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Abstract

Introduction: Ultra-deep pyrosequencing (UDPS) has been used to detect minority variants within HIV-1 populations. Some
aspects of the quality and reproducibility of UDPS have been previously evaluated, but comprehensive studies are still
needed.

Principal Finding: In this study the UDPS technology (FLX platform) was evaluated by analyzing a 120 base pair fragment of
the HIV-1 pol gene from plasma samples from two patients and artificial mixtures of molecular clones. UDPS was performed
using an optimized experimental protocol and an in-house data cleaning strategy. Nine samples and mixtures were
analyzed and the average number of reads per sample was 19,404 (range 8,858–26,846). The two patient plasma samples
were analyzed twice and quantification of viral variants was found to be highly repeatable for variants representing .0.27%
of the virus population, whereas some variants representing 0.11–0.27% were detected in only one of the two UDPS runs.
Bland-Altman analysis showed that a repeated measurement would have a 95% likelihood to lie approximately within 60.5
log10 of the initial estimate. A similar level of agreement was observed for variant frequency estimates in forward vs. reverse
sequencing direction, but here the agreement was higher for common variants than for rare variants. UDPS following PCR
amplification with alternative primers indicated that some variants may be incorrectly quantified due to primer-related
selective amplification. Finally, the in vitro recombination rate during PCR was evaluated using artificial mixtures of clones
and was found to be low. The most abundant in vitro recombinant represented 0.25% of all UDPS reads.

Conclusion: This study demonstrates that this UDPS protocol results in low experimental noise and high repeatability,
which is relevant for future research and clinical use of the UDPS technology. The low rate of in vitro recombination
suggests that this UDPS system can be used to study genetic variants and mutational linkage.
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Introduction

In 2005 the first next generation sequencing (NGS) platform,

the Genome Sequencer 20 (GS20) from 454 Life Sciences [1],

was released and since then several other NGS platforms have

been introduced. In addition, several updates have been

released, which have increased the throughput and read length.

The major platforms used today include the 454 FLX and 454

Titanium from Roche, the SOLID platform from Applied

Biosystems and the Solexa platform from Illumina. SOLID and

Solexa generate reads which are 50–100 base pairs (bp) long.

The 454 FLX and Titanium platforms produce longer reads (300

and 500 bp, respectively). One application of NGS is sequencing

of many individual template molecules obtained from specific

gene fragments to study minority sequence variants and

haplotype composition. For this approach the amplicon

sequencing on the 454 platform, also called ultra-deep

pyrosequencing (UDPS), is well suited because of the longer

read lengths. The UDPS technology has been used to study

cancer-associated genes in humans [2,3] and minority variants

within the population of human immunodeficiency virus type 1

(HIV-1), including drug resistance [4,5,6,7,8,9], coreceptor use

[10,11,12] and coevolution in the nef gene [13]. The sequence

depth of the UDPS technology is limited by the experimental

error and the number of input template molecules. Experimental

errors may be introduced during the sequencing procedure [3] as

well as the preceding reverse transcription and PCR amplifica-

tion [9]. The PCR amplification is known to sometimes

generate: 1) Artifactual substitutions, insertions and deletions:

2) Primer mismatches that may result in selective amplification

failure of some sequence variants (this is especially relevant for

HIV-1 and other targets with high genetic variability [14] and
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we will refer to this problem as primer-related selective

amplification): and 3) In vitro recombination during PCR

amplification [15,16,17,18,19] that may disrupt mutational

linkage and thereby hinder studies of sequence variants. We

have previously shown that the in vitro recombination frequency

during UDPS is low [9], but here we extend these findings.

Bioinformatic approaches have been developed to distinguish

high confidence variants from sequencing artifacts. These

approaches have been reported to decrease the sequencing error

rate to levels ranging from 0.05% [9,20] to 0.43% [11]. The

error rate is not uniform across sites, but rather is higher in or

adjacent to homopolymer tracts [3]. Hence, we have suggested

that site-specific error rates should be used in studies of specific

mutations [9]. The repeatability of HIV-1 variant frequency

estimations using UDPS has been studied by Poon et al. [13],

who analyzed three patients’ plasma samples and showed that

the repeatability was high for variants representing more than 1–

5% of the virus population. Known variants representing 1%

[12] and 0.1% [20] have been shown to be detectable by UDPS.

