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A B S T R A C T   

Background: This study aimed to increase the knowledge on how to enhance the performance of artificial in
telligence (AI)-enabled electrocardiography (ECG) to detect atrial fibrillation (AF) on sinus rhythm ECG (SR- 
ECG). 
Methods: It is a retrospective analysis of a single-center, prospective cohort study (Shinken Database). We 
developed AI-enabled ECG using SR-ECG to predict AF with a convolutional neural network (CNN). Among new 
patients in our hospital (n = 19,170), 276 AF label (having ECG on AF [AF-ECG] in the ECG database) and 1896 
SR label with following three conditions were identified in the derivation dataset: (1) without structural heart 
disease, (2) in AF label, SR-ECG was taken within 31 days from AF-ECG, and (3) in SR label, follow-up ≥ 1,095 
days. Three patterns of AF label were analyzed by timing of SR-ECG to AF-ECG (before/after/before-or-after, 
CNN algorithm 1 to 3). The outcome measurement was area under the curve (AUC), sensitivity, specificity, 
accuracy, and F1 score. As an extra-testing dataset, the performance of AI-enabled ECG was tested in patients 
with structural heart disease. 
Results: The AUC of AI-enabled ECG with CNN algorithm 1, 2, and 3 in the derivation dataset was 0.83, 0.88, and 
0.86, respectively; when tested in patients with structural heart disease, 0.75, 0.81, and 0.78, respectively. 
Conclusion: We confirmed high performance of AI-enabled ECG to detect AF on SR-ECG in patients without 
structural heart disease. The performance enhanced especially when SR-ECG after index AF-ECG was included in 
the algorithm, which was consistent in patients with structural heart disease.   

1. Introduction 

Atrial fibrillation (AF) is among the most common cardiac rhythm 
disorders and is associated with increased morbidity (e.g., ischemic 
stroke) and mortality. One major challenge is promptly diagnosing AF 
after onset because of its silent nature in many patients. As tools for 
screening AF, many devices have been proposed over the gold standard 
tool of 12-lead electrocardiography (ECG), such as patient-initiated 
devices (oscillometric blood pressure cuff, intermittent ECG rhythm 
strip, or photoplethysmogram on smartphone), semi-continuous (smart 
watch ECG) or continuous wearable devices (long-term Holter, wearable 
belts, or 1–2 week continuous ECG patches), and implanted devices 
[1,2]. In patients with cryptogenic stroke, in which the origin of the 

thrombus is unknown, continuous and repeated monitoring with 
implanted or wearable devices have demonstrated a substantial burden 
of undiagnosed AF [3,4]. 

In practical viewpoint, simple methods to discriminate patients at a 
high risk of AF would help to identify candidates for such long-term 
monitoring device. For example, precise analysis of waveforms of 
resting 12-lead ECG using artificial intelligence (AI) has identified pa
tients with AF on sinus rhythm ECG (SR-ECG) [5]. This method is unique 
because, although the existence of AF on 12-lead ECG is a gold standard 
for diagnosing AF, this method by AI gains insight into the existence of 
AF on ECG in which AF is absence. Attia et al. [5] reported a landmark 
study of AI-enabled ECG to predict AF on ECG with SR from the Mayo 
Clinic, and Raghunath et al. [6] reported AI-enabled ECG from the 
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Geisinger Health System with a larger ECG database. These studies had a 
strong impact for their high predictive ability, with an area under the 
curve (AUC) of around 0.900. 

After the publishment of these studies, additional important tasks in 
the methodologies have raised, one being labeling problems. For 
example, among ECG recordings with the AF label, ECG recordings in SR 
had different predictive abilities according to the length of time to 
incident AF [5,7]. Moreover, there remain tasks in the methodologies of 
AI-enabled ECG which have not been fully investigated. First, the per
formance of AI-enabled ECG may differ depending on the existence of 
structural heart disease because typical ECG findings may mask refined 
AF-related features on SR-ECG. Second, whether SR-ECG for developing 
AI-enabled ECG should be taken before or after the index AF-ECG is 
unknown. Even when AF has never been detected, undetected AF may 
already exist. Therefore, AI-enabled ECG may need the information on 
SR-ECG after AF occur. Third, the performance of AI-enabled ECG in the 
SR-label may be different according to the length of the observation 
period in the database because, simply, it is assumed that the shorter the 
time-period of apparently keeping sinus rhythm, the lower the certainty 
of the absence of undetected AF. 

