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Retinoblastoma (Rb) is a primary neuroectodermal 
tumor caused by immature retinoblasts, and accounts for 3% 
of all childhood cancers. It is the most common childhood 
intraocular malignancy [1]. The disease usually manifests as 
unifocal or multifocal tumors involving one or both eyes [2]. 
There are currently many effective modalities for Rb treat-
ment, including focal treatments (laser therapy, cryotherapy, 
and radiotherapy), systemic chemotherapy, innovative new 
drug delivery methods (intravitreal and intra-ophthalmic 
chemotherapy), and enucleation to prevent extraocular exten-
sion and metastases and subsequent fatality [3]. The treatment 
of recurrent tumors depends on the extent of the disease, the 
laterality and number of tumor foci (unifocal, unilateral, 
multifocal), the size and location of the tumor, the presence 
of vitreous and subretinal seeding, the age and general health 
condition of the child, and the previous treatments. Both the 
International Intraocular Retinoblastoma Classification and 
Intraocular Classification of Retinoblastoma classification 
systems are used worldwide as the main intraocular Rb clas-
sification methods [4] (Table 1). Due to intra-tumoral hetero-
geneity, chemical-resistant phenotypes, and obstacles in drug 
delivery to the eye, Rb is still a major public health problem 

despite the continuous progress in its treatment, screening, 
and care [5].

In Rb, the tumor might initially be chemosensitive, but 
cross-resistance may ensue in the course of the treatment. The 
cross-resistance mechanisms are complex in nature and may 
differ from individual drug resistance. Drug resistance, espe-
cially in metastatic tumors, directly leads to treatment failure 
[6]. The main target of the traditional anti-tumor chemothera-
peutic agents is cell division affecting the dynamics of the 
microtubules responsible for the mitotic spindle and DNA 
replication [7].

It is better to conduct clinical studies on the optimiza-
tion of combination therapies (a treatment modality that 
combines two or more therapeutic agents) with a cytotoxic 
chemotherapeutic agent, another molecular targeting agent, 
or epigenetic-based or immune therapy [8]. The integration 
of anti-cancer drugs increases the effectiveness of the treat-
ment compared to monotherapy due to critical pathways that 
basically decrease drug resistance. Moreover, tumor cells are 
often unable to adapt to the simultaneous toxic effects of two 
therapeutic agents combined [9].

However, combination therapies have limitations that 
should be considered in clinical trials. The design of combi-
nation trials may require pharmacodynamics studies and the 
collaboration of more than one pharmaceutical company to 
measure more than one biochemical or physiologic effect [10].
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Advances in the development of targeted therapy and 
biomolecular tumor pathways have improved the survival 
rates in developed countries [11]. Despite the fact that devel-
oping countries have lower Rb survival rates, the horizon in 
such countries is promising, and the results are encouraging 
[12].

Advances in biomedical research have led to a better 
understanding of the biology of tumors through the study of 
genomics, proteomics, epigenetics, and the microenviron-
ment. New research is thus constantly being sought to obtain 
newer targeted treatment options with minimal complica-
tions and maximum effectiveness against Rb. The US Food 
and Drug Administration (FDA) has recently approved the 
clinical use of targeted therapeutic agents for various types 
of cancer [13].

Targeted therapeutic agents exert their anti-cancer 
effects through a variety of mechanisms, including inhibi-
tion of proliferation, induction of apoptosis, suppression of 
metastasis, regulation of immune function, and reversal of 
multi-drug resistance [14]. Considering the young ages of Rb 
patients and the rarity of the disease, the behaviors of isolated 
cell cultures need to be studied to understand the biology 
of tumor cells in the body. Cell cultures are used to create 
new diagnostic tests and new treatments for Rb. The most 
important Rb cell lines primarily used in Rb research include 
Y79 (the first Rb cell line), Weri, Rb355, Rb116, SNUOT-Rb1, 
and HXO-Rb44 [15–20]. In this article, the successes and 
challenges of incorporating molecularly targeted therapies, 
tubulin-modifying molecules, immunotherapy, high-mobility 
group A (HMGA) protein, vitamin D analogs, angiogenesis 
inhabitation, neurotransmitter pathway disruption, arsenic 
trioxide, EDL-155, gene therapy, local drug delivery systems, 
new hydrogel implant, ncRNAs, aqueous humor markers, 
exosomes, and MLN4924 (pevonedistat) in the management 
of Rb are highlighted (Table 2).