Comparison of UDPS data in forward and reverse direction

might facilitate data cleaning, but this has not been evaluated

previously.

In this study, we have amplified a region of the HIV-1 pol gene

of patients’ plasma samples and molecular clones to evaluate the

UDPS technology (FLX platform) for experimental noise and data

variability, such as repeatability, effects of sequence direction,

sensitivity, influence of primer-related selective amplification and

in vitro PCR recombination.

Materials and Methods

Ethics statement
A research ethics application was approved by Regional Ethical

Review Board in Stockholm, Sweden (Dnr 52/2008-77). The

patients gave written informed consent according to the

Declaration of Helsinki.

Samples
For this study, we used four HIV-1 patient plasma samples

(samples A, B, C and D). Sample A and B were used to study

repeatability, effects of sequence direction and influence of primer-

related selective amplification. These samples had approximately

1,050,000 and 1,600,000 HIV-1 RNA copies/ml, respectively.

Plasma samples C and D were used to generate two molecular

clones (clone 1 and clone 2) for studies on UDPS sensitivity and in

vitro PCR recombination. These two clones were chosen on the

basis of sequence dissimilarity with the aim to maximize the

number of informative sites in the pol amplicon of interest

(Figure 1).

Generation of molecular clones
A 1320 base pair fragment of the HIV-1 pol gene was amplified

with FastStart High Fidelity System (Roche, Penzberg, Germany)

using the primers JA269 and JA272 [9]. The amplicon was cloned

into a TOPO-TA cloning vector (Invitrogen, Carlsbad, California,

US) and chemically competent TOP10 cells were transformed

using heat. White colonies were picked and PCR amplified using

JA269 and JA272 and sequenced with Sanger sequencing using

Big Dye termination kit 3.1 (Applied Biosystems, Foster City,

California, US) according to the manufacturer’s instructions.

Ultra-deep pyrosequencing (UDPS)
We performed PCR amplification and UDPS on a 167 base

pair (bp) fragment of the HIV-1 pol gene as previously described

[9]. The data analysis was focused on a 120 bp fragment within

the amplicon, which corresponds to amino acid positions 180 to

219 of the reverse transcriptase (RT). Briefly, viral RNA was

extracted from 200 ml plasma using RNeasy Lipid Tissue Mini Kit

(Qiagen, Hilden, Germany) and [21] the QIAvac 24 vacuum

manifold (Qiagen, Hilden, Germany). cDNA synthesis was done

using primer JA272. The number of HIV-1 cDNA viral templates

subjected to UDPS was quantified using an in-house limiting

dilution PCR method [9].

Nested PCR was performed with outer primers JA269+JA272

followed by inner primers JA329+JA331 as previously described

[9]. The 59-ends of the forward and reverse inner primers included

the specific UDPS adaptors A and B, respectively, as well as 4-

nucleotide sample-specific tags, which were used to separate

sequence reads from different samples. The PCR amplicons were

purified using the GE PCR purification kit (GE health care,

Pollards Wood, United Kingdom) and the DNA concentrations

and purity were determined using Nanodrop (Thermo Fisher

Scientific, Waltham, US) and the Agilent 2100 Bioanalyzer

(Agilent Life Science, Santa Clara, California, US).

After quality controls, the PCR amplicons were sequenced in

both forward and reverse direction on the 454 Life Science

platform (GS-FLX, Roche Applied Science) according to the

manufacturer’s instructions. The two physical fields on the

Picotiter plate were used and eight samples were mixed and

analyzed in each field. We aimed at obtaining approximately

20,000 sequence reads from each sample. After UDPS, the read

from different samples were identified by in-house scripts and the

sample-specific sequence tags. The characteristics of the samples

and basic information about the UDPS are summarized in

Table 1.

Repeatability of variant quantification
The plasma samples A and B were analyzed two times each.

