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Tumor hypoxia is associated with malignant biological phenotype including enhanced angiogenesis and metastasis. Hypoxia
increases the expression of vascular endothelial cell growth factor (VEGF), which directly participates in angiogenesis by recruiting
endothelial cells into hypoxic area and stimulating their proliferation, for increasing vascular density. Recent research in tumor
biology has focused on the model in which tumor-derived endothelial cells arise from tumor stem-like cells, but the detailed
mechanism is not clear. Twist1, an important regulator of epithelial-mesenchymal transition (EMT), has been shown to mediate
tumor metastasis and induce tumor angiogenesis. Notch signaling has been demonstrated to be an important player in vascular
development and tumor angiogenesis. KLF4 (Krüppel-like factor 4) is a factor commonly used for the generation of induced
pluripotent stem (iPS) cells. KLF4 also plays an important role in the differentiation of endothelial cells. Although Twist1
is known as a master regulator of mesoderm development, it is unknown whether Twist1 could be involved in endothelial
transdifferentiation of tumor-derived cells. This review focuses on the role of Twist1-Jagged1/Notch-KLF4 axis on tumor-derived
endothelial transdifferentiation, tumorigenesis, metastasis, and cancer stemness.

1. Introduction

Metastasis and angiogenesis are among the hallmarks of
malignant behavior of cancer cells. Cancer metastasis has
been shown to be responsible for the majority of cancer-
related deaths. It is established that survival rate of cancer
patient is low during metastatic stage [1]. Metastasis pro-
ceeds through the progressive acquisition of traits that allow
malignant cells originating in one organ to disseminate and
colonize a secondary site. Metastasis is a multistep process
that divides into several steps: loss of cellular adhesion,
increased motility and invasiveness, entry and survival in the
circulation, exit into new tissue, and eventual colonization
in a distant site [2]. A developmental program termed
epithelial–mesenchymal transition (EMT) has been shown
to play a critical role in promoting metastasis by enhancing
cancer cell motility and dissemination. Activation of EMT
is considered essential to allow cancer cells to lose cell-
cell junctions and dissociate from each other for single-cell

migration and invasion [3]. Moreover, gene expression pat-
terns in human cancers indicated that cancer cells combine
EMT properties with a stem-cell-like phenotype [4]. A direct
molecular link between EMTand stemness has demonstrated
that the EMT activator, Twist1, can coinduce EMT and
stemness properties [5]. Furthermore, induction of EMT in
more-differentiated cancer cells can generate CSC-like cells,
providing an association between EMT, CSCs, and drug
resistance [6, 7]. Increasing evidence suggests that EMT plays
an important role in therapeutic resistance. For example,
in EGFR mutated non-small cell lung cancers (NSCLC),
EMT has been associated with acquired resistance to EGFR
inhibitors [8]. EMT also contributes to drug resistance to 5-
FU in pancreatic cancer and colon cancer [9, 10]. Due to the
clinical importance of the EMT-induced processes, inhibition
of EMT is an attractive therapeutic approach that could have
a significant effect on disease outcome.

The generation of new capillaries from preexisting blood
vessels is called angiogenesis. The angiogenesis process takes
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Figure 1: Angiogenesis is the process through which new blood vessels form and grow. Tumor cells activated by a lack of oxygen (or a gene
mutation) release, among other things, angiogenic factors that attract inflammatory and endothelial cells and promote their proliferation.The
endothelial cells that form existing blood vessels respond to angiogenic signals in their vicinity by proliferating and secreting proteases, which
break open the blood vessel wall to enable them tomigrate toward the tumor site. Proliferating endothelial cells then organize themselves into
new capillary tubes by altering the arrangement of their adherence-membrane proteins. Finally, the capillaries provide a continuous blood
flow that sustains tumor cell metabolism and sets up escaping avenues for metastatic tumor cells.