In the present study, we developed AI-enabled ECG within SR-ECG to 
predict AF using a single-center ECG database to enhance the perfor
mance of AI-enabled ECG in special reference to these unresolved issues. 

2. Methods 

2.1. Ethics and informed consent 

This study was performed in accordance with the Declaration of 
Helsinki (revised in 2013) and Ethical Guidelines for Medical and Health 
Research Involving Human Subjects (Public Notice of the Ministry of 
Education, Culture, Sports, Science and Technology, and the Ministry of 
Health, Labour and Welfare, Japan, issued in 2017). Written informed 
consent was obtained from all participants. The study protocol was 

reviewed by the Institutional Review Board of the Cardiovascular 
Institute. 

2.2. Identifying the study groups 

2.2.1. Total study population 
The Shinken database includes all patients who newly visited the 

Cardiovascular Institute, Tokyo, Japan, excluding foreign travelers and 
patients with active cancer. This single-hospital database was estab
lished in June 2004. Details of this database have been described else
where [8]. In the present study, 19,170 patients registered between 
February 2010 and March 2018 were extracted from the Shinken 
database because a computerized electrocardiogram database has been 
available since February 2010. We excluded 1975 patients for one or 
more of the following reasons: AF on ECG at the initial visit (n = 1601), 
atrial flutter (n = 185; of which 8 were coincident with AF), atrial 
tachycardia (n = 3), paroxysmal supraventricular tachycardia (n = 190), 
and insufficient follow-up data (n = 4). The remaining 17,195 patients 
with SR-ECG were the target of the present study (Fig. 1). 

2.2.2. Study population for development and evaluation of AI-enabled ECG 
(derivation dataset) 

Out of 17,195 patients in the total study population, 2172 patients 
were selected as the derivation dataset which comprised 276 patients 
with AF label and 1896 patients with SR label (Fig. 1). In the present 
study, SR-ECGs were used for the analysis, where they were assigned to 
“AF label” when at least one ECG showing AF (AF-ECG) was found in the 
same patient in the ECG database during the follow-up, while they were 
assigned to “SR label” when no AF-ECG was found during the follow-up. 

As shown in the flowchart (Fig. 1), patients with AF label in the 
derivation dataset (1) did not have structural heart disease, (2) had at 
least one AF-ECG in the ECG database during follow-up, and (3) had at 
least one SR-ECG within 31 days before or after the first AF-ECG. 
Meanwhile, patients with SR label in the derivation dataset (1) did not 

Fig. 1. Flowchart of patient selection. SR, sinus rhythm; ECG, electrocardiography; AF, atrial fibrillation.  
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have structural heart disease, (2) had no AF-ECG in the ECG database 
during follow-up, (3) did not have prior diagnosis of AF before the first 
visit to our hospital, and (4) having an observation period ≥ 1095 days. 

2.2.3. Study population for testing the performance of AI-enabled ECG 
(extra testing dataset) 

Among the patients who were excluded in the process of selecting 
patients for derivation dataset, followings were defined as extra testing 
datasets and used for testing the performance of AI-enabled ECG (Fig. 1): 
(1) patients with structural heart disease (extra testing dataset 1; n =
4338), out of which 340 AF label and 1516 SR label were identified with 
similar exclusion criteria as for the derivation dataset, (2) patients who 
did not have structural heart disease, had at least one AF-ECG in the ECG 
database during follow-up, and did not have SR-ECG within 31 days 
before or after the first AF-ECG (extra testing dataset 2; n = 128), and (3) 
patients who did not have structural heart disease, had no AF-ECG in the 
ECG database during follow-up, did not have prior diagnosis of AF 
before the first visit to our hospital, and had an observation period <
1095 days (extra testing dataset 3; n = 9735). 