The RNA extraction, cDNA synthesis and PCR were performed

Figure 1. Nucleotide sequence alignment of clone 1 and clone 2. The clones cover position 3093–3206 in HXB2 and were used for the mixing
experiments. The clones differed by 13 informative sites that are highlighted in gray.
doi:10.1371/journal.pone.0022741.g001
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on two separate time points and sequenced in the same UDPS run

[9]. The number of input cDNA templates for sample A and B

were approximately 40.000 and 10.000, respectively.

Sensitivity of detecting minority variants
Clone 1 and clone 2 were used to generate two mixtures with

99.5:0.5 and 99.95:0.05 ratios. The two mixtures were used for

PCR amplification and UDPS. For both experiments we used

approximately 30,000 templates (determined using Nanodrop) as

input in the outer PCR reaction. We aimed at obtaining a total of

20,000 reads per sample. Thus, we attempted to detect 100 and 10

molecules, respectively, of the minor variant against a background

of approximately 20,000 molecules of the major variant.

Primer-related selective amplification
To determine the possible effect of selective amplification of

certain variants due to primer-related selective amplification,

plasma sample B was re-extracted and re-analyzed with an

alternative set of nested PCR primers, JA270+JA271 and

JA323+JA332, which amplify a 316-bp fragment that completely

encompasses the 167-bp region targeted by the first primer set.

None of the alternative primers overlapped with the original

primers. Both primer sets were designed to hybridize to conserved

regions of the HIV-1 pol gene and included wobbled bases to further

minimize the risk of selective amplification of certain viral variants.

We performed cDNA synthesis with JA271, CCACTAAYTTCTG-

TATRTCATTGAC (position 3309–3334 in HXB2) and a nested

PCR with outer primers JA271+JA270, GCTTCCCTCARAT-

CACTCTTA (position 2248–2268 in HXB2), and inner primers

JA323, TGGAAAGGATCACCAGCRATA (position 3006–3026

in HXB2) and JA332, GCTGTACTGTCCATTTRTCAGGATG

(position 3276-3252 in HXB2). The inner primers contained the

same UDPS adaptors and sample tags sequences as described

above. Both the outer and inner PCR cycling profiles were as

follows: 94uC for 2 min, 30 cycles of 94uC for 20 sec, 50uC for

20 sec and 72uC for 1 min 30 sec, followed by a final extension at

72uC for 6 min and finally at 4uC until used. The input number of

templates for UDPS was approximately 10,000 molecules.

Evaluation of in vitro PCR recombination
Clone 1 and clone 2 were mixed in a 50:50 ratio before PCR

amplification and UDPS. The clones differed by 13 informative

sites. We analyzed two mixtures with 100,000 and 10,000 DNA

templates (determined using Nanodrop, Thermo Fisher Scientific,

Waltham, US), respectively, as input in the outer PCR. A

recombinant was defined as a sequence that had replacement of at

least two signature nucleotides irrespective of whether they were

adjacent or not (Figure 1).

Data cleaning
The data cleaning was performed using in-house filtering scripts

(Jernberg et al., manuscript in preparation) as outlined previously

[9] and in Table S1. The data cleaning was designed to remove

reads with probable sequencing errors and was based on UDPS

analyses of an HIV clone. The filters used for each experiment and

the number of reads retained in each step are shown in Table S1.

Briefly, the scripts filter: 1) All reads with low similarity to the

corresponding Sanger sequence (in this study we used an 80%

similarity cut-off). 2) Reads that did not cover the entire region of

interest (amino acids 180–219 in RT). 3) Reads containing

ambiguous bases (Ns). Remaining reads were imported into the

GS amplicon software (Roche, Penzberg, Germany) and aligned.

4) The alignment was extracted and cut to the region of interest

(amino acid 180–219). The sequence data were compressed by

scripts that identified unique sequence variants in forward and

reverse direction and counted the number of reads per variant.

Additional scripts filtered: 5) Reads with out-of-frame indels or

stop codons while retaining reads with in-frame indels (i.e. 63, 6, 9

nucleotides). 6) The alignments were manually inspected and any

remaining variants with frameshifts or stop codons were removed.

7) In the experiments on patient plasma samples we used a

previously defined cut-off value (0.11% [0.09–0.21%]) for

detection of high-confidence variants [9]. Only the high-

confidence variants that were detected in both forward and

reverse direction were retained for further analysis. However, in

the experiment where the influence of sequence direction was

evaluated, we also assessed variants that only were observed in one

sequence direction.