Searches for relevant articles were conducted at the 
PubMed, Scopus, Embase, and Google Scholar electronic 
databases. The searches were limited to English articles. 
The mesh term keywords that were used for the electronic-
database searches were “advances OR treatment OR targeted 
therapies” AND “Retinoblastoma.” The included articles 
reported original studies and new Rb treatments.

DISCUSSION

Molecularly targeted therapy: Molecularly targeted therapies 
are relatively new, and many questions about how and when 
to combine them in the first-line Rb treatment remain unan-
swered [21]. The first tumor suppressor gene to be identi-
fied and cloned was RB1, but there is currently no effective 

molecularly targeted treatment for Rb [22]. However, there 
has been significant progress in the understanding of tumor 
biology, leading to the discovery and development of small 
molecules for the treatment of Rb, including new targeted 
therapies such as MDMX-p53 response inhibitors (nutlin-3a), 
spleen tyrosine kinase (SYK) inhibitors, histone deacetylase 
(HDAC) inhibitors [3], and CEP1347 (small-molecule kinase 
inhibitor) [23].

MDMX-P53 response inhibitors—Nutlin-3A 
was discovered by Vassilev et al. [24] in 2003 to inhibit 
p53-murine double minute (MDM2/MDM4) interaction when 
they screened a chemical library. It is a cis-imidazole analog 
involved in the activation of p53, a tumor-inhibiting protein, 
and attenuates tumor cell viability both in vivo and in vitro 
[25]. Nutlin-3A is currently being studied in a phase 1 clinical 
trial for Rb treatment [25,26]. Subconjunctival nutlin-3A in a 
mouse model of Rb has a reduced tumor burden especially in 
combination with topotecan (TPT) [25]. However, it should be 
noted that due to the blood-retinal barrier in Rb, the effective 
entry of many drugs, such as nutlin-3A, is hindered [25,27].

Epigenetic mechanisms: SYK and HDAC inhibition—
The proto-oncogene tyrosine-protein kinase (also known 
as spleen tyrosine kinase [SYK]), although not normally 
expressed in the human retina, is upregulated in 100% of 
Rb tumor specimens and leads to tumor cell survival [28]. 
Inhibition of SYK by BAY-61–3606 and R406 could result in 
tumor cell death in Rb, and an in vivo study of subconjunc-
tival BAY-61–3606 injection with systemic TPT in orthotopic 
xenograft mice has shown its effectiveness in inhibiting Rb 
cell proliferation [28]. In addition, recent studies have demon-
strated that the mediators of SYK are the B-cell chronic 
lymphocytic leukemia/lymphoma 2 (Bcl-2) protein families 
[29].

Bcl-2 is a protein known to prevent apoptosis and to 
help in cell viability. Bcl-2 inhibitors (especially MCL-1 
inhibitors) can be a novel therapeutic candidate due to their 
upregulation in Rb, and are also being developed as a treat-
ment for other cancers [30]. HDAC inhibitors are another 
class of targeted anti-cancer therapies currently being inves-
tigated in phase 1 clinical trials that may be effective as a 
targeted treatment for Rb [31]. Several properties of HDAC 
inhibitors make them potential candidates for the treatment 
of Rb. First, the epigenetic profile of Rb exhibits dysregula-
tion compared to normal retinoblasts [28]. Second, HDAC 
inhibitors have selective cytotoxic effects on tumor cells, and 
tumor cells with dysregulated E2F1 activity are sensitive to 
HDAC inhibition [32]. Finally, numerous studies have shown 
that HDAC inhibitors have synergistic effects with other 
agents in the treatment of Rb [28]. Cells with higher E2F1 

http://www.molvis.org/molvis/v28/130
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activity and with overexpression of pro-apoptotic agents are 
highly sensitive to HDAC inhibitors. Rb cells have high E2F1 
activity, and Rb-derived cell lines are particularly sensitive 
to HDAC-induced apoptosis. Recent studies have suggested 
that HDAC inhibitors may specifically inhibit Rb tumor cell 
proliferation and therefore have less systemic toxicity than 
other chemotherapeutic agents [33].

Small-molecule kinase inhibitor: CEP1347 is a promising 
candidate for cancer stem cell-targeted therapy [34]. It is a 
semi-synthetic compound that protects various nerve cells 
against various insults leading to apoptosis, and subsequently 
improves the survival of dopamine neurons [35].