place during embryogenesis and in the adult, for example, in
the female reproductive system and wound healing. Addi-
tional angiogenesis occurs in pathological conditions such
as cancer, macular degeneration, psoriasis, and rheumatoid
arthritis [11, 12]. Angiogenesis and tumor progression are
very closely linked to each other. Tumor cells are dependent
on angiogenesis because their growth and expansion require
oxygen and nutrients, which are made available through the
angiogenic vasculature (Figure 1). In 1971, Folkman proposed
that an alteration in the blood supply can noticeably affect the
tumor growth and its metastasis, which led to the idea that
blocking tumor angiogenesis could be one of the strategies
to prevent tumor cells spreading [13–15]. Tumor stem-like
cells belong to a subpopulation of tumor cells that have
acquired the stemness properties associated with normal
stem cells. Cancer stemness property has been used to explain
cancer initiation, progression, recurrence, and resistance to
chemotherapy or radiation therapy. Recent research in tumor
biology has focused on the model in which tumor-derived
endothelial cells can arise from tumor stem-like cells [16–
18], but the detailedmechanism is not clear. Furthermore, the
evidence showed that about 70% of endothelial cells from the
inner portion of the tumor were tumor-derived endothelial
cells whichwere stained by human-specific antibody, whereas
nearly all the endothelial cells in the tumor capsule were
recruited from preexisting vessels which were stained by
mouse-specific antibody inside glioblastoma xenografts [16].

Twist1, a basic helix-loop-helix (bHLH) transcription
factor, is characterized by a basic DNA binding domain
that targets the consensus E-box sequence 5󸀠-CANNTG-3󸀠
[19]. Consistently, bHLH members are transcription factors
acting in various differentiation processes, as either posi-
tive or negative regulators, and play key roles in different
developmental events like neurogenesis andmyogenesis [20].
Twist initiatesDrosophilamesodermdevelopment and results
in the formation of heart, somatic muscle, and other cell

types [19]. Recent evidence implicates that Twist1 gene is
overexpressed in a large of human tumors including a variety
of carcinomas as well as sarcomas, melanomas, glioma, and
neuroblastoma [21]. Functional studies have indicated that
Twist1 may play a major role in tumor promotion and
progression, by inhibiting differentiation, interfering with the
p53 tumor suppressor pathway and favoring cell survival, and
inducing epithelial-mesenchymal transition (EMT) [22].

Here, we discuss the relationship of the EMT regulator,
Twist1, cancer stemness, and tumor angiogenesis. We also
review the new role of Twist1 in angiogenesis and new
downstream targets of Twist1.

2. Cancer Stemness and Angiogenesis

Cancer arises from cells accruing multiple mutations which
initiate uncontrolled proliferation or resistance to apoptosis
by both genetic and epigenetic aberration within unique
microenvironments. Moreover, these cells, so-called cancer
stem-like cells (CSCs), obtain self-renewing ability as stem-
cell-like properties [23]. Some of the pathways activated in
CSCs just like in normal stem cells are Notch, Hedgehog,
and Wnt/𝛽-catenin [24]. They also share similar gene and
epigenetic profiles and express related surface and functional
markers in different tumors, such as CD44, CD133, ALDH1,
Sca1, and ABCG2. Some of these genes or markers also have
been proposed for metastasis, angiogenesis, drug resistance,
and tissue differentiation [25].

Cancer stem cells are well known for their greater
potential of tumor initiation and formation than non-stem
tumor cells. Recently, more and more reports support that
CSCs, as well their self-renewal and proliferative capabilities,
may promote tumor angiogenesis. First, in stem-cell-like
glioma cells (SCLGC), Bao et al.’s group observed that the
VEGF expression in CD133+ SCLGC was 10–20-fold upreg-
ulated, combined with a dramatically increased vascular
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density identified by CD31 staining [26]. Then, Folkins et al.’s
group also revealed that tumor with larger CSC population
recruited a higher amount of endothelial progenitor cells
(EPC), suggesting that CSCs promote tumor angiogenesis
and EPC recruitment via stimulating VEGF and SDF-1 [27].
Recently, the evidences further showed that the presence of
cancer-derived endothelial-like cells and suggested that the
differentiation of cancer stem-like cells into endothelial cells
might be mediated by vascular endothelial growth factor
(VEGF) and Notch. These new findings provide new insight
into the mechanisms of tumor neoangiogenesis [16, 18].
However, in order to discover the entire network of signals
within CSCs and angiogenesis, more research is still needed.