The patients in the extra testing dataset 2 were further divided ac
cording to the timing of the index SR-ECG from the first AF-ECG (Fig. 3): 
≤− 366 days (n = 85), − 365 to − 181 days (n = 62), − 180 to − 91 days 
(n = 49), − 90 to –32 days (n = 43), 32 to 90 days (n = 55), 91 to 180 
days (n = 74), 181 to 365 days (n = 87), and ≥ 366 days (n = 93). The 
patients in the extra testing dataset 3 were further divided according to 
the length of observation period (Fig. 3): ≤180 days (n = 8,013), 181 to 
365 days (n = 370), 366 to 730 days (n = 821), and 731 to 1094 days (n 

= 531). 

2.3. Data sampling 

Twelve-lead ECG was recorded for 10 s in the supine position using 
an ECG machine (GE CardioSoft V6.71 and MAC 5500 HD; GE Health
care, Chicago, IL, USA) at a sampling rate of 500 Hz, and raw data of 
digital records were stored using the MUSE data management system. 
Out of each 10-second ECG recording, 5-second ECG samples were 
extracted. The reason for sampling with a 5-second duration was 
because we employed oversampling to balance the number of samples 
between AF and SR labels [9,10]. The details of oversampling (the sci
entific background and the detail process of oversampling) are explained 
in the Supplementary document. 

2.3.1. Derivation dataset 
In patients with the SR label, the index SR-ECG for the analysis was 

the one obtained at the initial visit. In the SR label, each 10-second ECG 
was divided at the half which yielded two samples of 5-second ECGs. 

In patients with the AF label, the index SR-ECG was the one nearest 
(within 31 days) the first AF-ECG in the ECG database. Here, the index 
SR-ECG with the AF label was chosen according to three patterns: the 
pre- (AF label 1, n = 167), post- (AF label 2, n = 242), or pre- or post- (AF 
label 3, n = 276) 31-day period of the first AF-ECG (Fig. 2). As three 
patterns of AF label were defined, three patterns of derivation dataset 
(SR label/AF label 1, SR label/AF label 2, and SR label/AF label 3) were 
consequently yielded (Fig. 2). In the AF label, 5-second ECGs were 

Fig. 2. Convolutional neural network (CNN) analysis. For each AF label, the index SR-ECG was chosen within 31 days before the first AF-ECG (AF label 1), within 31 
days after the first AF-ECG (AF label 2), or within 31 days before or after the first AF-ECG (AF label 3). Using the AF label 1, 2, and 3, CNN algorithm 1, 2, and 3, 
respectively, were developed combined with fixed SR label. AF, atrial fibrillation; SR, sinus rhythm; ECG, electrocardiography. 
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obtained to balance the number of samples between AF and SR labels by 
the data augmentation with sliding window (Supplementary Fig. 1). 

In each derivation dataset, ECG samples were divided into the 
training, validation, and testing datasets at a ratio of 7:1:2 (details of the 
number of samplings are displayed in Supplementary Fig. 2A). 

2.3.2. Extra testing dataset 
In patients in the Extra testing datasets, each 10-second ECG was 

divided at the half which yielded two samples of 5-second ECGs per one 
10-second ECG (details of the number of samplings are displayed in 
Supplementary Fig. 2B). 

2.4. AI-enabled ECG 

2.4.1. Convolutional neural network (CNN) modeling 
We constructed a CNN using the Keras Framework with a Tensorflow 

(Google; Mountain View, CA, USA) backend and Python. Of the eight 
physical leads and four augmented leads with a 10-second duration on 
12-lead electrocardiography (ECG) recordings, we selected the eight 
independent leads (leads I, II, and V1–6) with a 5-second duration. 
Accordingly, the original 12 × 5000 matrix (i.e., 12 leads with a 10-sec
ond duration sampled at 500 Hz) was reduced to an 8 × 2500 matrix. 

The CNN model had layers for a temporal axis and a lead axis [5]. 

