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Sepsis in children is typically presumed to be bacterial in origin until proven otherwise,

but frequently bacterial cultures ultimately return negative. Although viruses may be

important causative agents of culture-negative sepsis worldwide, the incidence, disease

burden and mortality of viral-induced sepsis is poorly elucidated. Consideration of viral

sepsis is critical as its recognition carries implications on appropriate use of antibacterial

agents, infection control measures, and, in some cases, specific, time-sensitive antiviral

therapies. This review outlines our current understanding of viral sepsis in children and

addresses its epidemiology and pathophysiology, including pathogen-host interaction

during active infection. Clinical manifestation, diagnostic testing, and management

options unique to viral infections will be outlined.
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INTRODUCTION

Sepsis is a leading cause of pediatric mortality (1). Defined as systemic inflammatory response
syndrome in the presence of a suspected or confirmed infection, it is a clinical syndrome principally
characterized by dysregulation of the host innate immune response and may result in an immune
phenotype of coexistent systemic inflammation and immunosuppression (2). Pathological cross-
talk between inflammatory and coagulation cascades, complement activation, and neuroendocrine
signals wreak havoc on homeostatic controls. This hyperinflammatory response has untoward
effects on the cardiopulmonary system, vascular endothelium, and gut, precipitating progressive
organ dysfunction until the host succumbs (3). The morbidity, mortality, and costs associated with
pediatric sepsis impose a significant burden on the healthcare community and global economy
(4, 5). Watson et al reported a mean hospital length of stay of 31 days, with approximately $2
billion spent annually in healthcare cost associated with severe pediatric sepsis (1). International
guidelines for management of sepsis and septic shock stress the importance of rapid resuscitation,
prompt antimicrobial administration, and supportive care of organ dysfunction as the mainstays of
pediatric sepsis treatment (6).

Viral sepsis can be defined as a severe inflammatory response to a suspected or confirmed
viral infection. However, making the definitive diagnosis of viral sepsis in a child is particularly
challenging for clinicians. The astute clinician must incorporate the patient’s history of present
illness, physical exam, laboratory and radiographic data to determine the likelihood of a viral
etiology for sepsis. Even with a positive viral test, limitations of the testing result should be
considered. Despite these challenges, timely diagnosis of viral sepsis has significant implications
on clinical management, including guiding the use of appropriate antiviral therapy and informing
isolation and containment strategies. Moreover, timely diagnosis of viral sepsis may prevent
unnecessarily prolonged antibacterial treatment exposure and thus could help prevent consequent
antibacterial resistance and deleterious effects on the host microbiome. This review outlines
our current understanding of viral sepsis in children, including its epidemiology and the
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pathophysiology of the viral-host response during active
infection. The clinical manifestations, appropriate diagnostic
testing, and management unique to viral infections are outlined.

Epidemiology
The true incidence of viral sepsis, particularly in the pediatric
population, remains unknown. Since bacterial sepsis is amenable
to treatment and is presumably more common, viral testing
is frequently foregone in the acute presentation of sepsis.
However, a recent study of adult patients with sepsis showed that
viral respiratory pathogens, namely influenza A virus, human
metapneumovirus, coronavirus, and respiratory syncytial virus
(RSV), were overlooked in 70% of patients (7). In a multi-
national epidemiological study of children with severe sepsis, an
infectious etiology was only proven in 65% of patients and out of
these, approximately one-third had a viral infection (8). Themost
frequent sites of infection were the respiratory tract (40%) and
bloodstream (20%), with rhinovirus, RSV, and adenovirus most
commonly isolated. In contrast, the Australia and New Zealand
sepsis study group identified a pathogen in approximately 50% of
patients with sepsis and septic shock (9). Of these patients, only
one-fifth had a viral etiology, with RSV, cytomegalovirus (CMV),
Epstein-Barr virus (EBV), herpes simplex virus (HSV), varicella
zoster virus (VZV) and influenza being themost common viruses
identified in this study. Recently, Ames et al. reported that 16%
of pediatric patients who presented with septic shock had a
primary viral disease (10). In another study of neonates with
sepsis, bacterial etiology was found in only approximately 15%
of cases, making viral infection more likely as a plausible cause of
sepsis in these patients (11).

In the pediatric intensive care unit (PICU), influenza virus
is a leading cause of viral sepsis and caries an especially
high mortality rate (12). RSV has also been found to cause
severe bronchiolitis and may present with sepsis, especially in
children with history of premature birth, chronic lung disease,
congenital heart disease or primary immunodeficiency (13, 14).
Sepsis has also been observed in neonates with HSV, human
parechovirus (HPeV) and enteroviral infection (15–18). Patients
with immunodeficiency due to human immunodeficiency virus
(HIV) infection are highly susceptible to viral sepsis depending
on the stage of disease and access and response to the treatment
(19). In these patients, common viral infections observed to
cause sepsis include RSV, influenza, parainfluenza, adenovirus,
CMV, EBV, and VZV (19). Diarrheal diseases secondary to
viral infections can also lead to sepsis, especially in developing
countries (20). Although rare, rotavirus has been associated with
sepsis due to bacterial coinfection (21). Despite several large
studies on viral sepsis in general (ref as above), as well as on
specific viruses, in the absence of routine viral testing during
the diagnostic evaluation of sepsis, the true incidence of viral
infection as the cause of sepsis remains unclear.

