model was

tested using the Kruskall–Wallis and Friedman tests [30,31]. Obtained p-values were corrected

for multiple testing using Tukey-Kramer adjustment. In the association study, only genotype

groups spanning more than five phenotypic observations from the PPH, PWH, and PCH

breeds were considered. Finally, 28 and 11 variants were selected for the LGB1 and LGB2 gene

analysis, respectively. Additionally, the Spearmans’s correlation coefficient was calculated for

LGB1 and LGB2 relative transcript abundances, milk LGB content and the total milk protein

concentration. All statistical comparisons were conducted in SAS EG 7.1 software (SAS Insti-

tute Inc., USA).

Results

Equine LGB1 and LGB2 gene variants

The initial screening for polymorphisms with a multibreed panel of 96 horses revealed the

presence of 83 variants (47 and 36 for LGB1 and LGB2 genes, respectively). Among them 81

were SNPs and 2 were InDels). Some of these were broadly distributed across the breeds (for

example, the rs69324332 and rs394407776 LGB1 SNPs were found in eleven of the twelve

horse breeds), while some variants were detected in just one horse breed (e.g., the LGB1
rs395074979 and rs397277457 SNPs, which were recorded exclusively in Silesian horses). In

the case of the LGB1 gene, only one SNP was previously unknown (a C>T substitution found

in intron 5, chromosomal coordinates ECA25: 38875547). This SNP was detected in Percheron

and Fjording horse breeds (S2 Table).

Analysis of the LGB2 gene revealed the presence of 36 genetic variants. Most of them (29)

were already present in databases, but seven (five SNPs and two InDels) were previously

unknown. One novel polymorphism—a dinucleotide (GC) InDel (ECA25: 38896038–

38896039)—was found in the 5’-flanking region of the LGB2 gene. This variant has segregated

in nine horse breeds (S2 Table). Five of the seven remaining novel variants (three SNPs and an

InDel) were located in introns (3–5), and only two (an A>T substitution, ECA25: 38895282

and a C>G substitution, ECA25: 38891425) were found in the LGB2 coding sequence (exons 1

and 5, respectively). The first of these (an A>T missense substitution, p.24Thr>Ser) was seen

only in the Silesian breed, while the second (C>G missense substitution, p.174Gly>Arg) was

recorded in the Fjording, Haflinger, Shetland Pony, Silesian, and Polish Warmblood Horse

breeds. More details on the genetic variants are presented in S2 Table. The information about

previously unknown polymorphisms was deposited in European Variation Archive (EVA)

repository (project number: PRJEB35282).

Analysis of linkage disequilibrium (LD) was performed for the 39 variants posing sufficient

genotype frequencies and revealed the presence of four potential haplotype blocks (2 in LGB1
and 2 in LGB2 gene). The largest block spanned twelve polymorphisms of the LGB1 gene (Fig

1). Generally, the LD between pairs of loci varied from almost none to full LD. However, it is
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worth noting that, in several cases, strong linkage was detected not only for SNPs located

within the same gene, but also intragenic ones.

Effect of horse breed and lactation period on the expression of the LGB1
and LGB2 genes

Comparison of the relative transcript levels of LGB1 and LGB2 (measured in milk somatic

cells) between the horse breeds showed the highest mRNA abundances of both genes in the

PPH breed and the lowest in PCH (p< 0.01). The LGB1 and LGB2 transcript levels found in

the PWH breed was intermediate, and did not differ significantly from these recorded for the

two remaining breeds (p> 0.05) (Fig 2). Interbreed comparison of milk LGB protein content

found the highest β-lactoglobulin concentration in the PWH breed and the lowest in milk

derived from PPH mares (p< 0.01) (Table 1).

Tracing the expression profiles between the three lactation time-points (fifth, tenth, and fif-

teenth weeks postpartum) revealed similar trends for the LGB1 and LGB2 gene relative tran-

script levels. The highest mRNA abundances of both genes were recorded for the samples

collected in the fifth week after foaling. The relative transcript level then decreased significantly

(p< 0.05) between weeks 5 and 10. By the last time-point (week 15), mRNA levels had

increased relative to week 10, but this elevation was only statistically significant for the LGB1
transcript (p< 0.05) (Fig 3). A similar comparison for milk LGB concentrations showed that

the highest β-lactoglobulin level occurred in week 10 of lactation and the lowest level at week

15; however, the recorded differences were not statistically significant (p> 0.05) (Table 1).

