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Abstract

Background: In this study, we comprehensively analyzed genes related to ferroptosis and iron metabolism to
construct diagnostic and prognostic models and explore the relationship with the immune microenvironment in HCC.

Methods: Integrated analysis, cox regression and the least absolute shrinkage and selection operator (LASSO) method
of 104 ferroptosis- and iron metabolism-related genes and HCC-related RNA sequencing were performed to identify
HCC-related ferroptosis and iron metabolism genes.

Results: Four genes (ABCB6, FLVCR1, SLC48A1 and SLC7A11) were identified to construct prognostic and diagnostic
models. Poorer overall survival (OS) was exhibited in the high-risk group than that in the low-risk group in both the
training cohort (P < 0.001, HR = 0.27) and test cohort (P < 0.001, HR = 0.27). The diagnostic models successfully
distinguished HCC from normal samples and proliferative nodule samples. Compared with low-risk groups, high-risk
groups had higher TMB; higher fractions of macrophages, follicular helper T cells, memory B cells, and neutrophils; and
exhibited higher expression of CD83, B7H3, OX40 and CD134L. As an inducer of ferroptosis, erastin inhibited HCC cell
proliferation and progression, and it was showed to affect Th17 cell differentiation and IL-17 signaling pathway
through bioinformatics analysis, indicating it a potential agent of cancer immunotherapy.

Conclusions: The prognostic and diagnostic models based on the four genes indicated superior diagnostic and
predictive performance, indicating new possibilities for individualized treatment of HCC patients.
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Background
As the most frequent primary malignant tumor of the
liver [1], hepatocellular carcinoma (HCC) is ranked as
the sixth most commonly diagnosed neoplasm and is es-
timated to be the fourth leading cause of cancer-related
death worldwide [2]. The incidence and mortality of
HCC are continuing to increase [3]. Based on multiple
staging systems, HCC has made great progress in diag-
nosis and treatment, but most HCC staging systems are
currently based on tumor burden and stratification of
the disease by prognosis [4]. These systems lack sensitivity
and have difficulty explaining the adverse biological char-
acteristics that affect treatment and survival response,
which generally limits the treatment effect for patients [5].
HCC is a highly complex, multistep process involving gen-
etic mutations, chromosomal aberrations, molecular sig-
naling pathways, and epigenetic disorders [6]. Therefore, a
better understanding of the molecular changes, molecular
mechanisms and characterization involved in tumorigen-
esis and the identification of novel biomarkers that can in-
dividually predict the diagnosis and prognosis of tumors
are essential for personalized medicine [7].
Iron is a basic nutrient element in the human body,

and it is indispensable for biological processes such as
cell metabolism, growth and proliferation [8]. The
homeostasis of iron metabolism is stably regulated
through balanced absorption, systemic transport, and
cellular uptake and storage [9]. Alterations in iron me-
tabolism have a dual effect on tumor cells. Since most
tumor cells have an increased demand for iron, an in-
crease in iron reserves within a certain range can promote
the growth and proliferation of tumor cells [10, 11], and
there is a positive correlation between the risk of tumors
and iron accumulation [12, 13], but the excessive increase
in iron concentration in the body leads to cell death
caused by membrane lipid peroxidation, termed ferropto-
sis [14]. Ferroptosis has anticancer functions that are use-
ful in cancer treatment [15]. Since the first demonstration
in 2012, ferroptosis has received widespread attention as a
potential therapeutic pathway for cancer treatment. Vari-
ous studies have determined the key role of ferroptosis in
killing tumor cells and inhibiting tumor growth [16, 17].
Some previous studies have also confirmed the important
significance of ferroptosis for the treatment and prognosis
of liver cancer [18, 19], but the detailed signal transduc-
tion pathways and key regulators of ferroptosis during the
occurrence and progression of HCC are unclear.
As an emerging feature of cancer, TMB was first em-

phasized in next-generation sequencing analysis [20].
TMB is defined as the total number of somatic coding
mutations associated with the emergence of new anti-
gens that trigger antitumor immunity [21]. It is specu-
lated that highly mutated tumors are more likely to
carry neoantigens, making them targets for activated

immune cells [22]. Currently, immune checkpoint
inhibitor-based immunotherapy as an innovative therapy
for multiple types of advanced cancer is emerging, and
TMB has been identified as an emerging biomarker that
is sensitive to immune checkpoint inhibitors [23]. TMB
can help identify patients with some types of cancer that
could benefit from immunotherapy.
Tumor immune microenvironment (TIME) mainly re-

fers to immune cells and immune related molecules in the
tumor microenvironment. TIME plays a vital role in con-
trolling iron metabolism and homeostasis [24]. Many cell
types, such as Th1 cells, natural killer T (NKT) cells,
monocytes and macrophages, are involved in the mainten-
ance of iron homeostasis [25]. In addition, ferroptosis was
found to work synergistically with immunoregulation in
TIME. The lethal ferroptosis in tumor cells can expose
tumor antigens, thereby improving the immunogenicity of
the microenvironment and enhancing the effectiveness of
immunotherapy [26]. And a study also confirmed that im-
munotherapy can activate CD8 + T cells in the TIME to
enhance the lipid peroxidation specific to ferroptosis in
tumor cells, and the increase in ferroptosis further pro-
motes the anti-tumor efficacy of immunotherapy [27].
In this study, we used high-throughput methodology

technology to comprehensively analyze the genome of
HCC and thousands of molecular targets, identify iron
metabolism and ferroptosis-related genes closely associ-
ated with the prognosis of HCC, construct predictive
models for the diagnosis and prognosis of HCC, and ex-
plore the relationship with immune infiltration in HCC.
Our findings may help improve the early diagnosis rate
of HCC and further improve the clinical outcomes of
patients under personalized treatment.