The layers for the temporal axis were composed of two parts: the 
convolution part and the residual part. The convolution part included a 
convolution layer, a batch-normalization layer, a layer for non-linear 
Rectified Linear Unit (ReLU) activation, and a maximum pooling layer 
[11]. The residual part included a combination of two residual blocks 
based on Residual Network (ResNet) [12] and average pooling, which 
was repeated N times, and the value of N was tuned to obtain the best 
performance (the method is outlined below). The layers for the lead axis 
were composed of a paired batch-normalization layer and a layer for 
non-linear ReLU activation, followed by a convolution layer. Thereafter, 
a second paired batch-normalization layer and a layer for non-linear 
ReLU activation were included. Finally, the data were fed to a dropout 
layer with global average pooling and to the final output layer activated 
by the softmax function, which generated the probability of AF. The 
architecture of the model is shown in Fig. 1B. 

The model was trained on a computer with 192-GB RAM and single 
Quadro P-2200 (NVIDIA) graphics processing units that were used to 
train the model using Keras. 

A receiver operating characteristic (ROC) curve was created to 
validate and test the data to assess the AUC of AI-enabled ECG to 
determine whether AF was present. Using the ROC curve in the vali
dation dataset, we tuned the number of repetitions for the combination 
of the two residual blocks and average pooling written above (N). 

Fig. 3. Detail categorization of the Extra testing datasets. The patients in the extra testing dataset 2 were further divided according to the timing of the index SR-ECG 
from the first AF-ECG. The patients in the extra testing dataset 3 were further divided according to the length of observation period. The number of patients in each 
detail category was for whom ECG was taken in each time category. CNN, convolutional neural network; AF, atrial fibrillation; SR, sinus rhythm; ECG, 
electrocardiography. 
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Moreover, we determined the probability threshold of AF using the ROC 
curve. These parameters were used for the final evaluation using the 
testing dataset. 

2.4.2. Outcome measurement 
The primary outcome of the study was the ability of AI-enabled ECG 

to identify patients with AF using SR-ECG, which was assessed by the 
AUC, sensitivity, specificity, accuracy, and F1 score of the model. In the 
derivation dataset and the extra testing dataset 1, the AUC, sensitivity, 
specificity, accuracy, and F1 score of the model were assessed. In the 
extra testing dataset 2 and 3, only the accuracy was tested because the 
datasets were consisted of single label (AF and SR label, respectively). 

We used two-sided 95% confidence intervals (CIs) to summarize 
sample variability in the estimates. We used exact CIs (Clopper–Pearson) 
to be conservative for accuracy, sensitivity, and specificity. The CIs for 
the AUC were estimated using Sun’s and Su’s optimization of the Delong 
method using the pROC package [13], whereas the CIs for F1 were ob
tained using the bootstrap method with 2000 replications. Analyses of 
exact CIs were performed using Python version 3.7.6 (Python Software 
Foundation, DE, USA), and other analyses were performed using R 
version 4.0.3 (The R Foundation, Vienna, Austria). 

3. Results 

3.1. Development of AI-enabled ECG in the derivation datasets 

Among all included patients in the derivation dataset (n = 2172; AF 
label, n = 276; SR label, n = 1896), the mean age was 60.1 ± 13.6 years 
at the initial visit, and 1170 patients (53.9%) were male. 

The performance of AI-enabled ECG for CNN algorithm 1, 2, and 3 
are shown in Table 1A and Fig. 4A. The AUC of AI-enabled ECG was 0.83 
(0.78–0.88) for CNN algorithm 1, 0.88 (0.84–0.92) for CNN algorithm 2, 
and 0.86 (0.82–0.90) for CNN algorithm 3. The accuracy was 0.83 
(0.81–0.86) for CNN algorithm 1, 0.87 (0.84–0.89) for CNN algorithm 2, 
and 0.79 (0.76–0.82) for CNN algorithm 3. The performance was mostly 
similar between CNN algorithm 2 and 3, which was a little bit higher 

than that of CNN algorithm 1. 