Fig 1. Linkage disequilibrium (LD) across the tested fragment of ECA25 (HaploView tool). Numbers in blocks denote D’ values. Red blocks without

numbers show full LD between pairs of loci. Empty blue blocks denote a lack of LD between pairs of loci.

https://doi.org/10.1371/journal.pone.0232066.g001
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Relationship between LGB1 and LGB2 gene variants, gene expression, and

milk composition

The association analysis pointed to several statistically significant relationships between genotypes

in the LGB1 and LGB2 variants, gene expression, and milk composition traits (S3 Table). The

strongest relationship was seen for the two linked LGB1 SNPs (rs1143515669 and rs1144647991)

and the total milk protein content. The heterozygous horses (AG or AC) had the significantly

(p< 0.01) higher protein concentrations than the homozygous genotype carriers (GG or AA, in

rs1143515669 and rs1144647991 SNPs, respectively). This association was seen when the PPH

breed was considered separately, as well as when all breeds were tested together. A similar, signifi-

cant association was detected for the genotype in LGB1 rs1140322039 SNP and the total milk fat

concentration, when only the PWH breed was considered (p<0.01) and when all horse breeds

were tested together (p< 0.05). The only relationship between genotype and milk β-lactoglobulin

Fig 2. Interbreed comparison of LGB1 and LGB2 relative transcript levels. Values are means with standard errors. Means

marked by the same uppercase letter (for each gene separately) differed significantly (p< 0.01).

https://doi.org/10.1371/journal.pone.0232066.g002

Table 1. Comparison of milk LGB concentration between the horse breeds and lactation time-points.

Lactation stage / horse breed Number of milk samples Average milk LGB conc. (g/L) SEM

Week 5 70 2.93 0.08

Week 10 72 2.99 0.09

Week 15 70 2.83 0.09

PPH 59 2.73A 0.09

PWH 79 3.08A 0.09

PCH 75 2.89 0.08

SEM—standard error of the mean. Horse breeds acronyms: PPH—Polish Primitive Horse, PWH—Polish

Warmblood Horse, PCH—Polish Coldblood Horse. Values marked by the same uppercase letter differed

significantly (p < 0.01).

https://doi.org/10.1371/journal.pone.0232066.t001
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abundance was observed for the rs1140333438 polymorphism located in the LGB1 gene. The GA

genotype carriers had significantly (p< 0.05) higher milk LGB concentration than the GG homo-

zygous mares, taking all breeds together. Moreover, the rs1150055140 variant was associated with

LGB1 (p< 0.05) and LGB2 (p< 0.01) gene relative transcripts level, both when the PPH breed was

considered separately and when all breeds were taken together; increased expression levels of both

genes were seen for the CA genotype). We also recorded a significant relationship between LGB2
rs1146870844 SNP and LGB2 gene expression level (p< 0.01, PWH breed). Additionally, signifi-

cant (p< 0.05) associations were observed between genotypes and several traits, namely milk lac-

tose content (LGB1 rs1151091548, PCH breed; LGB2 rs1147750066, PPH breed), total milk protein

concentration (three linked SNPs: LGB1 rs1142388519, rs1143386853 and LGB2 rs1138764575,

PWH breed), LGB1 gene relative transcript level (LGB1 rs69324332 and rs69324336, PWH breed)

and LGB2 relative transcript level (two linked LGB2 variants: rs1141488737 and 1144796536, PCH

breed). All statistically significant comparisons are shown in detail in S3 Table.

Discussion

Although our knowledge of the composition of mare’s milk and its beneficial impact on

human health continues to expand, it is still not a widely used animal product, especially in

European countries. Due to the small scale of production of mare milk in comparison to cow’s

milk, equine milk remains relatively expensive and is used in the majority of cases as a health-

promoting supplement rather than as a regular nutritional product. Equine milk is considered

valuable, especially because of the significant amount of bioactive compounds it contains and

its low allergenicity [3,4] It is thus often recommended for people who are hypersensitive to

proteins found in ruminants’ milk and to those who suffer from other disorders (including

skin problems, increased serum cholesterol level, hepatitis, and gastric ulcers) [5,32]. Despite

the great similarity between the composition of mare’s milk and human breast milk, there are

several notable differences. One of these is the presence of β-lactoglobulin, which is a very

abundant protein in equine milk (and in the milk of many other mammalian species), yet is