3. Hypoxia-Induced EMT

Hypoxia is an important physiological factor that correlates
with tumor progression including an increasing probability
of recurrence, locoregional spread, and distant metastasis
[28]. Furthermore, recent studies suggest that tumor hypoxia
is associated with malignant biological phenotype such as
angiogenesis, migration, invasion, and metastasis [29]. The
key factor involved in adaptive responses to cellular hypoxia
is HIF-1 and its activity is tightly regulated by the cellular
oxygen tension [30]. HIF-1 is a heterodimeric protein that
is composed of an O2-regulated HIF-1alpha subunit and a
constitutively expressed HIF-1beta subunit. Both of them
belong to the basic helix-loop-helix-per-arnt-sim (bHLH-
PAS) family [31]. Hypoxia mediates EMT and metastasis.
Twist1 is a direct gene target of HIF-1alpha and Twist1
mediates the invasion, migration, and metastatic activity
of different cancer cell types, including head and neck
(HNSCC), breast, and lung carcinoma [32].

4. Hypoxia-Induced Tumor Angiogenesis

Typically, tumor-associated angiogenesis goes through two
phases: an avascular and a vascular phase that are separated
by the “angiogenic switch.” In the avascular phase, tumors
are small and survive on diffusion of nutrients from the host
microvasculature. In order for tumors to grow beyond 1-
2 𝜇m3 [33], they need a continual supply of blood to supply
nutrients and oxygen to overcome hypoxia and starvation.
Hypoxia of tumor cells will occur if the tumor grows beyond
the maximum distance of diffusion from local vessels around
200𝜇m [34]. When a condition such as hypoxia is present
in the tumor tissue, the tumor cells receive the signal and
promote the angiogenic switch and induce angiogenesis.
In the case of hypoxia, the signal is mediated by hypoxia
inducible factor-1 (HIF-1). HIF-1 binds to hypoxia-response
elements (HREs) and activates a number of hypoxia-response
genes such as VEGF.Thus hypoxia upregulates the expression
of angiogenic factors, like VEGF, stromal derived factor 1
(SDF1), angiopoietin 2 (ANGPT2), placental growth factor
(PGF), platelet-derived growth factor B (PDGFB), and stem
cell factor (SCF) [35–40]. Receptor-ligand interaction acti-
vates these cells and promotes the recruiting endothelial
cells into hypoxic area and stimulates their proliferation, for
increasing vascular density [41].

5. Role of Twist1 in EMT and Angiogenesis

The mechanisms leading to the aberrant activation of Twist1
appear to be various and complex.They result from the dereg-
ulation of signaling pathways (e.g., transforming growth
factor-beta (TGF-𝛽), Wnt, and nuclear factor 𝜅B (NF-𝜅B)
signaling pathways) that normally mediate the expression of
the genes during embryonic development [42]. Interestingly,
stress conditions seem to control both the physiological
and aberrant expression of Twist1. Hypoxic conditions are
similarly defined as potent inducers of Twist1 expression
in cancer cells, thereby promoting cell dissemination to
other friendlier environment, presumably through its role in
promoting the EMT and metastasis [32]. Besides EMT and
metastasis, the recent finding provides a crucial link between
less differentiated stem cells and themesenchymal-appearing
cells generated by EMTs [43]. Our results demonstrated that
Twist-induced EMTand tumor-initiating capability in cancer
cells occur through direct regulation of the polycomb group
protein BMI1, which is involved in the self-renewal of neu-
ronal, haematopoietic, and intestinal cells [5]. In addition, it
was found that upregulation of Twist1 may play an important
role in the angiogenesis of breast and hepatocellular carci-
noma [44, 45]. But so far, the molecular mechanism of Twist1
gene on angiogenesis in human cancers remains unknown.
The identification of downstream activators of Twist1 could
provide valuable information about tumor angiogenesis and
metastasis.