Statistical analyses
We investigated repeatability of variant quantification using

Bland-Altman analyses and plots [22]. The number of reads per

variant was log transformed and the number of reads in the second

(repeat) measurement was weighted by the number of reads in the

first measurement. The Bland-Altman plot shows the average of

each paired measurement on the x-axis and the difference between

the paired measurements on the y-axis. The standard deviation

(SD) of all the individual differences is calculated as a measure of

repeatability. The limits of agreement are defined as the mean

difference 61.96 SD and represent the range within which

approximately 95% of the differences will lie if they are normally

Table 1. Characteristics of the samples and basic information on UDPS.

Experiment Sample and run characteristics Approx. no. of templates No. of UDPS reads after data cleaning

Repeatability Plasma A, run 1 40,000 26,846

Plasma A, run 2 40,000 23,376

Plasma B, run 1 10,000 14,614

Plasma B, run 2 10,000 11,934

Sensitivity Clone mix 0.5:99.5 30,000 23,668

Clone mix 0.05:99.95 30,000 25,622

Primer-related selective amplification Plasma B – alt. primers 10,000 8,858

In vitro recombination Clone mix 50:50 100,000 20,469

Clone mix 50:50 10,000 19,245

doi:10.1371/journal.pone.0022741.t001
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distributed (which they were for our data following log

transformation). We also calculated 95% confidence intervals

(CI) of the limits of agreement according to Bland and Altman

[22]. In addition, we calculated variance-to-mean ratios to allow

comparisons with results published by Poon et al [13].

The difference between the number of recombinant variants in

the 10,000 and 100,000 template experiments was compared using

chi-square statistics. We compared the number of unique variants,

rather than the total number of recombinant reads, since each

recombinant will be PCR amplified and therefore may appear in

one or several reads depending on in which PCR cycle they were

generated.

Results

The data cleaning was performed in a hierarchical manner by

an in-house method (Jernberg et al., manuscript in preparation) as

outlined previously [9]. During this process we discarded on

average 20% (range 8–34%) of the reads per sample. Detailed

information on the cleaning procedure and the number of reads

retained after each cleaning step is shown in Table S1.

High repeatability of variant quantification
To evaluate the repeatability of frequency estimates of HIV-1

variants using UDPS, we repeated the complete experimental

protocol for two patient plasma samples (sample A and sample B).

Thus, these experiments evaluated the repeatability of the RNA

extraction, cDNA synthesis and PCR. The analyses of repeat-

ability were done on ‘‘high-confidence’’ variants, which had been

identified using a data cleaning procedure that removed probable

sequencing artifacts (see Materials and Methods and [9]). For

sample A, a total of 27 variants were detected in both run A:1

and run A:2. The least abundant variant that was detected in

both runs represented on average 0.11% of the viral population

(Table 2). In addition, there were six high-confidence variants

that were unique to run A:1, i.e. not detected in run A:2. These

unique variants represented between 0.11 and 0.23% of the

population. Similarly, there were four unique variants in run A:2

that represented between 0.12% and 0.13% of the population. In

sample B, 15 variants were identified in both run B:1 and run B:2

and the least abundant variant represented on average 0.17% of

the population (Table 2). In addition, eight unique variants were

found in run B:1 (representing between 0.15 and 0.27%) and

seven unique variants were found in run B:2 (representing

between 0.12 and 0.21%).

Figure 2 shows a Bland-Altman plot of the repeatability of

quantification of virus variants in sample A and B [22]. Individual

Bland-Altman plots of sample A and sample B gave similar results

(data not shown). The mean log10 difference between the two

measurements was 20.02 (95% CI: 20.08–0.05). The upper limit

of agreement was 0.39 (95% CI: 0.22–0.50) and the lower limit of

agreement was 20.42 (95% CI: 20.53–20.31). This means that a

repeated measurement would have a 95% likelihood to lie

approximately within a factor 60.5 log10 of the initial estimate.

Thus, a variant that was found in 100 reads in the first

measurement had a 95% likelihood to lie between 32 and 320

reads in the second measurement. Somewhat unexpectedly there

was no relationship between the repeatability of quantification and

the abundance of the variants (Spearman R = 20.054, p = 0.73).