Pathophysiology and Host Response to
Viral Sepsis
The host response to infection consists of a multitude of
simultaneous processes designed to neutralize the infectious
threat and initiate repair of injured tissue. Sepsis is characterized

by systemic and dysregulated inflammation, which can lead to
a vicious cycle of vascular endotheliopathy, microcirculatory
hypoperfusion, intestinal barrier dysfunction, circulatory
shock, mitochondrial failure, and death (22–24). Moreover,
the concomitant compensatory anti-inflammatory response
syndrome that is characterized by lymphocyte apoptosis and
immune paralysis predisposes the host to secondary nosocomial
infection and latent viral activation (25, 26). The type of
mechanisms employed vary by virus but generally result in
some combination of (1) cytokine release, (2) endotheliopathy,
and (3) host cytotoxicity (27). While an in-depth review of the
pathogenesis of all human disease-causing viruses is beyond
the scope of this manuscript, we have outlined the general
pathophysiology below, highlighting major illustrative viral
examples where possible.

Cytokine Release (Figure 1)
Pathogen-recognition receptors (PRRs) are cellular sensors
that recognize specific molecular structure of a pathogen (28).
Toll-like receptors (TLRs) and retinoic acid-inducible gene-I
(RIG-I)-like receptors (RLRs) are two types of PRRs that are
involved in viral sensing (28). TLRs, which are found on the
cell surface or within endosomes of monocytes, macrophages,
dendritic, epithelial and endothelial cells, encounter pathogen-
associated molecular patterns (PAMPs) (29, 30). Intracellular
TLR-7 and TLR-8 recognize single-stranded Ribonucleic
Acid (RNA) of viruses like HPeV, the enteroviruses, human
metapneumovirus, and influenza; intracellular TLR-9 recognizes
double-stranded (ds) DNA of viruses like the herpes viruses
(e.g., HSV-1 and -2, EBV), adenovirus, and CMV; and TLR-3
recognizes dsRNA produced during intracellular viral replication
(31). TLR activation culminates in myeloid differentiation
primary response 88 (MyD88, through TLR-7,-8, and -9) or
Toll/Interleukin (IL)-1 receptor domain-containing adapter
protein inducing IFN-β (TRIF, through TLR-3) activation (32).
These proteins, in turn, activate nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) and IFN-regulatory
factor (IFR)-mediated cytokine transcription (33–35). RLRs are
cytosolic innate immunity sensors for viral RNA. Three members
of RLRs have been identified: RIG-I, melanoma differentiation
associated factor 5 (MDA5], and laboratory of genetics and
physiology 2 (LGP2) (36). RIG-I and MDA5 recognize dsRNAs
in response to different RNA viruses and signal the production
of pro-inflammatory cytokines and type-1 IFNs (37). Cytokine
proliferation instigates a pro-inflammatory cascade that results in
complement activation, neutrophil chemotaxis, cytotoxic cluster
of differentiation (CD) 8+ T-cell recruitment, and protease
release from leukocytes and endothelial cells, particularly
trypsin (38) and heparanase (39). Trypsin is upregulated
and released by the vascular endothelium (38) and has been
shown to cleave circulating pro-matrix metalloproteinase (pro-
MMP) released from macrophages to form activated MMPs
(40). MMPs, in conjunction with heparanase, degrade the
endothelial glycocalyx (41, 42). Moreover, viral particles induce
reactive oxygen species generation by circulating neutrophils,
eosinophils, and macrophages (43, 44) that further injure the
endothelial glycocalyx (45) and activate NF-κB cell-signaling
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FIGURE 1 | Viral-induced cytokine upregulation and release. Double stranded viral ribonucleic acids are (dsRNA) recognized within the host cellular cytosol by retinoic

acid-inducible gene-I (RIG-I)-like receptors (RLRs)- RIG-I, MDA5, and LGP2. The RLRs bound to viral dsRNA undergo conformational change and complex with

mitochondrial antiviral signaling (MAVS) protein on the mitochondrion surface. The RLR-MAVS interaction instigates an assembly of host proteins to activate TNF-

receptor-associated factors (TRAFs), thereby inducing nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and interferon regulator factor

(IRF)-mediated cytokine transcription in the host cell nucleus. Viral nucleic acids are also recognized within Toll-like receptors (TLRs) within host cell endosomes,

triggering myeloid differentiation primary response 88 (MyD88) and Toll/interleukin-1 receptor-domain-containing adaptor-inducing interferon-β (TRIF) pathways that

also activate NF-κB and IRF-mediated cytokine transcription in the host cell nucleus.

(46), propagating a positive-feedback loop that results in
endotheliopathy and end-organ damage.

Endotheliopathy (Figure 2)
Systemic viral dissemination appears to be the etiology of
viral sepsis. The exact mechanisms by which viruses that
are normally isolated to the respiratory or integumentary
epithelium reach the bloodstream are not known. However,
it is plausible that viremia occurs through direct invasion of
epithelial cells (or neurons as in case of HSV or varicella disease)
to reach the surrounding vasculature (47). Once in the blood,
the virus may induce endothelial glycocalyx degradation by
activating leukocytes, platelets, and endothelial cells to secrete
MMPs and heparanase that target glycocalyx components (39,
48). Endothelial glycocalyx disruption exposes selectins and
intracellular adhesion molecules, making them available for
leukocyte adhesion and activation (49). Glycocalyx degradation
also releases heparan sulfate that may bind and activate
antithrombin III and exposes membrane-bound glycoprotein
Ib/IX/V complexes (50) that can bind circulating vonWillebrand
factor (51) and P-selectins on platelets (52, 53), precipitating
coagulopathy. Moreover, loss of integrity of the protein-rich
glycocalyx alters the microvascular fluid equilibrium between
the vascular lumen and subglycocalyx, increasing fluid and
macromolecule filtration through the endothelium to the
surrounding interstitium (54). The end result of endothelial
glycocalyx damage is pro-inflammatory propagation and vascular
leak that can compromise organ function.