3.2. Testing the performance of AI-enabled ECG in the extra testing 
datasets 

The results of testing the performance of AI-enabled ECG for CNN 
algorithm 1, 2, and 3 in the extra testing dataset 1 are shown in Table 1B 
and Fig. 4B. The AUC of AI-enabled ECG was 0.75 (0.72–0.77) for CNN 
algorithm 1, 0.81 (0.79–0.83) for CNN algorithm 2, and 0.78 
(0.76–0.80) for CNN algorithm 3. The accuracy was 0.72 (0.71–0.74) for 
CNN algorithm 1, 0.78 (0.77–0.80) for CNN algorithm 2, and 0.70 
(0.68–0.71) for CNN algorithm 3. The performance of AI-enabled ECG in 
the extra testing dataset 1 was a little bit lower than that in the deri
vation dataset, whereas their patterns in the three CNN algorithms were 
similar to those in the derivation dataset. 

The results of testing the performance of AI-enabled ECG for CNN 
algorithm 1, 2, and 3 in the extra testing dataset 2 are shown in Table 2A 
and Fig. 5A. Commonly among the three CNN algorithms, when SR-ECG 
was taken before AF-ECG, the accuracy of AI-enabled ECG increased 
according to the timing of SR-ECG became close to AF-ECG. Meanwhile, 
when SR-ECG was taken after AF-ECG, the accuracy of AI-enabled ECG 
was mostly similar irrespective of the length of time between SR-ECG 
and AF-ECG. The accuracy of AI-enabled ECG was generally higher in 
CNN algorithm 3 compared with that in CNN algorithm 1 and 2. 

The results of testing the performance of AI-enabled ECG for CNN 
algorithm 1, 2, and 3 in the extra testing dataset 3 are shown in Table 2B 
and Fig. 5B. Commonly among the three CNN algorithms, the accuracy 
of AI-enabled ECG was mostly similar irrespective of the length of the 
observation period. The accuracy of AI-enabled ECG was generally 
higher in CNN algorithm 1 and 2 compared with that in CNN algorithm 
3. 

4. Discussion 

4.1. Major findings 

In the present study, we developed AI-enabled ECG to predict AF 
using 12-lead SR-ECG in patients without structural heart disease by 
three patterns according to the timing of the index SR-ECG, and there
after confirmed the performance in patients with structural heart dis
ease. The AUC of AI-enabled ECG was higher when the algorithm 
included SR-ECG taken after the AF-ECG (0.88 and 0.86 for CNN algo
rithm 2 and 3 compared to 0.83 for CNN algorithm 1). Similar tendency 
was observed when the AI-enabled ECG was tested in patients with 
structural heart disease (0.81 and 0.78 for CNN algorithm 2 and 3 
compared to 0.75 for CNN algorithm 1). 

4.2. Comparison with previous studies 

AI-enabled ECG to predict AF using 12-lead SR-ECG has already been 
reported by multiple study groups [5–7]. These groups reported a high 
predictive ability for AF using the AUC, which was 0.90 in the study by 
Attia et al. and 0.87 in the study by Raghunath et al. It was quite sur
prising that SR-ECG can predict AF with such a high predictive capa
bility. In the present study, we obtained a similar AUC of 0.88 and 0.86 
when SR-ECG in AF label was taken after and before/after, respectively, 
the index AF-ECG. 

Such studies were based on the hypothesis that the AF signature due 
to structural changes in the atria can be identified by 12-lead ECG during 
SR [5,14] because structural changes in the atria predispose to atrial 
arrhythmia [15]. Moreover, in our previous study using hundreds of 
ECG parameters analyzed with the random forest algorithm, the 
importance of ECG parameters in predicting AF was similar in the P 
wave, QRS complex, and ST-T segment, which suggested that structural 
changes in the ventricle, presumably due to aging or atherosclerosis, 
seem to be similarly important [16]. 

Table 1 
Performance of AI-enabled ECG predicting atrial fibrillation by SR-ECG in 
derivation dataset and extra testing dataset 1.  