In a previous publication Poon et al. [13] investigated UDPS

repeatability by calculations of the variance-to-mean ratios. To

allow comparison with these results we did similar calculations.

The variance-to-mean ratio for sample A ranged from 2.561022

to 4.761027 and had a median value of 1.161024. For sample B,

the variance-to-mean ratios ranged from 5.961022 to 6.761026,

with a median value of 8.261024. The average variance-to-mean

ratio in the two experiments was 3.261024.

We also investigated the agreement of quantification in forward

vs. reverse reads for the 27 and 15 variants observed in sample A

and sample B, respectively. A Bland-Altman analysis of the

combined data from the repeated measurement of sample A and

sample B showed that the mean log10 agreement between the

forward and reverse measurements was 0.03 (95% CI: 20.01–

0.08) (Figure 3). The upper limit of agreement was 0.35 (95% CI:

0.26–0.43) and the lower limit of agreement was 20.28 (95% CI:

20.36–20.20). This is similar to the repeatability in the re-analysis

experiments described above. However, in contrast to these

experiments, the agreement between forward and reverse analyses

was higher for common variants than for rare variants (Spearman

R = 0.63, p,0.001). We also studied variants that were found only

in one direction (forward or reverse). Together these variants

represented on average 3.8% (range 2.0 to 4.9%) of the total

amount of reads in each direction, but all such variants were rare

and constituted between 0.07 and 0.19% of the virus population

(Table S2).

Collectively these results showed that we were able to detect

viral variants that represented down to 0.11% of the virus

population. The repeatability was good for both major and minor

variants. Thus, the experimental noise introduced during the RNA

extraction, cDNA synthesis and PCR was low. However, there was

Table 2. Limit of detection of repeatedly detected virus variants in samples analyzed using original primers and alternative PCR
primers.

Sample
No. of variants
detected in both runs

Lowest proportion (%) of variants
detected in both runs (run 1, run 2)

Highest proportion (%) of variants
detected in only one run

Plasma A, run 1 27 0.11 (0.11, 0.11) 0.23
0.13

Plasma A, run 2

Plasma B, run 1 15 0.17 (0.18, 0.16) 0.27
0.21

Plasma B, run 2

Plasma B, run 1 14 0.19 (0.16, 0.21) 0.40
0.34

Plasma B – alt. primers

doi:10.1371/journal.pone.0022741.t002

Performance of Ultra-Deep Pyrosequencing

PLoS ONE | www.plosone.org 4 July 2011 | Volume 6 | Issue 7 | e22741



a stochastic effect that primarily affected the ability to consistently

detect rare variants.

Minority variants can be detected
The error frequency of our experimental system has previously

been shown to be 0.11% (range 0.09–0.21%) at the variant level

[9], which means that theoretically it should be possible to detect

a single molecule of one variant against a background of

approximately 1000 molecules representing other variants. In

line with this the repeated UDPS analyses of plasma samples A

and B above indicated that minority variants constituting

.0.27% could be detected and reproducibly quantified. To

further investigate the lower limit of detection of viral variants we

performed UDPS on two molecular clones that had been mixed

at ratios of 99.5:0.5 and 99.95:0.05. In the first experiment (ratio

99.5:0.5) we obtained 23,668 reads of which 524 (2.2%) were the

minority variant. In addition, 21 recombinant reads were

identified, corresponding to 0.089%. In the second experiment

(ratio 99.95:0.05), 79 (0.31%) of the total 25,622 reads were

found to be the minority variant. Here, we only identified a single

recombinant sequence read, representing 0.0039% of the total

population. These data suggest that minor HIV-1 variants that

constitute as little as 0.05% of the viral population can be

detected by UDPS, but we cannot rule out the possibility that our

artificial mixtures contained slightly higher proportions of the

minor virus variant than intended.