Methods
Acquisition of ferroptosis- and iron metabolism-related
genes associated with HCC
Ferroptosis-related genes were obtained in the ferropto-
sis pathway (map04216) from the KEGG PATHWAY
Database (https://www.genome.jp/kegg/pathway.html).
Genes related to iron metabolism were obtained in the
pathway of iron uptake and transport (R-HSA-917937)
from the Reactome Pathway Database (https://reactome.
org/) and cellular iron ion homeostasis (GO:0006879)
from the AmiGo2 database (http://amigo.geneontology.
org/amigo) [28]. We searched and comprehensively ana-
lyzed the source literature of these genes, eliminated un-
related genes and added newly reported related genes,
and then integrated them for subsequent research.

Identifying differentially expressed genes (DEGs) between
HCC and adjacent nontumor tissues
The mRNA-sequencing data of patients with HCC with
clinical information were downloaded from the TCGA
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database (including 370 HCC tissue samples and 50 nor-
mal tissue samples for a total of 10,000 encoding mRNA
sequences) and the ICGC database (including 202 nor-
mal samples and 243 HCC samples for a total of 19,677
encoding mRNA sequences). Matching the mRNA-
sequencing data with ferroptosis- and iron metabolism-
related genes and using limma, an R package, with an
absolute log2-fold change (FC) > 1 and an adjusted P
value < 0.05 to perform differential expression analysis,
DEGs related to ferroptosis and iron metabolism were
thereby identified. Since the data of the TCGA database
and the ICGC database are open to the public and can
be downloaded freely, and this study strictly followed
the publication guidelines and access policies of the da-
tabases, ethical review and approval from an Ethics
Committee are not required for the study.

Establishment and validation of a prognostic predictive
signature
Using univariate Cox regression analysis to screen out
genes related to OS in patients with HCC, genes with a
P value < 0.05 were considered statistically significant
and incorporated into the subsequent LASSO Cox regres-
sion. In the LASSO-penalized Cox regression analysis, we
adjusted the L1 penalty parameter via 10-fold cross-
validation to narrow the number of genes, and genes that
appeared with a repetition frequency greater than 900
times in 1000 substitution samplings were considered to
be more closely related to OS. Based on a multivariate
Cox regression for these genes, we built a prognostic sig-
nature. The prognostic risk score was determined using a
linear combination of the regression coefficient (β) in a
multivariate Cox regression model and the expression
levels of the genes. Prognostic index (PI) = (β * expression
level of ABCB6) + (β * expression level of FLVCR1) + (β *
expression level of SLC48A1) + (β * expression level of
SLC7A11). X-tile software [29] was used to determine the
optimal cut-off value, which help divide patients with
HCC into high-risk group and low-risk group and show
the most significant difference in prognosis between two
groups. Kaplan-Meier (K-M) survival curves and time-
dependent receptor operating characteristic (ROC) curves
were performed to evaluate the predictive performance of
the prognostic signature on OS.

Independence of the prognostic signature from
traditional clinical characteristics
Univariate and multivariate Cox regression analyses were
performed to confirm whether the prognostic signature
was independent of other traditional clinical characteris-
tics (including age, AFP, weight, vascular tumor cell, sex,
pathological grade and TNM stage) in predicting OS of
patients with HCC. Hazard ratios (HRs) and 95%

confidence intervals (CIs) for each variable were calcu-
lated. P < 0.05 was considered statistically significant.

Construction and evaluation of a predictive nomogram
We integrated the independent predictive factors identi-
fied by multivariate Cox regression and constructed a
predictive nomogram and corresponding calibration
maps using “rms” R software. Calibration and discrimin-
ation were carried out to validate the calibration maps.
The consistency index (C Index), which was calculated
via a bootstrap method with 1000 resamples, was used
to evaluate the prediction accuracy of the nomogram
compared to the actual result and to graphically plot the
actual observed rate and the predicted rate of the nomo-
gram to evaluate the calibration curves. The closer the
calibration curve is to the 45° line, which represents the
best prediction, the better is the prognostic prediction
performance of the nomogram. ROC curve analysis was
performed to validate the sensitivity and specificity of
the nomogram compared to a single independent pre-
dictor in predicting OS, and decision curve analysis
(DCA) was performed to evaluate the clinical benefit
that the nomogram can obtain compared to a single in-
dependent prognostic predictor. P < 0.05 was considered
statistically significant.

Internal and external validation of the expression
characteristics of ferroptosis- and iron metabolism-related
genes
Wilcoxon signed rank tests in Prism 7.0 (GraphPad, San
Diego, CA, USA) were used to validate the expression
characteristics of ferroptosis- and iron metabolism-related
genes between HCC and normal tissues in the HCC co-
hort from ICGC and GSE6764. P < 0.05 was considered
statistically significant. Regression analysis was performed
to explore the correction among the expression profiles of
genes. ROC curve analysis was performed to validate the
predictive ability of the genes for OS.