Circulating viral particles may also induce endothelial
cell structural changes that lead to barrier disruption and
further vascular leak. Endothelial cells are anchored to each
other through adherens junctions comprised predominantly
of vascular endothelial (VE)-cadherin, which is attached to

the endothelial cytoskeleton through beta-catenin and p120-
catenin (55, 56). In human endothelial cells, pathogenic strains
of hantavirus appear to bind to cellular surface β3-integrins,
thereby promoting VE-cadherin internalization and adherens
junction destabilization (57). VE-cadherin destabilization may
also be mediated through the cellular membrane Tie2 receptor.
Tie2 receptor is activated by angiopoietin-1 (Agpt-1) that is
derived by periendothelial cells (58, 59). When activated, the Tie2
receptor activates PI3K/Akt cell-survival signaling and Rac1-
mediated cytoskeletal stabilization (60). Inflammatorymediators,
such as thrombin (61), reactive oxygen species (62), and VEGF
(63), stimulate endothelial cell Weibel-Palade body exocytosis,
releasing the Tie2 antagonist Agpt-2 (64). Agpt-2 acts in an
autocrine fashion to inhibit Tie2 signaling, thereby promoting
RhoA kinase activity and VE-cadherin destabilization (60). Mice
infected with a pathogenic strain of H3N2 influenza virus
develop acute lung injury that is rescued by the Tie2 agonist
vasculotide (65), suggesting that the Tie2 receptor is integral
in the development of endotheliopathy during viral sepsis. The
exact mechanisms each virus employs to induce endothelial cell
dysfunction are not clear; however, the typical presentation of
capillary leak with viral sepsis suggests a common pathway by
which endothelial integrity is compromised.

Host Cytotoxicity (Figure 3)
Viral-induced host cytotoxicity is mediated by cytopathic
effects, cellular reprogramming, and/or initiation of host
immune cytotoxic responses. Viruses take over and utilize
host intracellular machinery to replicate, depleting host cells of
energy stores and transcription potential. Furthermore, viral-
infected cells may be activated for caspase-dependent apoptosis
(66). Viruses may also indirectly promote apoptosis through
macrophage reprogramming. Macrophages infected with H5N1
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FIGURE 2 | Pathophysiologic mechanisms of viral-induced endotheliopathy. Innate immune system activation during viral sepsis precipitates leukocyte degranulation

and release of enzymes and reactive oxygen species (ROS) that degrade the endothelial glycocalyx. Denuded endothelial glycocalyx exposes cellular adhesion

molecules (e.g., ICAM-1, VCAM-1, E-selectin, P-selectin) that increase the margination and activation of leukocytes, further promoting the inflammatory response.

Additionally, inflammatory mediators, namely thrombin, ROS, and vascular endothelial growth factor (VEGF), promote Weibel-Palade body exocytosis, releasing

angiopoietin-2 (Agpt-2) into the circulation. Agpt-2 antagonizes the endothelial cell Tie2 receptor, allowing the Src-mediated RhoA enzyme to reconfigure the

endothelial cell cytoskeleton and promote VE-cadherin internalization from the adherens junction. Loss of glycocalyx and adherens junction integrity permits increased

trans-cellular protein and fluid movement from the vascular lumen to the interstitium. ICAM-1, intercellular adhesion molecule 1; VCAM-1, vascular cell adhesion

molecule 1.

avian influenza have been shown to upregulate production
and release of tumor necrosis factor (TNF)-related apoptosis-
inducing ligand (TRAIL) that promote T-cell apoptosis (67).
Though the effect of TRAIL on other cell lineages was not
determined, it is plausible that the effect seen in T-cells may be
more diffuse. Systemic viral dissemination from sites of primary
infection (e.g., human metapneumovirus in the respiratory tract
or HPeV in the gastrointestinal tract) may occur through these
apoptotic mechanisms, whereby new virions are released, infect
local endothelial cells, and cause further cellular apoptosis and
systemic viral spread. The invasiveness and pervasiveness of the
viral infection is likely dictated by cell tropism and genetically
determined virulence as viruses with greater cytopathogenicity,
such as H5N1 avian influenza (66) and HPeV-3 (68), are
more likely to cause sepsis in immunocompetent hosts than
viruses with typically minimal associated cytopathology (e.g.,
RSV or parainfluenza) (69). Lastly, effectors of the host immune
system, such as natural killer (NK), cytotoxic CD8+ T cells and
complement, attack, and destroy virally infected host cells.