6. The Role of Notch Signaling Pathway in
EMT and Angiogenesis

The Notch-signaling pathway is a cell-cell communication
pathway that is evolutionarily conserved from Drosophila
to human and modulates cell fate and differentiation [46–
48]. To date, four different notch receptors (Notch1, Notch2,
Notch3, and Notch4) and five different ligands (Jagged1
and Jagged2 and Delta-like-1, Delta-like-3, and Delta-like-4)
have been identified in mammalian cells. Notch signaling is
initiated when the extracellular domain of the Notch receptor
binds their ligand on neighboring cells that are in close
proximity to one another.This leads to a cascade of enzymatic
cleavages and the Notch intracellular domain (NICD) is
released and then translocated to the nucleus where it
interacts with CSL (CBF1, Su(H), and Lag-2) transcriptional
repressors and converts them to transcriptional activators.

Recently, it is believed that Notch signal pathway is a key
regulator to induce EMT and endothelial-to-mesenchymal
transition (EndMT) processes [49, 50]. Notch activation in
endothelial cells results in morphological, phenotypic, and
functional changes consistent with mesenchymal transfor-
mation. These changes not only include downregulation
of endothelial markers (VE-cadherin, Tie1, Tie2, platelet-
endothelial cell adhesion molecule-1, and endothelial NO
synthase), but also upregulation ofmesenchymalmarkers (𝛼-
SMA, fibronectin, and platelet-derived growth factor recep-
tors) [51]. Moreover, Jagged1 stimulation in endothelial cells
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also induced a similarmesenchymal transformation, suggest-
ing that Jagged1 mediated activation of Notch signaling is
important during the induction of EMT [51]. In EndMT and
EMT processes, Notch cross-talks with several transcription
and growth factors relevant to EMT, including Snail, Slug,
TGF-𝛽, FGF, and PDGF [52].

It is clear that the Notch family is critically important
for the proper construction of the vascular system. Global as
well as endothelium-specific knockouts of Notch receptors
or ligands induce embryonic death with vascular defects
[53–55]. These results suggest that Notch pathway compo-
nents have also been shown to be required for postnatal
angiogenesis. However, information aboutNotch signaling in
tumor angiogenesis is limited. Notch signaling components
are expressed in tumor endothelial cells, but the most notable
component in this class is DLL4. It is known that DLL4 is
upregulated in the vasculature of human xenografted tumors
in mice and in human breast and kidney cancers [56].
Reduction of basal DLL4 level in ECs by siRNA led to the
inhibition ofmultiple endothelial functions in vitro including
proliferation, migration, and network formation, implying
the potential role of this pathway in cancer [57]. In fact,
blockade ofDLL4-Notch signaling is an emerging therapeutic
approach to inhibiting tumor angiogenesis [58–60]. Besides,
recent findings suggest that the role of Jagged1 expression
in head and neck squamous cell carcinoma and breast
cancer can be diverse, influencing tumor cell growth, tumor
angiogenesis, and/or the inflammatory response [61, 62].