Estimation of immune cell type fractions
Cell-type Identification By Estimating Relative Subsets
Of RNA Transcripts (CIBERSORT) analysis was used to
quantitatively convert the transcriptome data of tumor
tissue into the absolute abundance of immune cells and
stromal cells to assess the proportion of 22 human im-
mune cell subpopulations, including seven T cell types,
naïve and memory B cells, plasma cells, NK cells, and
myeloid subsets [30, 31]. Standard annotation files were
adopted to organize gene expression characteristics. The
R package “CIBERSORT” was applied to convert mRNA
data into the infiltration fractions of non-tumor cells in
the tumor microenvironment. For each sample, the sum
of all estimated immune cell type scores is equal to 1.
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Cell culture
Human HCC cell lines (SK-HEP1 and SMMC-7721)
were purchased from American Type Culture Collection
(ATCC) (Manassas, VA, USA). The cell lines were cul-
tured in DMEM (Gibco, NYC, USA) supplemented with
10% heat-inactivated fetal bovine serum (Gibco, NYC,
USA) at 37 °C and maintained in a humidified cell incu-
bator with an atmosphere of 5% CO2.

Cell viability assay
Cell viability was measured by Cell Counting Kit-8 assay
(CCK-8) (Dojindo, Japan) according to the manufac-
turer’s instructions. Erastin (HY-15763), Ferrostatin-1
(Fer1) (HY-100579) and Acetylcysteine (NAC) (HY-
B0215) were purchased from MedChemExpress (MCE,
SHH, CHN). SK-HEP1 and SMMC-7721 cells were
plated in a 96-well plate with 3000 cells per well and 5
wells as a set and incubated in a humidified cell incuba-
tor with an atmosphere of 5% CO2 at 37 °C for 24 h.
Then, after treating the cells with each reagent for 72 h,
the kit reagent WST-8 was added, and incubation was
continued for another 4 h. The OD was measured at
450 nm using SpectraMax iD5(San Jose, CA, USA). Each
experiment was repeated at least twice.

Detection of reactive oxygen species (ROS) accumulation
SK-HEP1 and SMMC-7721 cells were plated in a 6-well
plate with 50,000 cells per well and incubated in the
humidified cell incubator with an atmosphere of 5%
CO2 at 37 °C for 24 h and treated with each reagent for
another 48 h. Then DCFH-DA (Invitrogen, CA, USA)
was added to the cells and incubated for 30 min, and the
ROS accumulation in 10,000 cells was detected by flow
cytometry using a microplate reader.

Iron assay
The iron colorimetric assay kit was purchased from Bio-
vision (Milpitas, California, USA) to measure intracellu-
lar iron concentration according to the manufacturer’s
instructions. In this assay, ferric iron is dissociated into
solution by ferric carrier proteins in an acid buffer envir-
onment. The iron content in the sample is measured
after iron is reduced to ferrous form (Fe2 +) and reacts
with Ferene S to form a stable colored complex.

IHC staining
The tumor tissues and adjacent non-tumor tissues
were fixed in 10% formalin for 1 week and then em-
bedded in paraffin. Four-micrometer sections of tissue
specimens were prepared and deparaffinized and anti-
gen was retrieved by microwaving. Immunostaining
was performed with following monoclonal antibodies:
ABCB6 (Proteintech,51,007–1-AP), FLVCR1 (Abcam,

ab251916), SLC48A1 (Novus Biologicals,NBP1–91563)
and SLC7A11(Proteintech, 26,864–1-AP).

Nude mouse xenograft assay
Male BALB/c-nude mice aged 4–6 weeks were purchased
from Shanghai Slac Laboratory Animal Co. LTD (Shang-
hai, China) for the construction of HCC xenograft mouse
models. After resuspending in PBS, SMMC-7721 cells
(6 × 10 ^ 6/mouse) were injected subcutaneously into the
ventral side of nude mice. Nude mice were randomly di-
vided into two groups (5 mice/group) and kept in a sterile
environment with 12 h of light/12 h of darkness per day.
One week after implantation, when the subcutaneous
tumor was visible to the naked eye (approximately 2mm),
mice were treated with 40mg/kg erastin (intraperitoneal
injection, three times a week) or vehicle control (saline).
The tumor volume (TV) was calculated according to the
following formula: TV (mm3) = L ×W 2 × 0.5.

Quantitative real-time polymerase chain reaction (qRT-PCR)
Total RNA was extracted from SK-HEP1 cells and
SMMC-7721 cells treated with erastin using TRIzol re-
agent (Invitrogen, Carlsbad, USA) and reverse transcribed
using a cDNA reverse transcription kit (TransGen,
Guangzhou, China) in accordance with the manufacturer’s
instructions, and the obtained cDNA was amplified using
a SYBR Green PCR kit (TransGen, Guangzhou, China).
qRT-PCR was performed to detect expression levels in
samples. The primers used for qRT-PCR were purchased
from TsingKe (Beijing China). Each experiment was re-
peated three times. The 2-ΔΔCT methodology was
adopted to calculate the expression of genes.

Statistical analysis
Student’s two-sided t-tests in Prism 7.0 (GraphPad, San
Diego, CA, USA) were used to compare the differences be-
tween two groups. The results are presented as the mean ±
standard deviation (SD) of at least five independent experi-
ments. P < 0.05 was considered statistically significant.