Fig 3. Changes in LGB1 and LGB2 genes relative transcript abundances across lactation time-points. Means marked by

the same lowercase letter (for each gene separately) differed significantly (p< 0.05).

https://doi.org/10.1371/journal.pone.0232066.g003
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totally absent in human breast milk [4]. However, the LGB concentration of mare’s milk varies

strongly between particular individuals, even considering only domestic horses. In the previ-

ous experiment of Markiewicz-Kęszycka et al. (2013) [13], the LGB concentrations fell within

the range of 1.4–4.17 g/L, whereas in our present study, the variability was slightly higher (1.2–

4.9 g/L). This may be associated with the fact that Markiewicz-Kęszycka et al. (2013) [13] con-

sidered only the Polish Coldblood Horse breed, and all samples were collected at a late lacta-

tion stage; in the present study, samples were derived from three horse breeds (PPH, PCH,

and PWH) at weeks 5, 10, and 15 after foaling.

The initial screening for polymorphism in the panel of twelve horse breeds has revealed the

presence of 83 polymorphic sites. Majority of them (47) were located in the LGB1 gene, how-

ever all the missense SNPs (6) were detected exclusively in the LGB2 gene coding sequence.

This is generally in agreement with the previously published work by Brinkmann et al. (2016)

[11] who described the presence of eight nonsynonymous SNPs in the LGB2 gene and only a

one missense variant within the LGB1 gene (sequence encoding the LGB1 signal peptide).

Taking into consideration the high estimates of heritability (h2 = 0.8) found for Holstein–

Friesian cattle milk LGB content [33], it would seem clear the observed intrabreed and inter-

breed variation in the β-lactoglobulin content of equine milk is also related to genetic factors

(such as polymorphism and the expression of LGB genes). However our results suggest that

the regulation of equine LGB gene expression is highly complex. Although we have described

several statistically significant relationships between genotypes and the mRNA levels of both

gene measured in milk somatic cells, only one polymorphism (rs1140333438) of LGB1
revealed an association with the milk β-lactoglobulin content. Unexpectedly, this particular

SNP did not affect the relative transcript level of the LGB1 gene (p> 0.05). Generally, when we

measure the variability of LGB1 and LGB2 gene expression profiles at the mRNA stage, we can

note that they do not correspond to the variation in the amount of milk β-lactoglobulin (for

example, the highest relative transcript abundance of both genes was noted for the PPH breed,

while the average β-lactoglobulin content in PPH mares milk was low) (Fig 2 and Table 1).

Similar results were obtained in our studies of other genes encoding equine milk proteins

[20,21,34]; this confirms the complexity of the mechanisms responsible for regulating gene

expression. This complexity frequently leads to a lack of linear relationship between mRNA

abundance and the final amount of protein [35]. Interestingly, we observed similar trends in

the mRNA levels of both genes across the three lactation time-points (Fig 3), which may sug-

gest the existence of coregulatory mechanisms of expression. This hypothesis is partly sup-

ported by the fact that, in the case of one SNP (rs1150055140), a statistically significant

relationship was noted with the expression levels of both genes. Moreover, we have recorded

the highly significant correlation (r2 = 0.83, p< 0.01) of both genes relative transcript abun-

dances (S4 Table). However further study is needed to fully uncover the mechanisms that

influence equine LGB1 and LGB2 gene expression patterns. Taking these results into account,

we must underline that, due to the lack of simple relationship between transcript and protein

levels, the experiments investigating gene expression should perhaps be conducted for both

the mRNA and protein stages. When this is not done, conclusions should be drawn very care-

fully. For example, looking at the relative transcript abundance of both LGB genes, we can

assume that the main contribution to mare’s milk β-lactoglobulin concentration is played by

the LGB1 gene (as we noted greater expression of this gene than of LGB2 in all lactation stages).