Viral pathogenesis in children also varies according to the
degree of host immunocompetence. Generally, young infants
have significantly reduced TLR expression, antigen-presenting
cell activity, NK cell responsiveness, T-cell functionality, B-cell
maturity, and complement concentration (70). This immaturity
of the developing immune system places young infants at
significantly higher risk for severe disease from viruses that
would typically cause minimal harm to older children and
adults (e.g., HSV, HPeV, enteroviruses, CMV). Similarly, children
with congenital or acquired immunodeficiencies are more
susceptible to viral pathogens. Specific immunodeficiencies that
place children at higher risk for viral sepsis include NK
cell deficiency, interferon (IFN)-γ receptor deficiency, TLR-3

deficiency, nuclear factor-kappa B essential modulator deficiency,
severe combined immunodeficiency, severe T-cell lymphopenia
in DiGeorge syndrome, agammaglobulinemia, and hyperIgM
syndrome (71). Severe RNA viral infections have also been
observed in patients with loss-of-function mutation of the IFN
induced with helicase C domain 1 (IFIH1) gene that encodes
the RLR MDA5 (36, 37, 72). Moreover, children receiving
immunomodulatory or immunosuppressive therapies due to
malignancy, transplantation, or autoimmune disease are more
susceptible to viral infection or reactivation.

Clinical Features and Risk Factors for Viral
Sepsis
The constitutional symptoms and clinical features of viral
sepsis are frequently indistinguishable from bacterial or fungal
sepsis. Presenting symptoms and signs include fever, chills,
rash, respiratory distress, nausea, vomiting, diarrhea, dysuria,
confusion, and altered mental status. None of these symptoms
is pathognomonic of sepsis, let alone viral induced sepsis.
Moreover, classic features of systemic inflammation might not
be seen in every individual, especially in immunocompromised
children. Fever is one of the most common symptoms seen in
septic children, attributable to the pyrogenic activity of IL-1, IL-
6, IFNs, and TNF-α. It has been observed that these substances
increase prostaglandin E2 synthesis in the hypothalamus (73,
74), resulting in the elevation in the host central nervous
system core temperature set-point regulated by the pre-optic
and dorsomedial hypothalamic nuclei (75). Hypothermia, on the
other hand, is a less frequent but more specific indicator of sepsis
that may be predictive of illness severity and death, especially in
younger children and chronically debilitated patients (74). Injury
to the vascular endothelium may result in broad array of failing
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FIGURE 3 | Viral-induced host cytotoxicity through the extrinsic and intrinsic

apoptotic pathways. Tumor necrosis factor-alpha (TNF-α) is released after viral

recognition by the innate immune system, and TNF-related apoptosis-inducing

ligand (TRAIL) is released from viral-reprogrammed macrophages, both of

which bind their respective host cell surface death receptors to activate the

extrinsic apoptotic pathway. Natural killer (NK) and cluster of differentiation 8

(CD8+) T cells inject perforin into the membranes of infected host cells,

through which they secrete granzymes that elicit the intrinsic apoptotic

pathway. The intrinsic pathway may be activated after viral protein recognition

by the host cell or suicide gene insertion by cytotoxic viruses.

organs that manifests as confusion, nausea, vomiting, diarrhea,
oliguria, and coagulopathy. A myriad of cardiopulmonary
manifestations ranging from mild tachypnea and tachycardia to
acute respiratory distress syndrome and shock can be seen (76).
The presenting symptoms usually depend on the type of virus.
Clinical presentation in patients with respiratory viral infections
can range from completely asymptomatic to severe respiratory
distress due to pneumonia. Diarrheal illness has been observed
in patients infected with rotavirus, norovirus, enterovirus, and
adenovirus. VZV and HSV infection may present with vesicular
rash. Children with HSV or arbovirus infection may have
confusion, altered mental status or seizures from encephalitis.
Elevated transaminases are common with HSV and enteroviral
infections which may be complicated by hepatitis, coagulopathy
and encephalitis. Neonatal HPeV infection can mimic other
enteroviral infections in the initial presentation. Often these
patients present with fever, rash, irritability, feeding intolerance,
and seizures (17). They can develop sepsis like illness and
encephalitis. Patients with acute HIV infection often have flu-
like symptoms such as fever, headache and rash, which usually
resolve spontaneously. These patients soon enter a phase of
clinical latency until they develop acquired immunodeficiency
syndrome, usually heralded by acquisition of an opportunistic
infection.

As with other types of sepsis, virus-induced sepsis requires
a high index of suspicion, especially in very young children
and those with chronic medical conditions. Neonates and young
infants are at higher risk of sepsis from HSV, HPeVs, and

enterovirus. HSV is usually acquired perinatally from mothers
with genital herpes. Mothers with primary herpes are more likely
to transmit the infection when compared to those with recurrent
and non-primary herpes (77). Nielsen et al reported that second
born children are at higher risk of HPeV-3 infection than the
firstborn (78). Seizures, drowsiness and lethargy, and absence of
oral lesions are associated with severe enteroviral infection in
children (79). In RSV infection, comorbid conditions reported
to increase the risk for severe infection include the history of
prematurity, congenital heart disease, chronic lung disease, and
immunodeficiency (13). In a recent study, Eggleston et al found
that patients with metapneumovirus infection were more likely
to be older and have congenital heart disease compared to RSV
infected patients (80). In contrast, asthmatics and premature
infants were at higher risk for rhinovirus infection (81). Finally,
predisposing conditions for severe pediatric influenza infection
include age less than 2 years; asthma; cardiac, renal, hepatic,
hematologic, neurologic or neuromuscular conditions; long-term
aspirin therapy; immunosuppressive therapy and residence in
a chronic care facility (82). Risk of mother-to-child perinatal
HIV transmission is higher in mothers with CD4 count < 200
cells/µL and lower in infants receiving antiretroviral prophylaxis
(83, 84). If patients with any of these conditions present
with sepsis, diagnostic viral testing and appropriate empiric
antiviral treatment should be strongly considered according to
the individual’s risk factors.