Results
Identification of DEGs related to ferroptosis and iron
metabolism in HCC
A total of 104 ferroptosis- and iron metabolism-related
genes were identified to match the mRNA-sequencing
data in the TCGA and ICGC databases. Using limma
with an absolute log2-fold change (FC) > 1 and an ad-
justed P value < 0.05 to perform differential expression
analysis, we identified 24 DEGs (17 upregulated and 7
downregulated) in TCGA (Fig. 1a and c) and 16 DEGs
(13 upregulated and 3 downregulated) in ICGC (Fig. 1b
and d) that were related to ferroptosis and iron metabol-
ism in HCC.
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Comprehensive analysis of the ferroptosis- and iron
metabolism-related genes closely associated with
prognosis in HCC
We performed univariate Cox regression to explore the
relationship between the expression of the 24 DEGs ob-
tained from TCGA and prognosis using 371 HCC sam-
ples with OS rates and survival status in TCGA. Sixteen
DEGs were statistically significant (P < 0.05) and consid-
ered to be associated with the prognosis of HCC. Then,
LASSO Cox regression was applied to these genes.
LASSO is a penalized regression method that adjusts the
regression coefficient with L1 penalty to reduce the final
weight of most potential indicators to zero, thereby de-
creasing the number of indicators with a final weight of
nonzero [32]. Based on the LASSO regression with 10-
fold cross-validation, we screened 7 genes with a repeti-
tion frequency greater than 900 times in 1000 substitu-
tion samplings (Fig. 1e-f). Matching the 7 genes with 16
DEGs in ICGC, we finally determined that 4 genes
(ABCB6, FLVCR1, SLC48A1 and SLC7A11) were signifi-
cantly associated with prognosis in HCC.

Building the prognostic signature based on the four
ferroptosis- and iron metabolism-related genes and
validating its predictive performance
Based on a multivariate Cox regression of the four genes
(ABCB6, FLVCR1, SLC48A1 and SLC7A11), we built a
prognostic signature. Prognostic index (PI) = (0.135 * ex-
pression level of ABCB6) + (0.167 * expression level of

FLVCR1) + (0.051 * expression level of SLC48A1) +
(0.083 * expression level of SLC7A11). The optimal cut-
off value was determined to be 1.4 using X-tile software
and performed to divide 370 patients with HCC in the
HCC cohort from TCGA into the high-risk and low-risk
groups (Figure S1). The underlying diseases of HCC (in-
cluding viral hepatitis, alcohol consumption, non-
alcoholic fatty liver or hemochromatosis) were deter-
mined to not affect the expression profiles of these 4
genes in patients (Figure S2). OS was significantly worse
in the high-risk groups than that in the low-risk groups
(P < 0.001, HR = 3.70, 95% CI:2.22–6.25) (Fig. 2a).
Figure 2c shows the distribution of risk scores corre-
sponding to gene expression levels. The area under
the curve (AUC) in the time-dependent ROC at 0.5,
1, 3 and 5 years reached 0.73, 0.77, 0.71 and 0.64
(Fig. 2d), indicating great specificity and sensitivity
of the prognostic signature in predicting OS. We
then used the 243 HCC samples in the ICGC to val-
idate the predictive performance of the prognostic
signature. PI was calculated according to the formula
mentioned earlier, and the optimal cutoff value de-
termined by X-tile software for dividing 243 HCC
samples into the high-risk group and low-risk group
was 21.3. Consistent with the above results, patients
with HCC in the high-risk group had a significantly lower
OS than those in the low-risk group (P < 0.001, HR = 2.70,
95% CI: 1.49–5.00) (Fig. 2b). The risk score distribution
and gene expression are shown in Fig. 2e. The AUCs for

Fig. 1 Heatmap, volcano plot and LASSO Cox regression identified the DEGs closely associated with prognosis in HCC. a and c Gene expression
levels in the TCGA database. b and d Gene expression levels in the ICGC database. e and f LASSO Cox regression was performed to identify the
DEGs closely related to the prognosis of HCC
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0.5-, 1-, 3- and 5-year OS were 0.72, 0.67, 0.73 and 0.62,
respectively (Fig. 2f).

Construction and validation of the predictive nomogram
in the HCC cohort from TCGA
To determine whether the predictive ability of the prog-
nostic signature in predicting OS was independent of
other traditional clinical characteristics (including age,
AFP, weight, vascular tumor cell, sex, pathological grade
and TNM stage), we performed univariate and multivari-
ate Cox regression analyses on these variables using 370
HCC samples with clinical information in TCGA (Table
S1). The results determined that TNM stage (HR = 2.038)
and risk score of the prognostic signature (HR = 1.258)
were independent predictive factors for predicting OS
(Fig. 3a). The proportional hazards of the two independent
predictive factors was exhibited in Figure S3. Based on the
two independent predictive factors, we constructed a pre-
dictive nomogram to quantify the prediction results of indi-
vidual survival probability at 1, 3 and 5 years (Fig. 3b). The
C index for the nomogram was 0.66, with 1000 cycles of
bootstrapping (95% CI: 0.55–0.72), and the calibration
curves of the nomogram showed great consistency between
the predicted OS rates and actual observations at 1, 3 and
5 years (Fig. 3c-e).

We then performed ROC curve analysis to validate the
predictive value of the nomogram. The AUCs for 1-, 3-
and 5-year OS with the nomogram were 0.644, 0.694
and 0.667, respectively, superior to a single independent
predictive factor (Fig. 3f-h). To further determine the
value of the nomogram in clinical decision making, we
performed DCA. DCA is a new reliable evaluation tool
that quantifies the clinical value of a nomogram by ana-
lyzing the clinical results obtained from the decision
based on the nomogram and has important value in de-
termining the diagnosis and adjusting the prognosis
strategy [33]. We found that compared to a single inde-
pendent predictive factor, the nomogram could obtain
the optimal net benefit at 1, 3 and 5 years (Fig. 3 I-J).