7. The Role of KLF4 in EMT and Angiogenesis

KLF4 is member of the Sp1/KLF family, which are evo-
lutionarily conserved zinc finger-containing transcription
factors and function as regulators in diverse cell processes
of cell growth, proliferation, and differentiation [63–65].
Earlier studies indicated that KLF4 is highly expressed in
epithelial tissues including the gut and skin [66, 67]. Because
KLF4 functions as an antiproliferative factor in differentiated
epithelia, it seems that KLF4 might act as a tumor sup-
pressor. In general, KLF4 seems to inhibit both EMT and
invasion [68]. While loss of KLF4 function induces EMT-
like morphological changes, forced expression of KLF4 in
the highly metastatic MDA-MB-231 breast tumor cell line
was sufficient to restore E-cadherin expression and suppress
migration and invasion [69]. Furthermore, NFI-C, a member
of the nuclear factor I (NFI) family of transcription factors,
increased the expression of KLF4 and E-cadherin and led to a
more pronounced epithelial cell phenotype. In contrast, NFI-
C knockdown induced migration and invasion [70]. Notably,
the research revealed that a number of mesenchymal genes,
such as N-cadherin (Cdh2), vimentin (Vim), and 𝛽-catenin
(Ctnnb1), are direct targets of KLF4 transcriptional repres-
sion by using a combinatorial approach of gene expression
profiling and chromatin immunoprecipitation/deep sequenc-
ing (ChIP-Seq) analysis [71]. KLF4 significantly decreases
lung and liver metastases in a murine model of mammary
cancer [69, 72]. Indeed, loss of KLF4 occurs at early stages

in the progression of gastric cancer [73, 74]. However, recent
evidence suggests that KLF4 might also act as an oncogene
in breast cancer, head and neck cancer (HNSCC), and
pancreatic cancer [75–78]. It indicated that KLF4 expression
and activity are altered in human cancers and KLF4 can be
tumor suppressors or oncogenes depending on tissue, tumor
type, or cancer stage.

It was found that overexpression of KLF4 along with
Myc, Sox2, and Oct4 could transform mouse fibroblasts into
the state resembling embryonic stem cells (ES cells). These
cells have been termed “inducible pluripotent stem cells” (iPS
cells) [79]. There are also some studies implying that KLF4
played an important role in the differentiation and function
of endothelial and vascular smooth muscle cells [59, 80–
82]. Furthermore, it is demonstrated that KLF4 can regulate
sprouting angiogenesis and may be a therapeutic target in
regulation of tumor angiogenesis [83].

8. Twist1 Induced Tumor-Derived
Endothelial Differentiation

There are some evidences that glioblastoma stem-like cells
differentiate into endothelial cells [16, 17], but the detailed
molecular mechanisms are still unclear. We demonstrated
that Twist1 overexpression in the HNSCC cell lines not only
mediates the expression of the endothelial-specific markers
including CD31 [84], CD144 [85], von Willebrand factor
(vWF) [86], Tie2 [87], endoglin (CD105) [88], and intercel-
lular adhesion molecule 1 (ICAM1) [89], but also exhibited
obvious ability of capillary-like network formation and the
ability of DiI-AcLDL (1,1󸀠-dioctadecyl-3,3,3󸀠,3󸀠-tetramethyl-
indocarbocyanide perchlorate-labeled acetylated low density
lipoproteins) uptake [90, 91]. It is a new vision that Twist1 can
induce transdifferentiation of tumor cells into endothelial
cells and promotion of tumor-derived vascular formation
[18]. This observation of tumor-derived endothelial transdif-
ferentiation is different from the traditional angiogenesis pro-
cess contributed by sprouting and proliferation of formerly
quiescent endothelial cells on nearby blood vessels and lym-
phatics that are triggered by soluble growth factors, cytokines,
and proangiogenic factors secreted from tumor cell (Figure 1)
[92]. Induction of tumor-derived endothelial differentiation
by Twist1 was also different from the vasculogenic mimicry
mechanism [93], because vasculogenicmimicry is the process
by which aggressive tumor cells generate nonendothelial cell-
lined channels delimited by extracellular matrix. Knockdown
of Twist1 expression decreased not only cell mobility but also
the tube-forming ability. Tumor-derived endothelial differen-
tiation is important for Twist1-induced tumor metastasis,
and inhibition of the angiogenesis process may be equally
important to treat metastasis [18]. Finally, how classical angi-
ogenesis versus endothelial transdifferentiation contributes
to tumor angiogenesis andwhether these two differentmech-
anisms occur sequentially or have any tumor type preference
remain to be determined through examination of different
types of human tumors.
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9. Regulation of the Jagged1-KLF4
Axis by Twist1