A. Derivation dataset  

AUC 
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

F1 score 
(95% CI) 

Accuracy 
(95% CI) 

CNN 
algorithm 
1 

0.83 
(0.78 – 
0.88) 

0.59 
(0.46 – 
0.71) 

0.86 
(0.83 – 
0.88) 

0.37 
(0.29 – 
0.45) 

0.83 
(0.81 – 
0.86) 

CNN 
algorithm 
2 

0.88 
(0.84 – 
0.92) 

0.69 
(0.58 – 
0.78) 

0.89 
(0.87 – 
0.91) 

0.54 
(0.47 – 
0.62) 

0.87 
(0.84 – 
0.89) 

CNN 
algorithm 
3 

0.86 
(0.82 – 
0.90) 

0.77 
(0.68 – 
0.85) 

0.79 
(0.76 – 
0.82) 

0.48 
(0.42 – 
0.55) 

0.79 
(0.76 – 
0.82)  

B. Extra testing dataset 1  

AUC 
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

F1 score 
(95% CI) 

Accuracy 
(95% CI) 

CNN 
algorithm 
1 

0.75 
(0.72 – 
0.77) 

0.62 
(0.58 – 
0.66) 

0.74 
(0.72 – 
0.76) 

0.42 
(0.39 – 
0.45) 

0.72 
(0.71 – 
0.74) 

CNN 
algorithm 
2 

0.81 
(0.79 – 
0.83) 

0.65 
(0.61 – 
0.68) 

0.81 
(0.80 – 
0.83) 

0.51 
(0.48 – 
0.54) 

0.78 
(0.77 – 
0.80) 

CNN 
algorithm 
3 

0.78 
(0.76 – 
0.80) 

0.76 
(0.72 – 
0.79) 

0.69 
(0.67 – 
0.70) 

0.48 
(0.45 – 
0.51) 

0.70 
(0.68 – 
0.71) 

AI, artificial intelligence; ECG, electrocardiography; AUC, area under the curve; 
CNN, convolutional neural network. 
The ROC curves are presented in Fig. 4. 
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4.3. Characteristics and clinical implications of the AI-enabled ECG in the 
present study 

Attia et al. [5] enrolled 180,922 patients with 649,931 SR-ECGs in 
their landmark paper, and Raghunath et al. [6] enrolled 430,909 pa
tients with 16,234,87 ECG recordings in their prospective study. How
ever, in the present study, we used only 276 and 1896 patients for AF- 
label and SR-label, respectively, with, at most, 2,994 and 3,792 ECG 
samples, which attained AUC over 0.8 and near to 0.9. Of course, it is not 
surprising that our AI-enabled ECG showed a high performance with a 
small number of sampling because we simplified our model by 1) 
excluding patients with structural heart disease, 2) restricting SR-ECG 
with the AF label to patients within 31 days from the first AF-ECG, 3) 

restricting SR-ECG with the SR label to patients with a follow-up period 
of ≥ 1,095 days, and 4) taking a balance of the number of samples using 
an over sampling method. Of note, through our model, we believe we 
can learn some points how to increase the performance of AI-enabled 
ECG to predict AF on SR-ECG. 

First, the timing of SR-ECG to AF-ECG in AF-label would be impor
tant. In the present study, we developed three patterns of AI-enabled 
ECG deriving from three patterns of AF-label, where the index SR-ECG 
was taken before, after, or before-or-after the first AF-ECG (CNN algo
rithm 1, 2, and 3, respectively). When we compared their performance, 
the AUC was higher when the algorithm included SR-ECG taken after the 
AF-ECG (0.88 and 0.86 for CNN algorithm 2 and 3) than when it did not 
(0.83 for CNN algorithm 1). Based on the result, we can learn two points: 