The diagnostic models were established and validated for
high specificity and sensitivity
A diagnostic model integrating the four genes was estab-
lished to distinguish HCC from normal subjects using a
stepwise logistic regression method. Diagnostic scores
were identified as follows: logit (P =HCC) = − 15.2439 +
(− 0.0327 × ABCB6 expression level) + (8.0880 × FLVCR1
expression level) + (3.1229 × SLC48A1 expression level) +
(0.1703 × SLC7A11 expression level). Applying the diag-
nostic model, there was 92.00% sensitivity and 98.00%

Fig. 2 K-M survival analysis, risk score distribution and time-dependent ROC curves of a prognostic model in the HCC cohort from TCGA (a, c-d)
and ICGC (b, e-f). a and b K-M survival curves indicated that the OS in the high-risk group was markedly poorer than that in the low-risk group
(P < 0.001). c and e Distribution of risk scores under different gene expression characteristics in HCC. d and f Time-dependent ROC curve analysis
for measuring the predictive performance on OS
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specificity in the HCC cohort from TCGA (containing
50 normal samples and paired 50 HCC samples) (Fig. 4a)
and 88.07% sensitivity and 92.08% specificity in the HCC
cohort from ICGC (containing 202 normal samples and
243 HCC samples) (Fig. 4b). ROCs in the HCC cohort
from TCGA (AUC = 0.980) (Fig. 4c) and ICGC (AUC =
0.956) (Fig. 4d) were also determined to have great value
in accurately distinguishing HCC from normal samples.
Unsupervised hierarchical clustering of the four genes

indicated a superior ability to differentiate HCC from
normal samples (Fig. 4e and f).
Since nodules less than 2 cm in the liver were difficult

to distinguish from HCC through radiological or
pathological examinations [34], we also constructed a
diagnostic model based on the four genes in the training
cohort (GSE6764) (containing 35 HCC samples and 17
dysplastic nodule samples) for differentiating nodules
from HCC samples and validated it in the test cohort

Fig. 3 Construction and validation of a predictive nomogram. a Univariate and multivariate Cox regression confirmed that the prognostic
signature and TNM stage were independent prognostic predictors. b The nomogram for predicting the OS of patients with HCC at 1, 3, and 5
years. c-e Calibration curves of the nomogram for OS prediction at 1, 3, and 5 years. f-h ROC curves to evaluate the predictive ability of the
nomogram. i-k DCA curves determined that the nomogram can provide optimal clinical decision-making benefits
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(GSE98620) (containing 49 HCC samples and 24 dys-
plastic nodule samples). Diagnostic scores were identi-
fied as follows: logit (P = HCC) = − 13.9106 + (1.3676 ×
ABCB6 expression level) + (− 0.1018 × FLVCR1 expres-
sion level) + (− 0.2817 × SLC48A1 expression level) +
(1.1909 × SLC7A11 expression level). The AUCs for the

diagnostic model reached 0.973 in the training cohort,
with 97.14% sensitivity and 94.12% specificity (Fig. 5a
and c), and 0.786 in the test cohort, with 79.59% sensi-
tivity and 54.17% specificity (Fig. 5b and d). Figure 5e
and f show unsupervised hierarchical clustering of the
four genes.

Fig. 4 A diagnostic model for distinguishing HCC from normal samples in the HCC cohort from TCGA (a, c and e) and ICGC (b, d and f). a and b
Confusion matrix for the binary classification results of the diagnostic model. c and d ROC curves for evaluating the predictive performance of
the diagnostic model. e and f Unsupervised hierarchical clustering of the four ferroptosis- and iron metabolism-related genes for the
diagnostic model

Fig. 5 A diagnostic model for distinguishing HCC from dysplastic nodules in the training dataset (GSE6764) (a, c and e) and validation dataset
(GSE98620) (B, D and F). a and b Confusion matrix for the binary classification results of the diagnostic model. c and d ROC curves for evaluating
the predictive performance of the diagnostic model. e and f Unsupervised hierarchical clustering of the four ferroptosis- and iron metabolism-
related genes for the diagnostic model
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Comparison of the immune microenvironment of patients
with HCC between the high-risk and low-risk groups
Since drugs targeting immune checkpoints have been
shown to achieve antitumor effects by reversing the im-
munosuppressive effects of tumors, the expression of
immune checkpoints has attracted widespread attention
as a biomarker for identifying patients with HCC to re-
ceive immunotherapy [35]. The TMB can be used to
predict the efficacy of immune checkpoint blockade and
has been proven to be a biomarker for identifying pa-
tients who can benefit from immunotherapy in several
cancer types [36]. In this study, we analyzed the associ-
ation between risk scores and TMB. Figure 6a and b
indicate the differences in TMB in somatic cells in pa-
tients with HCC between the high- and low-risk groups.
Patients in the high-risk group had a higher TMB than
patients in the low-risk group (Fig. 6c). A higher OS rate
was obtained in patients with low risk and low TMB
group than that in patients with high risk and high TMB
group (P < 0.0001) (Fig. 6d).
The differences in immune infiltration of 22 immune