However, when we consider the lack of simple association between mRNA and final protein

expression observed in our study, this assumption no longer appears reliable. In the present

study, tracing the connections between transcripts and protein level was also challenging due

to the lack of HPLC standards for equine β-lactoglobulin isoforms (the corresponding bovine

standards were used). We were therefore unable to distinguish between LGB1 and LGB2
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proteins, and only the total beta β-lactoglobulin concentration was taken into account. Since

the technical variation is considered as one of the most important factors influencing the reli-

ability of transcript and protein levels correlation estimation [36], we cannot exclude that in

the case of the present study the “technical noise” was the main reason of the recorded lack of

simple association between LGB genes mRNA abundances and milk β-lactoglobulin content.

Therefore further investigations based upon the larger number of samples and other molecular

methods are needed to fully confirm or undermine the obtained results. This is justified espe-

cially if we take into account that previous studies considering the global gene expression in

mammalian cells have shown that although the final amount of protein depends mainly on

translation stage control, still about 40% of variability can be explained by the variation of

mRNA level [37].

From the methodological point of view, the lack of simple relationship between the tested

genes transcript levels and the milk LGB concentration may also be related to the applying of

non-fully homogenous source of RNA (milk somatic cells) for gene expression analyses. It is

well known that the population of MSC is consisted of various cell types, including the mam-

mary epithelial cells (crucial for the milk proteins expression) and leukocytes (lymphocytes,

macrophages and polymorphonuclear neutrophils) [38]. Their proportion may vary between

milk of particular individuals which depends (among others) on a current immunological sta-

tus of the mammary gland. Since in the present study we were not able to separate the mam-

mary epithelial cells from the other MSC types, we can suppose that the measurements of gene

expression are not fully accurate. On the other hand, the previous investigations on ruminants

have clearly shown that the MSC populations is a very good source of RNA for gene expression

level assessment, reflecting precisely the transcriptional status of the mammary gland [39]. It

should also be emphasized that to avoid a potential bias related to the variability of mammary

epithelial cells number in particular samples, we used the KRT8 (Keratin-8) as one of the refer-

ence genes for real-time PCR results normalization. Although this is not the classical house-

keeping gene, due to its specific expression in milk-secreting cells, KRT8 can be used for

normalization of mammary epithelial cells number variability observed between particular

milk samples [26,40].

Based on published studies of ruminants [16,17,41], we have assumed that equine LGB gene

variants can serve as valuable markers of equine milk composition, including LGB content

and gross milk composition traits. The most repeatable association recorded in our study was

the relationship between particular SNPs (such as LGB1 rs1143515669, rs1144647991 and

rs1140322039) and basic milk composition traits (total milk protein or total milk fat concen-

tration). It seems that selected equine LGB gene variants can be considered potential markers

for these particular traits; however, further studies with larger animal groups of different horse

breeds are necessary. Associations between β-lactoglobulin polymorphisms and total milk pro-

tein and/or fat concentration have previously been described for cattle [12,42,43] and sheep

[44,45]. We have also recorded a relationship between genotypes in rs1151091548 (LGB1) and

rs1147750066 (LGB2) SNPs and the milk lactose level of PPH and PCH mares, respectively.

This association may prove interesting from the consumer point of view (in terms of effects on

milk taste, lactose intolerance, etc.) as well as in terms of the processing of mare’s milk (such as

fermented products making); studies of equine LGB1 and LGB2 gene variants should therefore

be continued.

Published reports on the genes that encode milk proteins have concentrated predominantly

on variants detected within coding regions and on their potential effect on amino acid

sequences. However, our current knowledge suggests that polymorphisms affecting gene

expression or milk composition may be located in various parts of the gene or even intergeni-

cally. For example, the genetic variation within introns can introduce novel splice sites or affect
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transcript stability [46]. There are also many experiments showing relationships between poly-

morphisms in regulatory regions, gene expression, and milk composition. In the case of the

gene encoding bovine β-lactoglobulin, it has been shown that some 5’-flanking variants (g.-

731G>A and g.-215C>A) are associated with expression variability measured on the protein

or mRNA level [47,48].

For these reason, we decided to analyze the entire nucleotide sequence of equine LGB1 and

LGB2 genes. Although we have described some promising associations between genetic vari-

ants, gene expression and milk composition traits, we were unable to investigate all the

detected polymorphisms (including several novel ones) due to their insufficient frequencies in

the PPH, PCH, and PWH breeds. Our study should thus be treated as a good starting point for

broader analyses of LGB1 and LGB2 gene polymorphism, expression patterns, and impact on

the variability of mare’s milk composition.
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