Recent study showed that the Twist1 functions upstream of
Jagged1 in the process of development [94], but the regulatory
mechanismwas not provided. Our results indicate that Twist1
can activate Jagged1 expression and downstream Notch sig-
naling pathway. In addition, the reporter assay and chro-
matin immunoprecipitation (ChIP) assay were performed
and confirmed that Twist1 activated the expression of Jagged1
by directly binding to the E-box element in the Jagged1
promoter. Knockdown of Jagged1 not only decreased the
levels of endothelial markers including CD31, CD144, vWF,
CD105, and ICAM1 induced by Twist1 overexpression, but
also abolished the activity of tube formation and DiI-AcLDL
uptake activity induced by Twist1. Then, downregulation of
Jagged1 caused the reverse shift in expression ofmesenchymal
markers (vimentin and N-cadherin) to epithelial markers (E-
cadherin and plakoglobin) and abolished Twist1-mediated
migration/invasion activity. Taken together, these results
demonstrated that Jagged1 plays an essential role in Twist1-
induced endothelial differentiation, EMT, and metastasis.
Furthermore, the relationship among Notch, STAT3, and
Twist1 pathways in the control of tumor progression was
studied, and the results suggested that Notch1/STAT3/Twist
signaling axis is involved in progression of human gastric
cancer [95]. It provides an idea that there might be a positive
feedback loop between Twist pathway and Notch signaling to
promote tumor progression.

As Twist1 overexpressionwas shown to generate cells with
stem-like properties [5], there are more and more evidences
showing that Notch signaling pathway is involved in adult
stem cell self-renewal and differentiation [96–98]. More-
over, recent researches indicated that tumor stem-like cell
differentiation to endothelial-cell progenitors occurs trough
Notch-mediated signaling [99]. Some pluripotency factors
had an essential function in this network by actively directing
differentiation for endoderm specification [100]. To further
identify the transcription factors as downstream targets of the
Twist1-Jagged1/Notch signaling to regulate the expression of
various endothelial and vascular markers, we screened the
expression of different stemness-related transcriptional fac-
tors including OCT4, SOX2, NANOG, KLF4, GFI1, WNT1,
and BMI1. The results showed that Jagged1/Notch pathway
can regulate the expression of KLF4 by directly binding to
the KLF4 promoter using the qChIP assay. Although KLF4
is very likely an important regulator of ES cell self-renewal
and pluripotency, our results demonstrate a role of KLF4
in endothelial differentiation and vasculogenesis. The direct
regulation of KLF4 also showed the connection between
the Notch pathway and KLF4. The potential downstream
targets of KLF4 (e.g., Wnt5A, CCND2) may give us a new
thought in the mechanism of KLF4-induced stem-like prop-
erty that contributes to the tumor-initiating ability. Finally,
KLF4mediates Twist1-inducedmetastatic activity through an
EMT-independent mechanism, suggesting that regulation of
different targets (e.g., motility genes) other than the typical
EMTmarker genes also contributes to the metastatic activity
induced by Twist1. All these results indicate the role of

KLF4 in Twist1-induced endothelial differentiation, stem-like
property, and metastasis.

10. Clinical Impaction of
Twist1-Jagged1/KLF4 Axis

Furthermore, we also examined the correlation between the
expression of Twist1, Jagged1, and KLF4 in head and neck
cancer patient samples. Immunohistochemistry staining of
Twist1, Jagged1, and KLF4 in 242 head and neck cancer
patient samples showed there was significant correlation
between Twist1, Jagged1, and KLF4. Meanwhile, the expres-
sion of Twist1-Jagged1-KLF4 axis was also confirmed in pri-
mary culture samples derived from head and neck samples.
Overall, these results indicated that Twist1-Jagged1-KLF4 axis
existed in real patient samples.