cell types obtained from 289 patients with HCC from
the TCGA database are shown in Fig. 7a, which may
represent an intrinsic feature that can characterize indi-
vidual differences. Patients with HCC in the high-risk
group had higher ratios of M0 macrophages, follicular

helper T cells, memory B cells, and neutrophils than
those in the low-risk group (P < 0.05) (Figs. 7c-f). Fig-
ure 7b shows the relationship between the risk score and
the expression of immune checkpoints. We found that
the expression levels of CD83, B7H3, OX40 and OX40L
in the high-risk group were significantly higher than
those in the low-risk group (P < 0.05) (Fig. 7g-j), suggest-
ing that the poor prognosis of high-risk patients was
partly due to the immunosuppressive microenvironment.
The results above indicated that abnormal immune infil-
tration and expression differences of immune check-
points in HCC can be used as prognostic indicators and
targets for immunotherapy, with important clinical
significance.

Internal and external validation of the expression
patterns and prognostic predictive performance of the
four ferroptosis- and iron metabolism-related genes
The expression levels of ABCB6, FLVCR1, SLC48A1,
and SLC7A11 were significantly higher in the HCC co-
hort from ICGC than in normal samples (P < 0.001)
(Fig. 8a-d), which was consistent with the predictive ana-
lysis of diagnosis and prognosis, demonstrating that the
four genes were suitable for constructing diagnostic and
prognostic models. For further validation, we detected the
expression characteristics of the four genes in the GSE6764

Fig. 6 Correlations between risk scores and TMB and the predictive performance of TMB on OS. a-b The differences in TMB in somatic cells in
patients with HCC between the high- and low-risk groups. c The high-risk group showed a higher TMB than the low-risk group. d OS rates in
patients with low risk and low TMB were higher than those in patients with high risk and high TMB
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cohort. The four genes presented markedly higher expres-
sion in HCC than in dysplastic nodule samples, consistent
with the findings above (Fig. 8e-h). Meanwhile, we also
evaluated the expression levels of the proteins encoded by
these four genes in four pairs of human HCC tissues and
corresponding non-tumor tissues to validate the clinical
relevance of the four genes. The results of immunohisto-
chemistry (IHC) staining confirmed that ABCB6, FLVCR1,
SLC48A1 and SLC7A11 were strongly positive in HCC tis-
sues compared with normal tissues (Fig. 8i-l). In addition,
the expression profiles of the four genes in multiple cell
lines are shown in Fig. 8m-p.
Since the four genes exhibited high expression in the

tumor tissues, we explored the correlation among the
genes. The expression of ABCB6 had synergy with the
expression of FLVCR1, as well as the expression of
ABCB6 and SLC7A11, ABCB6 and SLC48A1, and
SLC48A1 and SLC7A11, which also had the same posi-
tive correlation (Fig. 9a-d). The correlation between the
expression of the four genes by HCC cells and the im-
mune infiltrate is shown in Fig. 9e-h. K-M curve analysis
was performed to validate the predictive value of the
four genes in OS. Genes with high expression had lower

OS rates than those with low expression (Fig. 9i-l).
ROCs validated the predictive performance with high
sensitivity and specificity (Fig. 9m-p).

Inhibition of erastin on the proliferation and
tumorigenesis of HCC and its possible molecular
mechanism
As an inducer of ferroptosis, erastin was used to evaluate
its influence on the development and progression of
HCC [37]. The chemical formula of erastin was showed
in Fig. 10a. Performing the CCK-8 assay, we found that
erastin treatment inhibited cell proliferation in a dose-
dependent manner (Fig. 10b-c). And we validated that
erastin treatment significantly increased the accumula-
tion of ROS (Fig. 10d-g) and iron (Fig. 10h-i) in cells. In
addition, Ferrostatin-1 and NAC, regarded as ferroptosis
inhibitor and ROS inhibitor, were obviously rescued the
anti-proliferation effect of erastin in HCC cells (Fig. 10j-
k) indicating that erastin induced ferroptosis to inhibit
the proliferation and progression of HCC. To further
evaluate the anti-tumoral effect of erastin in vivo, we
constructed subcutaneous HCC xenograft models in
male BALB/c nude mice by subcutaneous injection of

Fig. 7 The landscape of immune infiltration and expression of immune checkpoints in patients with HCC with different risk scores. a The
correlations between risk score and immune infiltration of 22 immune cell types in patients with HCC. b The relationship between the risk score
and the expression of immune checkpoints. c-f Violin plots visualizing fractions of different immune cells in the high-risk and low-risk groups. g-j
Violin plots visualizing the expression of immune checkpoints in the high-risk and low-risk groups
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SMMC-7721 cells. Then we treated tumor-bearing mice
with erastin and vehicle, respectively. To access the po-
tential toxicity of elastin to organs, we also performed
the same elastin treatment on the non-tumor bearing
male BALB/c nude mice. Figures 11a-c indicates that
erastin significantly inhibits the rate of tumor volume
and weight gain in mice. Importantly, we tested import-
ant organs (heart, liver, lung and kidneys) in tumor-
bearing and non-tumor-bearing mice treated with erastin
and confirmed that erastin treatment is nontoxic

(Fig. 11d). Compared with vehicle treated tumor-bearing
mice, erastin-treated tumor-bearing mice did not
undergo significant changes in body weight (Fig. 11e).
Lower expression levels of Ki67 and N-cadherin were ex-
hibited in tumor tissues under erastin treatment (Fig. 11f).
Moreover, we observed that the expression of ABCB6,
FLVCR1 and SLC7A11 in erastin-treated tumor tissues
was significantly lower than that in vehicle-treated tumor
tissues, but there was no significant difference in the ex-
pression of SLC48A1 between the two groups (Fig. 11g).