Fig. 4. ROC curves for prediction of AF by AI-enabled ECG using SR-ECG. A. Derivation dataset. B. Extra testing dataset 1. The detail measurement of the per
formance is displayed in Table 1. ROC, receiver operating characteristic; AF, atrial fibrillation; AI, artificial intelligence; ECG, electrocardiography; SR, sinus rhythm. 
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(1) AI-enabled ECG can detect the structural changes in atrium before AF 
incidence because the AUC was over 0.8 even when the model included 
only the information before the first AF-ECG (CNN algorithm 1), and (2) 
AI-enabled ECG enhanced the performance remarkably when the in
formation after the first AF-ECG was included (the AUC increased near 
to 0.9 in CNN algorithm 2 and 3). These results are supported by pre
vious clinical reports. In a study that investigated the changes in atrium 
between before and after direct cardioversion for AF, left atrial dimen
sion did not decrease at 1 week after the cardioversion (before and after 
cardioversion, 44.8 mm and 44.3 mm) [17]. Meanwhile, another similar 
study showed that left atrial volume index decreased at 1 month after 
cardioversion (41.12 mL/m2 and 37.56 mL/m2) [18]. Therefore, sig
nificant structural changes occur in atrium when AF happens and they 
may still remain within 1 week even after the cardiac rhythm restores to 
the sinus rhythm [17] but remarkably improved at 1 month [18]. On the 
other hand, in a sub-analysis of the Multi-Ethnic Study of Atherosclerosis 
study, an increment of left atrial volume index or a decrease of left atrial 
physiological function over time predict the incidence of AF [19]. It 
would be an attractive concept that AI-enabled ECG can predict the 
future incidence of AF. But this concept is not so realistic. For example, 
although Attia et al. demonstrated a high AUC (0.900) with SR-ECG 
within 31 days of AF-ECG [5], the AUC decreased (0.71–0.73) for pre
diction after approximately 2 years and further decreased to ~ 0.60 for 
prediction at ≥ 4 years [7]. On the other hand, in a practical viewpoint, 

AI-enabled ECG should have a more important role to detect the already- 
existent AF (sometimes, asymptomatic AF) with a high sensitivity. And, 
when the aim of AI-enabled ECG is to increase the sensitivity to detect 
the already-existent AF, our results suggest that the information of the 
SR-ECG after the first AF-ECG should be included in the development of 
AI-enabled ECG. In addition, when we tested the accuracy of the AI- 
enabled ECG in diagnosing AF on SR-ECG in a different timing from 
the first AF-ECG (Fig. 5), the accuracy was constantly high in CNN al
gorithm 3 (SR-ECG was taken both before and after AF-ECG). Therefore, 
to maximize the sensitivity to detect the already-existent AF among the 
three patterns of AF-label, the pattern of AF label in the CNN algorithm 3 
seems to be the best. 

Second, the tendency in the performance of three patterns of CNN 
algorithm in patients without structural heart disease was similar when 
they were applied to those with structural heart disease. Because pa
tients with structural heart disease have various patterns of typical ECG 
features, especially in ST-T segment, we assumed that the existence of 
structural heart disease should increase the branches of patterns that AI- 
enabled ECG should learn and would affect its performance. Therefore, 
in the present study, by excluding patients with structural heart disease 
from our model, we intended to limit the variations in the derivation 
dataset. When we applied our model to patients with structural heart 
disease, the AUC was 0.75, 0.81, and 0.78 for CNN algorithm 1, 2, and 3, 
which were lower than the AUCs in patients without structural heart 
disease, but the tendency in the performance of three patterns of CNN 
algorithm was similar. Although the AUCs of AI-enabled ECG developed 
in patients without structural heart disease were lower in those with 
structural heart disease, they remained around 0.8, suggesting the AI- 
enabled ECG works to some extent beyond the absence or existence of 
structural heart disease. This may be because, even in patients with 
structural heart disease, typical ECG characteristics present only in 
limited patients with relatively severe conditions. These results possibly 
suggest that including patients with structural heart disease may not be a 
matter for developing AI-enabled ECG to detect AF on SR-ECG. There
fore, our model could be extrapolated to those with structural heart 
disease to some extent, but its utility requires further investigation. 

The AI-enabled ECG to detect AF on SR-ECG may be a candidate to be 
incorporated in the technology tools supporting the guidelines- 
recommended integrated management of AF [1] by the following rea
sons. First, our findings suggest that AI-enabled ECG to predict AF on 
sinus-rhythm ECG can provide an aid for screening paroxysmal AF, 
especially in those who are strongly suspected of having AF (i.e., history 
of embolic stroke of undetermined sources and accumulation of risk 
factors for AF). Patients who have a high AF probability under the AI- 
enabled ECG would be candidates for screening AF more vigorously. 
Second, even in patients who are already diagnosed as paroxysmal AF, 
AI-enabled ECG to predict AF on sinus-rhythm ECG can provide infor
mation whether AF occurs recently (i.e., within 1 month). This would 
serve as simple information for managing AF patients under rhythm 
control therapy. 