Association With Secondary Bacterial
Infections and Viral Coinfections
Secondary bacterial infections are commonly associated with
respiratory viral infections (85). In the winter of 1995–96, an
outbreak of Streptococcus pneumoniae pneumonia developed in
otherwise healthy children who had a preceding influenza A viral
illness (86). During the 2009–10 influenza A pandemic, one third
of critically ill children afflicted with influenza were diagnosed
with concurrent bacterial infections (87). In this study, the
leading three bacterial coinfections were Staphylococcus aureus,
Pseudomonas spp., and Haemophilus influenza (87). In children
hospitalized for RSV, Haemophilus influenzae and Streptococcus
pneumoniae were the most common organisms isolated in
those who developed bacteremia (88). These secondary bacterial
infections may exacerbate innate immune dysfunction (89) and
convey substantially increased risk of worse outcomes (90,
91). However, to date, the mechanisms underlying bacterial
synergism and increased susceptibility to secondary bacterial
infection in the setting of a preceding respiratory viral infection
remain unclear. In general, this phenomenon appears to involve
impairment of respiratory epithelial and innate immune system
defenses. Viral destruction of the airway epithelium affects
mucociliary clearance, allowing bacterial attachment to mucins
and eventual colonization of the respiratory tract (92, 93).
Additionally, viral-induced upregulation of IFN-γ and TNF-
α may lead to a dysregulated host T-cell response, decreased
neutrophil chemotaxis, and impaired macrophage phagocytosis
that increases the host susceptibility to secondary bacterial
pathogens (94). Upregulation of the surface platelet-activating
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factor receptor on epithelial cells and leukocytes by pro-
inflammatory cytokines may also increase adhesion and invasion
of certain virulent pneumococcal strains (95).

Rotavirus infection has also been associated with secondary
bacterial infections (21). Although, the exact mechanisms leading
to sepsis and organ dysfunction are unknown, a leading
hypothesis entails translocation of bacteria and endotoxin
through damaged intestinal epithelium into the splanchnic
circulation, systemically increasing production of nitric oxide
and circulating pro-inflammatory cytokines like TNF and IL-1β,
and high mobility group box 1 protein, resulting in sequential
organ failure (96). HIV infection can lead to apoptosis of CD4 T-
lymphocytes, defective T and B lymphocyte function, decreased
production of IFN-γ, IL-2 and immunoglobulins, and decreased
NK cell activity (97–99). This leads to not only increased risk of
secondary bacterial infections but also increased susceptibility to
other viruses and intracellular organisms such as mycobacteria
and Pneumocystis jiroveci.

Similar to bacterial coinfections, critically ill children can
be simultaneously infected by multiple viruses. The course of
illness in patients with viral coinfections depend on virus-
virus interaction. Various mechanisms for disease virulence in
viral coinfections have been proposed, including viral gene
interactions, immunologic interactions and alteration in host
environment (100). Even though the clinical significance such
interactions is unknown, a study by Rhedin et al. reported
increased risk of severe respiratory disease in patients with viral
coinfections compared to those with single viral infections (101).
Approximately 20% of the patients had viral coinfection and
RSV, bocavirus and adenovirus were the most common viruses
associated with coinfections (101).In another study performed
in Canada on patients with respiratory viral infections,
approximately 17% of the patients had viral coinfections (102).
There was no difference in the risk of hospitalization or the
severity of illness in patients with single viral infections and
those with viral coinfections (102). Another study done in
Greece revealed a much higher viral coinfection rate (42%)
with most common coinfections with RSV, influenza, rhinovirus
and parainfluenza viruses (103). Increased risk of hospitalization
has been observed in patients with viral coinfections (103).
However, systematic reviews and meta-analyses of children with
viral coinfections have not shown any association with increased
clinical severity (104, 105). Patients infected with HIV are at
high risk of secondary viral infections such as CMV, HSV and
respiratory viruses like RSV, influenza and metapneumovirus.

Diagnostic Testing
The diagnosis of viral sepsis is typically one of exclusion.
Bacterial sepsis, whether primary or secondary, is usually
of higher initial concern because failure to recognize this
diagnosis and promptly administer systemic antibiotics has lethal
consequences. Unfortunately, in our current state of limited
antiviral therapies, even the prompt recognition and treatment
of viral sepsis may not quickly improve a patient’s clinical course.
Nonetheless, early, definitive diagnosis of a primary viral septic
process may inform treatment decision-making and help limit
unnecessary systemic antibiotic administration. In symptomatic

critically ill children, identification of a viral etiology can play an
important role in the management and impact the outcome of
these patients.

There are currently no standard approaches to viral diagnostic
testing. Point-of-care (POC) antigen-based testing is relatively
inexpensive and provides rapid detection of common respiratory
viruses from a nasopharyngeal swab, such as RSV or common
strains of human influenza. However, POC testing may lack the
sensitivity needed to determine the etiology of life-threatening
sepsis (106). Direct fluorescent antibody (DFA) testing may
provide better specificity and a broader range of viral strain
detection than POC testing, but the test depends on the
collection of sufficient numbers of epithelial cells for adequate
viral detection (107). Cell culture is the traditional gold-standard
for viral diagnoses, including for HSV, however the long
turn-around time for results significantly limits its utility for
expedient diagnosis (108). Commercial or laboratory-developed
nucleic acid amplification tests (NAATs) (e.g., polymerase
chain reaction, PCR, or reverse transcription-loop-mediated
isothermal amplification) may provide greater sensitivity and
specificity than POC or DFA testing but requires sophisticated
equipment and specially trained laboratory staff to complete
(109, 110). NAATs have the added benefit of being highly
multiplexed with new commercially available technology like
Biofire R© FilmArray R© multiplex PCR (111). Unfortunately, the
use of NAATs is limited by the high cost, delay in results and
the inability to distinguish between viral nucleic acids from live
viruses (112). Ultimately, the methods available for timely viral
detection are limited by technique of sample collection and
institutional resource availability.