Fig. 8 Validation of the expression patterns of the four ferroptosis- and iron metabolism-related genes. a-d Expression levels of the four genes in
HCC and normal samples in the HCC cohort from ICGC. e-h Expression levels of the four genes in HCC and dysplastic nodule samples in the
GSE6764 cohort. i-l Expression patterns of the four genes in HCC tissues and normal tissues. m-p The expression characteristics of the four genes
in multiple types of HCC cell lines
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Fig. 9 (See legend on next page.)
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As it was determined that erastin inhibited the prolif-
eration and progression of HCC, we explored the pos-
sible molecular mechanism by which erastin achieves
antitumor effects. In the Cancer Therapeutics Response
Portal (CTRP) database (http://portals.broadinstitute.
org/ctrp/), 52 genes were shown to be regulated by era-
stin, and their association is exhibited in Fig. 12a. By
performing Gene Ontology (GO) (Fig. 12b) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses (Fig. 12c) on these genes, we found
that erastin could cause changes in signaling cascades,

including Th17 cell differentiation and the IL-17 signal-
ing pathway (P < 0.05). This result indicated that the IL-
17 signaling pathway is a potential target affected by era-
stin in this study.

Discussion
As a major leading cause of cancer-related mortality
worldwide, HCC presents a major health burden for so-
ciety [38]. Among the current multiple treatments, liver
transplantation and tumor ablation are still the only op-
tions that may lead to a cure [39]. However, most

(See figure on previous page.)
Fig. 9 Regression analysis of expression levels among the four genes, correlations between genes and the density of the immune infiltrate, and
predictive performance of genes on OS. a-d There was a synergistic effect among the expression levels of genes. e-h The impact of the
expression of ABCB6 (e), FLVCR1 (f), SLC48A1 (g) and SLC7A11 (h) on infiltration by different immune cells. i-l K-M survival curves show the OS in
the high-expression group and low-expression group. m-p Time-dependent ROC curve analysis for evaluating the predictive accuracy of the four
genes for 0.5-, 1-, 3- and 5-year OS

Fig. 10 Erastin treatment suppressed proliferation of HCC in vitro. a The chemical formula of erastin. b-c The CCK-8 assay showed that erastin
inhibited the proliferation of SK-HEP1 cells (a) and SMMC-7721 cells (b) in a dose-dependent manner. d-g Erastin stimulation enhanced ROS
accumulation in SK-HEP1 cells (d and f) and SMMC-7721 cells (e and g). h-i Erastin treatment increased iron levels in SK-HEP1 cells (h) and
SMMC-7721 cells (i). j-k Erastin inhibited the survival and proliferation of SK-HEP1 cells (j) and SMMC-7721 cells (k) by inducing ferroptosis
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patients are diagnosed at an advanced stage, and these
treatments cannot be selected. The 5-year recurrence
rate is very high even in patients who have received liver
resection or liver transplantation [40, 41], and the 5-year

survival rate is still low [42]. Since HCC is a molecular
heterogeneous malignant tumor, its molecular character-
istics are related to corresponding biological behaviors,
including cell regeneration, microvascular invasion, and

Fig. 11 Erastin treatment inhibited tumorgenesis and development of HCC in vivo. a-c The original tumors (a), tumor volume (b) and tumor
weight (c) under erastin treatment. d Histological changes of heart, liver, lung and kidneys in tumor-bearing and non-bearing mice under elastin
treatment. e Weight change of mice under erastin treatment over time. f Pathological characteristics of tumor tissues and expression of Ki67 and
N-cadherin in tumor tissues under erastin treatment. G Expression differences of ABCB6, FLVCR1, SLC7A11 and SLC48A1 between erastin-treated
tumor tissues and vehicle-treated tumor tissues
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distant metastasis [43], and play an important role in the
prognosis of HCC. Therefore, it is necessary to identify
key molecular markers that affect the prognosis of HCC,
thereby optimizing the early diagnosis of HCC and
strengthening treatment to improve the clinical outcome
of HCC.
The development of high-throughput array technology

provides an opportunity to explore novel genes involved
in the occurrence and progression of HCC [44]. Ferrop-
tosis is a regulated autophagic cell death process in
which iron-dependent oxidation plays a key role [45].
Disturbances in iron metabolism cause excessive intra-
cellular iron storage and may induce ferroptosis [46].
Ferroptosis is regulated by several genes [47]. Previous
studies have confirmed that ferroptosis is an effective
mechanism for inducing HCC cell death, but its specific
molecular changes and mechanism of action are not
fully understood [48, 49].
In this study, we aimed to analyze HCC-related RNA

sequences obtained through high-throughput array tech-
nology using Cox proportional hazards regression and
LASSO methods to determine ferroptosis- and iron
metabolism-related genes that were associated with the
prognosis of HCC. We found that the prognosis model
constructed by four genes (ABCB6, FLVCR1, SLC48A1
and SLC7A11) independently predicted the prognosis of
patients with HCC with superior prediction perform-
ance. And the expression characteristics of the four
genes are not affected by the differences in the under-
lying diseases of HCC, suggesting that the constructed
prognosis model can be applied to various types of HCC
patients to predict prognosis. Besides, the corresponding
nomogram based on the four-gene model also helps cli-
nicians make better clinical decisions and develop treat-
ment strategies. And the diagnostic models integrating
the four genes were useful for the early diagnosis of
HCC with high specificity and sensitivity. ABCB6 be-
longs to the B subfamily of ABC transporters, which is a