Potential selective PCR amplification as a result of primer
mismatch

The effect of primer design was evaluated by re-extracting

sample B and performing cDNA and PCR with an alternative set

of nested primers. Fourteen high-confidence variants were found

in both experiments and the least abundant variant represented

0.19% of the population (Table 2). In addition, 12 variants

(representing between 0.15 and 0.40%) were only found when the

original primer set was used and eight variants (representing

between 0.12 and 0.34%) were only found when the alternative

primer set was used. Figure 4 shows a Bland-Altman plot of the

agreement of variant frequency estimates using the two primer

sets. The mean log10 difference between the forward and reverse

measurements was 20.12 (95% CI: 20.34–0.09). The upper limit

of agreement was 0.64 (95% CI: 0.26–1.01) and the lower limit of

agreement was 20.89 (95% CI: 20.51–21.26). Thus, the limits of

agreement were approximately two times wider than when UDPS

was repeated with the same primers. The main reason for this

difference was that a single variant, which represented 46% of the

virus population in the analyses with the original primers, only

represented 5.6% in the analysis with the alternative primers

(outlier marked by an arrow in Figure 4). This suggests that this

particular variant was selectively under-quantified by the alterna-

tive primers, presumably due to a primer mismatch problem.

Since it was a major variant the estimates of the proportions of all

other variants were also affected. Accordingly, the agreement

Figure 2. Bland-Altman plot showing the repeatability of variant quantification using UDPS. UDPS was performed twice for sample A
and sample B. These paired measurements were combined and the number of reads in the second (repeat) measurement was weighted by the
number of reads in the first measurement. The number of reads per variant was log transformed. The differences in number of reads per variant in the
repeat analyses are plotted against the average number of reads per variant. Horizontal lines are drawn at the mean difference between the two
measurements and at the upper and lower limits of agreement. The 95% confidence intervals are also shown for the mean and the upper and lower
limits of agreement.
doi:10.1371/journal.pone.0022741.g002
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between the analyses with the original and alternative primers was

higher if the problematic variant was omitted (data not shown).

Low level of in vitro recombination
UDPS has been used to study genetic variants and mutational

linkage, but such analyses are only valid if the frequency of in vitro

recombination is zero or low. To determine the in vitro

recombination frequency in our experimental system we mixed

two molecular clones in a 50:50 ratio before PCR amplification

and UDPS. The two clones differed by 13 informative sites that

were distributed over the fragment (Figure 1). In addition, to study

if the frequency of in vitro PCR recombination may be influenced

by the number of target molecules we tested both 100,000 and

10,000 HIV DNA templates as input in the outer PCR.

In the experiment where 100,000 input HIV DNA templates

were used, we identified 182 recombinant reads among a total

20,469 reads, which corresponds to an in vitro recombination

frequency of 0.89%. Based on the signature nucleotides, the

recombinant reads consisted of 12 single recombinants, which

represented between 0.005 and 0.25% of all reads, and four double

recombinants, which represented 0.005% each (Figure 5A). When

10,000 templates were used as input we found 56 recombinant reads

among a total 19,245 reads, which corresponds to a recombination

frequency of 0.29%. There were 10 single recombinants (repre-

senting between 0.005 and 0.07%) and two double recombinants

(representing 0.01% and 0.005%) (Figure 5B). In the experiment

with 100,000 and 10,000 input molecules, we identified a few

possible triple and quadruple recombinants ranging from 0.005 to

0.01% (Figure 5A and Figure 5B). However, it is difficult to

determine if these reads have been generated by recombination,

substitution or a combination of both. The difference between the

numbers of recombinant variants in the 100,000 template

experiment compared the 10,000 template experiment was not

statistically significant (p = 0.47, chi-square test). Taken together,

these results showed that the in vitro recombination frequency was

low in our experimental system, which allows us to study mutational

linkage and identify genetic variants.