Several limitations to the current diagnostic testing for
causative viruses are worth noting, and results of viral testing
always need to be interpreted with caution. For instance,
although a type of enterovirus, HPeV cannot be detected on
routine enterovirus PCR assay. HPeV-specific PCR is required
to detect this virus in respiratory, CSF and stool samples
of infected children and should be considered as a part of
workup for neonates and young children presenting with sepsis
(113). The clinical utility of viral respiratory PCR panels is
also limited by their high rates of positive detections without
clinical correlates. Detection of a virus in a patient with sepsis
does not necessarily indicate causation. Some studies have
shown that a respiratory virus can be detected in about one
third of asymptomatic children (114, 115). Viral PCR testing
is particularly difficult to interpret due to its high sensitivity
for viral nucleic acids, making it challenging for the clinician
to distinguish between active viral disease and viral nucleic
acid or live viral carriage (112, 116, 117). A positive test
could be a result of asymptomatic colonization, prolonged viral
shedding or viral coinfection. In a study by Rhedin et al.
comparing PCR results between symptomatic and asymptomatic
patients, RSV, metapneumovirus and parainfluenza viruses
had a significantly higher detection rate in children with
acute respiratory infection, suggesting causation; however, other
viruses (enterovirus, coronavirus, bocavirus, rhinovirus, and
adenovirus) had an equally high detection rates in asymptomatic
children (101). Because of these positive viral detections in
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asymptomatic children, it is important that clinicians consider
the big picture, and factor in other pertinent information
that may indicate an active ongoing bacterial infection before
discontinuing antibacterial agents based on a viral assay. The
use of serum biomarkers (see section below) and whole blood
gene expression analysis (118) may serve a crucial role in this
setting to discern viral from bacterial sepsis. When faced with
a septic child who has an unusual sepsis presentation, does not
respond to usual therapies, or has persistently negative diagnostic
evaluations, a viral etiology must be considered and consultation
with an infectious disease expert is recommended.

Biomarkers for Viral Sepsis
Several serum biomarkers, including lactate, C-reactive protein
(CRP), and procalcitonin (PCT), are used to guide management
in sepsis and are an important part of early goal directed therapy
(119). PCT is more commonly used in the ICU setting for early
determination of the likelihood of a bacterial etiology for sepsis
and to guide antimicrobial duration (120, 121). Serum PCT
has been shown to be elevated in bacterial infections and is
superior to CRP in assessing the severity and course of the disease
(122). However, the mean sensitivity of PCT as a biomarker of
sepsis remains low at 77%, with a specificity of 79% (123, 124).
Unfortunately, in general, these biomarkers are non-specific in
distinguishing bacterial vs. viral infection (125).

In recent years, several viral-specific biomarkers have been
identified. Many transcriptional signatures have been designed
to distinguish viral infections from bacterial infections as well
as non-infectious conditions (126, 127). Zaas et al. identified
a 30-gene signature to discriminate symptomatic influenza A-
infected subjects from both healthy and bacterially-infected
subjects (128). In a recent study by Herberg et al., a 2-transcript
RNA signature [FAM89A and IFI44L) showed promising results
in its ability to distinguish between bacterial and viral infections,
demonstrating that the expression of IFI44L was increased in
patients with viral infection, whereas expression of FAM89A
was increased in patients with bacterial infection (118). Another
recent study identified a four-gene expression signature in
whole blood to distinguish viral infections from other etiologies
(129). Human myxovirus resistance protein 1 (MxA) is an
important intermediate product in the IFN-mediated antiviral
response against a variety of viruses. Serum MxA levels are
significantly higher in patients with viral infections compared to
bacterial infections in pediatric population and thus may be an
additionally useful biomarker to discriminate viral from bacterial
illness (130).

Preventive Strategies and Management
There is a paucity of data regarding treatment and management
of viral infection. Supportive care is the current mainstay of
therapy for most viral infections, particularly for respiratory
viruses. Though broad-spectrum antibiotic therapy may be
prudent until a bacterial source for sepsis has been definitively
ruled-out, sustained antibiotic treatment has no role in the
management of viral sepsis except in the case of bacterial
coinfections. Many viral infections can be prevented with the
use of hand hygiene, environmental decontamination, use of

personal protective equipment, elimination of second-hand
smoke, and isolation of infected children (131). Additional
protection can be conferred by administering vaccines for
common communicable viruses. These preventive strategies are
of particular importance in high-risk patients. As the scope of
available vaccines and anti-viral therapies remains rather limited,
development of novel vaccines and treatment is critical (131).