porphyrin energy-dependent transporter [50]. Gene ex-
pression analysis and animal experiments show that loss
of Abcb6 can cause up-regulation of heme and iron
pathways crucial for normal development [51]. ABCB6
expression plays an important role in the coordination
of iron homeostasis [52]. And previous studies have re-
ported a correlation between hepatitis C virus-associated
hepatocellular carcinoma and increased ABCB6 mRNA
levels. ABCB6 mRNA and DNA methylation levels help
predict early intrahepatic recurrence [53]. Feline leukemia
virus subgroup C receptor 1, encoded by FLVCR1, plays an
important role in iron metabolism, participating in the out-
flow of iron metabolism, preventing oxidative damage
caused by excessive iron [54]. Clinical analysis found that
FLVCR1 was significantly negatively correlated with mater-
nal iron levels and placental iron concentration, suggesting
that FLVCR1 is essential for iron homeostasis and iron
metabolism [55]. Studies also found that FLVCR1 ex-
pression is correlated with the prognosis of HCC [56].
SLC48A1 is an endosomal heme transporter that par-
ticipates in the process of heme iron transport in iron
metabolism [57]. Lipid peroxide is triggered by lipid
peroxidation, and this process is strictly regulated by
SLC7A11 (a key component of the cystine-glutamate
antiporter); when lipid peroxide is excessively accumu-
lated, ferroptosis can be induced [58, 59]. It was re-
ported that the expression of SLC7A11 is related to the
prognosis of HCC [60]. For evaluating the correlation
of these four genes with ferroptosis and iron metabol-
ism, we detected in this study that the encoded proteins
of the four genes were strongly positive in the tumor
tissues of HCC patients, and further validated in the
mouse models that expression of ABCB6, FLVCR1 and
SLC7A11 were down-regulated in tumor tissues treated
by ferroptosis inducer erastin.
Immunotherapy is a tumor treatment method that

uses the body’s own immune system to produce an anti-
tumor response [61]. In order to avoid the antitumor

Fig. 12 Possible molecular mechanism by which erastin inhibits the proliferation and progression of HCC. a The interaction of proteins regulated
by erastin. b-c GO analysis (b) and KEGG pathway analysis (c) of the potential targets of erastin
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immune response during the development of many types
of tumors, immunosuppressive mechanisms will be initi-
ated, and with increased immunosuppressive cells and
immunosuppressive molecules, low-immunogenic cancer
cells will be selected and an immunosuppressive network
(immune escape) will be established [62]. By blocking
immunosuppressive mechanisms and the function of
immunosuppressive cells, potential antitumor immune
responses can be triggered [63]. In recent years, manipu-
lation of immune checkpoints or pathways has become
an important and effective form of immunotherapy [61],
and high TMB has been identified to correlate with good
outcomes of immune checkpoint inhibitor treatments
[64]. In this study, we found that patients with HCC
with high risk scores identified by the ferroptosis and
iron metabolism signatures had higher TMB levels and
higher proportions of M0 macrophages, follicular helper
T cells, memory B cells and neutrophils, confirming that
ferroptosis and iron metabolism have a regulatory effect
on the TIME, and also may indicate that the poor prog-
nosis in the high-risk group may be due to a stronger
immunosuppressive effect. When detecting immune
checkpoints, higher expression of CD83, B7H3, OX40
and OX40L was exhibited in the high-risk group. These
differences promote the growth and progression of
HCC, leading to a poor prognosis for HCC. In addition,
the findings above suggest that patients in the high-risk
group may benefit more from immune checkpoint in-
hibitor therapy than patients in the low-risk group. This
provides new insight for tumor immunotherapy.
Erastin has been determined to be an inducer of fer-

roptosis in previous studies and has been identified as an
inhibitor of cystine/glutamate antiporter (xCT) and
glutathione synthesis [65, 66]. In this study, we found
that erastin has an antitumor effect by inducing ferrop-
tosis to inhibit the proliferation and progression of
HCC. Erastin treatment has been shown to inhibit
tumor growth in mouse tumor models, which provides
new ideas for the treatment of HCC. In addition, erastin
could change TH17 cell differentiation and the IL-17
signaling pathway by bioinformatics analysis. IL-17 is a
universal cytokine in the tumor microenvironment. In
existing tumors, IL-17 achieves an antitumor effect by
activating immune cells and inducing indirect immunity
[66, 67]. The regulatory potential of the IL-17 immune
axis makes IL-17 a compelling target in cancer immuno-
therapy. These results suggest that the ferroptosis in-
ducer erastin may be regarded as a potential agent of
cancer immunotherapy.

Conclusion
In summary, we identified four ferroptosis- and iron
metabolism-related genes with great predictive value in
the OS of HCC, and the prognostic and diagnostic

models based on the four genes indicated superior diag-
nostic and predictive performance. As an inducer of
ferroptosis, erastin showed an antitumor effect by inhi-
biting the proliferation and progression of HCC.
Through bioinformatics analysis, erastin was shown to
affect TH17 cell differentiation and the IL-17 signaling
pathway, indicating that it is a potential targeted drug
for immunotherapy.
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