Cetuximab was recently approved in combination treat-
ment with cisplatin for the treatment of patients with squa-
mous cell carcinoma of the head and neck, but the survival
benefit of adding cetuximab to standard chemotherapy was
almost only three months [101, 102]. This means that there
is still room for further improvement of treatment approach
to treating head and neck cancer. It is well established that
the angiogenic switch is a critical step in carcinogenesis [103].
With the clinical application ofmultiple inhibitors of vascular
endothelial growth factor (VEGF) signaling, angiogenesis is
a validated therapeutic target [13, 92]. However, the overall
clinical benefit of agents targeting VEGF has been less than
what was hoped. This lack of benefit appears to be substan-
tially due to primary or acquired resistance to these drugs
[104].The tumor-derived endothelial differentiationmight be
responsible for this resistance. Because the Twist1-Jagged1-
KLF4 axis seems to play an important role in angiogenesis,
blocking Notch signaling activation by 𝛾-secretase inhibitors
might be a potential treatment.

Over the past decades, 𝛾-secretase inhibitors have been
investigated for their clinical potential to block the gen-
eration of A𝛽 peptide that is associated with Alzheimer’s
disease [105]. Because 𝛾-secretase inhibitors are also able
to prevent Notch receptor activation, several forms of 𝛾-
secretase inhibitors have been tested for cancer therapy.
Treatment with one of 𝛾-secretase inhibitors, N-[N-(3,5-
difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester
(DAPT), either reducedmedulloblastoma growth in a SmoA1
mouse model or induced G0-G1 cell cycle arrest and apopto-
sis in a T-ALLmouse model [106, 107]. Furthermore, a Notch
inhibitor, MK0752, has been used for T-ALL patients and
advanced breast cancers for a phase I clinical trial [108, 109].
To investigate whether the existence of Twist1-Jagged1-KLF4
axis might provide a potential new strategy treatment for
the patients with Twist1-overexpressing tumors, we tested
the drug response on Twist1-overexpressing OECM-1 cells.
Xenotransplantation experiments showed that combined
treatment of cetuximab and DAPT additively inhibited the
tumor growth induced by Twist1 [18]. These results indicate
the benefit of the 𝛾-secretase inhibitor (DAPT) in combina-
tion treatment for Twist1-overexpressing tumors. However,
further development of a specific type of 𝛾-secretase inhibitor
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Figure 2: A model explains the crucial role of hypoxia-induced Twist1 to mediate different important processes of tumor progression
including EMT, metastasis, cancer stemness, and endothelial differentiation through regulation of BMI1 or Jagged1/Notch-KLF4 axis.

that can specifically inhibit certain human tumors needs to be
initiated in order to guarantee the success of target therapy of
human cancers.

11. Conclusion

Tumor hypoxia is associated with malignant biological
phenotype including enhanced invasiveness, angiogenesis,
migration, and metastasis. HIF-1alpha, a key transcription
factor that is induced by hypoxia and is implicated in
tumor progression/metastasis, induces EMT through direct
activation of Twist1 [32]. Twist1 plays a crucial role in
epithelial-mesenchymal transition (EMT), metastasis, and
cancer stemness through direct regulation of BMI1 [5].
Cancer stem cells have been described to be critical in tumor
initiation tumor growth andmetastasis. More evidences have
shown that CSCs interact closely with angiogenesis and have
the potential to develop the blood vessels [99]. Furthermore,
our results indicate that the Twist1-Jagged1-KLF4 axis plays
an important and essential role in inducing tumor-derived
endothelial differentiation inside the tumors in addition to
traditional angiogenesis and in creating better opportunities
for tumor metastasis (Figure 2). These results also provide
significant therapeutic implications to combine 𝛾-secretase
inhibitors with established chemotherapeutic agents for can-
cer treatment.
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