Discussion

In this study we have evaluated the sensitivity, repeatability,

primer-related selective amplification and in vitro PCR recombi-

nation of a UDPS protocol that targets a 120 base pair fragment of

the HIV-1 pol gene. We found that our system was capable of

delivering repeatable results for variants representing .0.27% of

the population. The repeatability of quantification of viral variants

was approximately 60.5 log. A similar degree of agreement was

observed between forward and reverse reads. Furthermore, our

results indicate that the choice of primers may be important when

analyzing highly variable sequences, like HIV-1, due to the risk of

primer-related selective amplification. Finally, the in vitro recom-

bination rate during PCR was low, suggesting that our UDPS

Figure 3. Bland-Altman plot showing the agreement of variant quantification in forward and reverse direction. The data from the
paired measurements from sample A and sample B were combined and the number of reads in the reverse direction was weighted by the number of
reads in the forward direction. The number of reads per variant was log transformed. The differences in number of reads per variant in forward and
reverse direction are plotted against the average number of reads per variant. Horizontal lines are drawn at the mean difference between the two
measurements and at the upper and lower limits of agreement. The 95% confidence intervals are also shown for the mean and the upper and lower
limits of agreement.
doi:10.1371/journal.pone.0022741.g003
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Figure 4. Bland-Altman plot showing the agreement of variant quantification using two primer sets. Templates for UDPS were prepared
using original and alternative PCR primers. The number of reads in the second (alternative primers) measurement was weighted by the number of
reads in the first measurement. The number of reads per variant was log transformed. The differences in number of reads per variant using the two
primer sets are plotted against the average number of reads per variant. Horizontal lines are drawn at the mean difference between the two
measurements and at the upper and lower limits of agreement. The 95% confidence intervals are also shown for the mean and the upper and lower
limits of agreement.
doi:10.1371/journal.pone.0022741.g004

Figure 5. Analysis of in vitro PCR recombination. The informative sites of clone 1 and clone 2 (see Figure 1) are shown in italics in the upper part
of the figure. Below are identified recombinant reads presented for the experiment with 100,000 input template molecules (panel A) and 10,000 input
template molecules (panel B). The proportion (Prop. %) of each recombinant is also shown.
doi:10.1371/journal.pone.0022741.g005
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method can be used to study genetic variants and mutational

linkage.

To evaluate the repeatability of frequency estimates of HIV

variants, we performed repeated UDPS analyses of two patient

plasma samples. We found that a repeated measurement would

have a 95% likelihood of lying within 60.5log10 of the initial

estimate. Interestingly, the repeatability was similar for rare and

more abundant variants. We also compared our results with those

of Poon et al. [13], who used variance-to-mean ratios to investigate

repeatability. The average variance-to-mean ratio in our exper-

iments was 3.261024, which is more than 20 times lower than that

estimated by Poon et al. [13]. In addition, they reported that some

variants that represented 1–5% of the virus population in one

analysis were not detected when the analysis was repeated.

Similarly, Gianella et al. recently reported a low level of

repeatability in detection and quantification of minority drug

resistance mutations [23]. We repeatedly identified all variants

that represented .0.27% of the virus population. The reason for

the differences in repeatability between these studies and ours is

not clear, but could be due to differences in both laboratory

methodology, sequencing approach and data cleaning. For

instance Gianella et al. used a shotgun sequencing approach,

which generally gives lower sequence depth (coverage) than

amplicon sequencing. In summary, we found that our system had

good repeatability, which indicates that the experimental noise

introduced during RNA extraction, cDNA synthesis, PCR and

UDPS was low. However, and as illustrated above, the

performance of our UDPS system cannot be directly translated

to other UDPS systems, since both the error rate and the

reproducibility depends on many factors such as experimental

methodology, amplicon length, UDPS platform and data cleaning

strategy. Furthermore, our cleaning strategy has been optimized

for this amplicon, but the filters and their settings can be changed

by the user to obtain a less stringent data cleaning if desired. In

fact, we recommend that each step in the cleaning process should

be optimized for each gene region analyzed and according to the

purpose of the analyses.

Analysis of bidirectional UDPS has been described in only a few

studies [9,11,24], in which variants were considered ‘‘true’’ if they

were present in both sequence directions. Here, we have studied

the effect of sequence direction on variant abundance estimates.

We found that the difference in variant abundance between

forward and reverse sequence direction was relatively small and

approximately as great as the difference between UDPS runs.

However, in contrast to these experiments, the agreement between

forward and reverse analyses was higher for common variants than

for rare variants. In addition, some variants only exceeded our cut-

offs for high-confidence variants in one sequence direction. These

variants would be considered ‘‘true’’ if sequencing was done in

only one direction (forward or reverse) or if the requirement that a

variant need to be present in both forward and reverse direction

would be ignored. It is not surprising that there is some

stochasticity in the ability to detect rare variants that have an

abundance that is close to the detection limit.