4.4. Limitations 

There are several limitations of the present study that should be 
highlighted. First, although we limited SR-ECG recordings with the SR 
label to patients followed up for ≥ 1,095 days, there remained a possi
bility that undetected AF existed in patients with the SR label. Second, 
our study excluded patients with structural heart disease and can thus 
only be applied to similar populations. Third, our model of AI-enabled 
ECG should be verified against external datasets to confirm the 
generalizability. 

4.5. Conclusions 

We confirmed high performance of AI-enabled ECG to detect AF on 
SR-ECG in patients without structural heart disease. The performance 

Table 2 
Performance of AI-enabled ECG predicting atrial fibrillation by SR-ECG in extra 
testing dataset 2 and 3.  

A. Extra testing dataset 2 

Length of time 
from 
the index AF-ECG 

CNN algorithm 1 CNN algorithm 2 CNN algorithm 3 

Accuracy 
(95% CI) 

Accuracy 
(95% CI) 

Accuracy 
(95% CI) 

<− 366 days 0.39 (0.32 – 0.47) 0.28 (0.22 – 0.36) 0.47 (0.39 – 0.55) 
− 365 to − 181 

days 
0.39 (0.30 – 0.48) 0.48 (0.39 – 0.58) 0.60 (0.50 – 0.68) 

− 180 to − 91 days 0.46 (0.36 – 0.56) 0.50 (0.40 – 0.60) 0.65 (0.55 – 0.75) 
− 90 to –32 days 0.55 (0.44 – 0.65) 0.51 (0.40 – 0.62) 0.65 (0.54 – 0.75) 
− 31 to − 1 days 0.59 (0.46 – 

0.71) 
0.54 (0.44 – 0.63) 

0.77 (0.68 – 
0.85) 0 to 31 days 0.54 (0.48 – 0.60) 0.69 (0.58 – 

0.78) 
32 to 90 days 0.58 (0.48 – 0.68) 0.65 (0.55 – 0.73) 0.83 (0.74 – 0.89) 
91 to 180 days 0.52 (0.44 – 0.60) 0.59 (0.51 – 0.67) 0.74 (0.66 – 0.81) 
181 to 365 days 0.52 (0.45 – 0.60) 0.60 (0.52 – 0.67) 0.75 (0.68 – 0.81) 
≥366 days 0.53 (0.45 – 0.60) 0.55 (0.47 – 0.62) 0.78 (0.72 – 0.84)  

B. Extra testing dataset 3 

Length of observation 
period 

CNN algorithm 
1 

CNN algorithm 
2 

CNN algorithm 
3 

Accuracy 
(95% CI) 

Accuracy 
(95% CI) 

Accuracy 
(95% CI) 

≤180 days 0.74 (0.73 – 
0.74) 

0.75 (0.75 – 
0.76) 

0.62 (0.61 – 
0.63) 

181 to 365 days 0.72 (0.68 – 
0.75) 

0.75 (0.71 – 
0.78) 

0.59 (0.56 – 
0.63) 

366 to 730 days 0.68 (0.66 – 
0.70) 

0.69 (0.66 – 
0.71) 

0.53 (0.50 – 
0.55) 

731 to 1094 days 0.73 (0.71 – 
0.76) 

0.76 (0.73 – 
0.78) 

0.63 (0.60 – 
0.66) 

≥1095 days 0.86 (0.83 – 
0.88) 

0.89 (0.87 – 
0.91) 

0.79 (0.76 – 
0.82) 

Bold numbers with shadow indicate the data of the derivation dataset. Given 
that the accuracy for the single label (AF label in extra testing dataset 2 and SR 
label in extra testing dataset 3) was equal to sensitivity (for AF label) or speci
ficity (for SR label), the bold numbers in the Table 2A and 2B were the sensitivity 
and the specificity, respectively, in the derivation dataset for each CNN algo
rithm. 
These data are visualized in Fig. 5. 
CNN, convolutional neural network; AF, atrial fibrillation; SR, sinus rhythm. 
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enhanced especially when SR-ECG after index AF-ECG was included in 
the algorithm, which was consistent in patients with structural heart 
disease. 
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