For RSV infection, management is currently limited to passive
immunization for at-risk infants. Palivizumab, an RSV-specific
monoclonal antibody, is Food and Drug Administration (FDA)
approved for the prevention of infection in high-risk infants
during RSV season. The American Academy of Pediatrics
has issued more clear recommendations for palivizumab use,
stating that it should be administered as a monthly injection
during RSV season in children born less than 29 weeks, 0
days gestation and are less than 12 months of age or in
children with congenital heart disease, chronic lung disease
(132). Studies have shown variable efficacy of palivizumab, with
reduction in RSV hospitalization rate by approximately 60%
(133). Currently, aerosolized ribavirin is the only FDA-approved
treatment available for the management of RSV infection, though
its use remains controversial (134). To date, RSV vaccines and
antiviral therapies remain an active area of investigation (135).
A randomized, controlled trial performed in adult patients with
RSV infection compared the RSV entry inhibitor GS-5806 to
placebo and demonstrated a decrease in both viral load and the
clinical severity of infection in patients treated with GS-5806
(136). Similar fusion inhibitors such as ALX-0171 (137), JNJ-
2408068 (138), MDT-637 (139), and VP14637 (138) demonstrate
efficacy in vitro, and ALX-0171 is undergoing a phase II
clinical trial in infants hospitalized for RSV (clinicaltrials.gov
registration no. NCT02979431). The use of ALS-008176, an RSV
polymerase inhibitor, has similarly been shown to reduce viral
load, rapidly clear RSV, and improve the severity of disease
in adults with RSV infection (140). ALN-RSV01 is a lipid-
based nanoparticulate system, containing small-interfering RNA
(siRNA] that demonstrates promising antiviral effects against
RSV in lung transplant patients (141) by targeting the mRNA of
the RSV nucleocapsid protein, thereby limiting viral replication
(142). However, until these novel treatments have undergone
appropriate clinical trials, the pediatric medical community must
continue to wait for effective RSV antiviral therapy.

Unlike RSV, seasonal vaccines and several antiviral therapies
are available to treat influenza viral infections. The seasonal
influenza vaccine has demonstrated reasonable efficacy at
attenuating influenza A and B viral disease (143). Currently, two
forms of the influenza vaccine are available for use in children:
a live attenuated vaccine in the form of a nasal spray and an
inactivated vaccine in an injectable form. Antiviral agents used
in the treatment and post-exposure prophylaxis of influenza
infections include neuraminidase inhibitors (oseltamivir and
zanamivir) and the adamantanes (amantadine and rimantadine).
Oseltamivir is the most commonly used medication due to high
prevalence of adamantane resistance. Oseltamivir has shown to
be beneficial and tolerable in children with influenza if received
within first 48 h of illness (144, 145). However, in cases of severe
infection, initiation of oseltamivir beyond 48 h of symptom
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onset may still provide benefit (146). Nanotechnology-based
vaccines are also being developed for influenza virus. InflexalR
V and InfluvacR are two virosomal vaccines that have been
shown to be efficacious against influenza infection (147, 148).
STP702, another nanotherapeutic agent, is an siRNA under
development designed to inhibit conserved regions in H1N1
and H5N1 strains of the influenza virus and prevent viral
replication (116). Nanotraps such as sialylneolacto-N-tetraose
c (LSTc)-bearing liposomal decoys bind to hemagglutinins on the
influenza virus and prevent viral spread in vitro, demonstrating
the potential have shown to be effective against influenza virus
(117). The influenza polymerase inhibitor T-705 (favipiravir)
has been demonstrated significant attenuation of influenza
virus activity (149). Interestingly, at higher concentration, it
has also shown to be effective against poliovirus, rhinovirus
and RSV (149). Other agents under investigation include
CS-8958, a long-acting neuraminidase inhibitor, and DAS181,
an attachment inhibitor (150). Animal studies have also shown
promising results with combination therapy (150). Various
immunomodulatory agents have also been posited to temper
the dysregulated host inflammatory response in severe influenza
(151), including cyclooxygenase-2 inhibitors (152), doxycycline
(153), glucocorticoids (154), macrolides (155, 156), peroxisome
proliferator-activated receptor agonists such as gemfibrozil (157),
sphingosine-1-phosphate (158), and the Tie2 receptor activator
vasculotide (65). Further studies are needed to determine the
efficacy of these treatments in human influenza infection.

Pleconaril, an orally administered viral capsid inhibitor,
has shown to be effective against picornaviruses, especially
enteroviruses and rhinoviruses (159). Abzug et al. reported
greater survival in patients with neonatal enteroviral sepsis
who received pleconaril (159). Similarly, patient with rhinovirus
infection treated with pleconaril have shorter duration of
symptoms, depending on susceptibility of the virus to the
medication (160). No antiviral activity has been observed from
pleconaril against HPeV (18). Intravenous immunoglobulin has
shown potential benefit in management of enteroviral infections
(161).

Prevention of neonatal HSV infection is more elusive as
neonatal HSV disease often occurs after transmission from
asymptomatic women with primary HSV infection (162). In
cases of active maternal genital herpes, cesarean sections can
decrease the incidence of neonatal HSV infection, especially
when performed within 4 h of rupture of membranes (163). A
subunit HSV vaccine has shown promising results in prevention
of genital herpes and is currently under Phase III trial (164).
Although not routinely recommended, antiviral prophylaxis with
acyclovir in late pregnancy has been demonstrated to decrease
viral shedding, leading to reduction in cesarean rates and
recurrent herpes (165, 166). Patients with severe neonatal HSV
infection (those with disseminated disease and CNS infection)
should be treated with intravenous acyclovir for 21 days (167).