We tested the ability of our UDPS methodology to identify

minority variants representing 0.5 and 0.05% of the population

using mixing experiments of molecular clones. The minor variant

was identified in both experiments, but the proportions were

somewhat higher than intended, i.e. 2.2% and 0.31% respectively.

This may be a stochastic effect, but we cannot exclude the

possibility that minority strains may have been systematically

overestimated for instance if major variants have reached the PCR

plateau earlier than rare variants. Artificial HIV-1 mixtures of 1%

and 0.1% have been analyzed by Tsibris et al. [12] and Zagodi

et al. [20], respectively. Our results are in agreement with those by

Tsibris et al. and Zagordi et al., and suggest that it is possible to

detect minor variants of the HIV-1 population, at least when the

minor variant is genetically clearly distinguishable from the major

variants such as in the case of superinfections.

We also evaluated the potential influence of primer-related

selective amplification on estimation of variant abundance using

alternative primer sets that targeted the same region in the pol

gene. Despite our efforts to design two optimal sets of nested

primers that targeted highly conserved primer binding sites and

included wobbled nucleotides, the estimations of variant abun-

dance differed between the two primer sets. We were able to detect

variants down to 0.2% of the viral population with both primer

sets. However, one variant, which was estimated to represent 46%

using the original primers, was detected in only 5.6% of the reads

obtained with the alternative primers. As a result the limits of

agreement was approximately two times wider than when the

sample was re-analyzed with the original primer set. This suggests

differential amplification of certain HIV-1 variants, presumably

due to primer- related selective amplification. Thus, optimal

primer design may be very important when UDPS is used to

analyze the population structure in divergent target sequences, like

HIV-1 populations. One could even speculate if multiple primer

sets should be used in order to fully and correctly characterize

HIV-1 variation.

We found that the frequency of in vitro recombination was

0.89% and 0.29% when 100,000 and 10,000 templates were used

as input, respectively. Most recombinants were represented by a

very low number of reads and most of these variants would be

removed by our data cleaning strategy since their abundances

were lower than our cut-off for high-confidence variants (0.11%)

[9]. The frequency of in vitro recombination that we estimated was

higher than reported by Tsibris et al. [12] (0.11 to 0.15%) but

lower than that reported by Zagordi et al. [20](1.9%). However,

while we used 50:50 clonal mixtures, Tsibris et al. used an 89:10:1

mixture and the likelihood of in vitro recombination during PCR

should be higher with 50:50 mixtures. The higher in vitro

recombination frequency reported by Zagordi et al., who used a

mixture of 10 clones in proportions of 0.3 to 30%, is probably due

to a longer amplicon, but could also be due to differences in

laboratory methodology or data cleaning strategies. It is likely that

most in vitro recombinants are generated during PCR and

consequently in vitro recombination frequency will probably

increase if larger amplicons are analyzed. This is relevant when

longer amplicons are analyzed using the Titanium platform that

can analyze up to 500 bp long fragments and future platforms that

will be able to analyze even longer fragments. However, it may be

possible to reduce PCR-induced recombination by lowering the

cycle number, increasing the extension time and decreasing the

initial template concentration [16,17,19,20]. Furthermore, the

choice of DNA polymerase may be of importance [20]. Here, we

have shown that in vitro recombination is low for our PCR

methodology. However, we found individual recombinants

representing up to 0.25% of the population, which implies that

in vitro recombination cannot be excluded for rare variants.

One limitation of this study should be recognized. The number

of samples included in the study was limited and some of the

experiments were not repeated. However, we believe the results

show the capacity of our UDPS system and the results also

highlight the importance of including control experiments in

UDPS studies.

In conclusion, we have performed a series of experiments to

evaluate the performance of UDPS analysis of a region of the

HIV-1 pol gene. The results show that the repeatability was good
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for major as well as minor variants in patient plasma samples. For

rare variants in vitro recombination and effects of sequence

direction needs to be considered. Finally, the design of primers

for PCR amplification is of special importance during UDPS, since

primer-related selective amplification can skew frequency esti-

mates of genetic variants. The results are of relevance for future

research and clinical use of the UDPS technology.
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