Viral sepsis may occur in HIV-infected children due
to opportunistic or other secondary viral infections (19).
Increasing use of highly active antiretroviral therapy
(HAART) has significantly improved survival of HIV
infected children by decreasing the progression to acquired

immunodeficiency syndrome (AIDS), thereby maintaining host
immunocompetence that protects against the development of
viral sepsis (168–171). However, HAART is associated with
potentially deleterious sequelae, making timing of the therapy
very controversial in patients with active sepsis (19).

Outcomes
Extensive studies have not been done to characterize the effect of
viral sepsis on outcomes. In a recent study, Hon et al. found no
difference in mortality between patients with and without viral
infections who were admitted to PICU (172). Shi et al performed
a systematic review of RSV infections in 2015 and estimated case
fatality rates in children with RSV infection to be around 2.2%
(<6 months of age) and 2.4% (6–11 months of age) in developing
countries. Case fatality rates in higher income countries were
significantly lower (0.2 for <6 months and 0.9 for 6–11 months)
(173). In another study, the highest mortality from RSV infection
was seen at mean age of 6.2–7.5 months with three quarters of
these cases associated with comorbid conditions (174).

Seasonal influenza epidemics and various pandemics have
historically led to significant morbidity and mortality in the past,
either due to exacerbation of an underlying condition or due
to secondary bacterial infections. Mortality with influenza varies
not only with season, but with predominant influenza strain and
effectiveness of influenza vaccine each season. During the first
year of the pandemic 2009 H1N1, global mortality in children
aged 0–17 years was estimated to be as high as ∼ 45,000 cases,
with majority of deaths occurring in Southeast Asia and Africa
(175). Both pediatric and adult patients during this pandemic
had a very rapid progression to respiratory failure and required
prolonged mechanical ventilation and vasopressor support
(176, 177). Various extrapulmonary complications secondary
to influenza sepsis have been reported in the literature. These
include, but are not limited to renal failure, rhabdomyolysis,
encephalopathy, myocarditis, and multiorgan failure. These
complications also lead to poorer outcomes (178).

Sepsis from HPeV can lead to significant morbidity in
neonates and young children. Although, most infections are
self-limited, long-term neurological deficits such as learning
disability, developmental delay, paralysis and epilepsy have
been observed in these patients (179, 180). HPeV infections
have also been associated with encephalitis, hepatitis and
coagulopathy (18). In addition, rare complications have also been
observed in these patients including necrotizing enterocolitis,
myocarditis, myositis, hemolytic uremic syndrome, and Reye’s
syndrome (18). Other enteroviral infections can lead to similar
complications and long-term neurological deficits. Hepatic and
cardiac dysfunction can also be observed in these patients (181–
183). In HSV infection, neurological complications such as
developmental delay and seizures have been observed in infected
neonates (15). Mortality from systemic HSV infection is usually
due to severe coagulopathy, hepatitis and pneumonitis (15). In
a multicenter study, Spaeder et al. observed a mortality rate of
9% in patients with severe metapneumovirus infection (184).
Increased mortality from metapneumovirus infection has been
observed in children with chronic medical conditions, female
gender and patients who acquired the infection in the hospital
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(184). Similarly, RSV, parainfluenza and influenza infections,
when acquired in hospital, have been associated with increased
mortality (185). Rotavirus infection can lead to extraintestinal
complications like seizures and meningoencephalitis (186, 187).
In HIV patients, likelihood of progression to AIDS and of
mortality are impacted by time of acquisition of HIV, viral load,
CD4 count and timing of HAART initiation. Approximately 80%
mortality has been observed in developing countries with limited
access to HAART (188). Complications that lead to increased
morbidity and mortality in these patients include severe CMV
infection, encephalopathy, recurrent life-threatening bacterial
infections, tuberculosis, and pneumocystis infection (189).

End-organ failure is a major contributor to mortality
in sepsis and septic shock, including virus-induced sepsis.
Complications such as acute respiratory distress syndrome,
disseminated intravascular coagulation, and acute renal injury
often leads to a worse prognosis. Developing countries often
have disproportionately higher mortality in patients with viral
infections (190), likely due to delayed diagnosis and treatment.
Risk of severe sepsis is also related to the site of infection, with
endocarditis and CNS infections being associated with mortality
as high as 20% (1). Besides the site of infection, the type of virus
also determines the risk of mortality. For example, meningitis
from HPeVs is a common cause of sepsis in neonates and
young children but consequent mortality is low in these patients
(179). HPeV3 is associated with more severe disease than HPeV1
(113). Moreover, the extent of systemic involvement can predict
the development of multiple organ failure and thus mortality
(191). Sepsis related mortality has been reported in other viral
infections including dengue fever (192). However, further studies

are necessary in order to estimate the burden of viral sepsis on

outcomes including morbidity, mortality, and health care related
costs.

SUMMARY

Although the incidence of viral-induced sepsis is not precisely
known, it is suspected to be common and may represent an
important subset of children with “culture-negative sepsis.” It
is therefore critical for clinicians to suspect and test for viral
infection in children with culture-negative sepsis if appropriate
infection containment measures are to be instituted in a timely
fashion and in the interest of early identification of children
with viral infections amenable to treatment. These considerations
are especially urgent for high-risk children, such as those born
prematurely or those having congenital heart disease, chronic
lung disease, or immunodeficiency. Appropriate diagnosis of
viral sepsis may provide the clinician added confidence to limit
the duration of empiric antibacterial exposure in children with
sepsis, and thereforemay be helpful in the fight against antibiotic-
resistant bacteria. Further studies are needed to identify novel
viral-specific biomarkers and therapeutics.
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