CEP1347 is a safe drug that inhibits mixed-lineage 
kinases and activates apoptotic pathways in the pathogenesis 
of Parkinson’s disease [34]. It selectively inhibits MDM4 
expression and activates the p53 pathway, leading to anti-
proliferative effects on the Rb cells [23]. Currently, none of 

the drugs acting on Rb by activating p53, including nutlin-3A, 
have a strong clinical potential. However, as CEP1347 may be 
able to pass through the blood-retinal barrier, it is a potential 
candidate for the treatment of Rb and other cancers in which 
the P53 gene is intact [23].

Tubulin-modifying molecules: Vincristine (VCR), also known 
as leurocristine and Oncovin [36], is a first-line chemore-
duction agent for Rb that was first isolated in 1961 [37]. Its 
mechanism of action is inhibition of microtubule assembly 
[38]. Therefore, Rb tumor cells may show similar sensitivity 
to other tubulin-modifying compounds. Some studies have 
revealed that VCR in combination with TPT [39] and carbo-
platin (CBP) [40] is effective for the treatment of advanced 
intraocular Rb. Chemotherapy is the standard treatment for 
Rb, but chemotherapy agents such as VCR, etoposide (ETP), 
and CBP may lead to drug resistance and treatment failure 
[41].

Table 2. New advances in management of retinoblastoma.

New therapies Examples of applications
Molecularly targeted therapies MDMX-p53 response [3,25,26], 

spleen tyrosine kinase (SYK) inhibitors [3,28,29], histone deacetylase (HDAC) inhibitors 
[3,28,33], 
CEP1347 (small-molecule kinase inhibitor) [23]

Tubulin Modifying molecules Paclitaxel (PTX) [44]

Immunotherapy
CAR-T cell therapy [53] 
Signal transducer CD24 [59] 
Nucleolin (NCL) protein [61,62]

High mobility group A (HMGA) 
protein HMGA aptamer (NCLAb–HMGAap) [68,69]

Vitamin D analogs Calcitriol [71,79,80]

Angiogenesis inhabitation Celastrol nanomicelles (CNMs) [87] 
Ribavirin [20]

Neurotransmitter pathway 
disrupting Transfection of AP-2α and AP-2β expression into Rb cells to induces apoptosis [98]

Arsenic Trioxide Arsenic trioxide (white arsenic or As2O3; ATO) [18]
EDL-155 an isoquinoline derivative [102]

Gene therapy HSV- TK / GCV(Herpes Simplex Virus-Tyrosine Kinase / Ganciclovir) [19,104] 
Oncolytic adenovirusVCN-01 [106]

Local drug-delivery systems
Poly lactic-co-glycolic acid (PLGA) [117,118] 
Gold-based nanoparticles [126,127] 
Dendrimer [133]

New hydrogel implant Local drug delivery [134]

Non- coding RNAs (ncRNAs) lncRNAs [139-151] 
miRNAs [158-161]

Aqueous humor markers circulating tumor cell (CTC) and cfDNA-based fluid biopsies [171,172]

Exosomes nanoparticles derived from cell membranes containing RNA, microRNA, lipids and proteins 
[175]

MLN4924 (Pevonedistat) Pevonedistat, a neddylation inhibitor [180]
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Paclitaxel (PTX) was first obtained from the Taxus 
brevifolia (Pacific yew) in 1971 and was approved for medical 
use in 1993 [42]. It is a taxane that causes marked apoptosis in 
tumor cells by affecting the tubulin dynamics [43].

Paclitaxel is used to treat breast cancer, ovarian cancer, 
and small cell lung cancer. Recent studies have demonstrated 
its potential therapeutic effects in Rb [44]. Its mechanism of 
action is inactivation of the intracellular proteins necessary 
for cell survival and function, which results in cell death 
[45]. Subconjunctival injection of paclitaxel effectively 
inhibits intraocular tumor burden in the human luteinizing 
hormone  (β subunit; LH beta) Tag Rb model. The main 
barriers to the use of paclitaxel as an Rb chemotherapy 
regime are its toxicity [46] and its formulation [47].

Immunotherapy:

CAR T-cell therapy—Chimeric antigen receptor T 
cells (CAR T cells) are T cells that have been genetically 
engineered to produce chimeric or fusion proteins through 
recombinant DNA technology on the T cells for use in 
immunotherapy. In CAR T immunotherapy, the T cells are 
modified to identify and more effectively target and destroy 
tumor cells. CD171 (neural cell adhesion molecule L1), also 
known as L1CAM, was first identified in 1984 by Rathjen 
and Schenker in post-mitotic mice neurons cells [48]. L1CAM 
is expressed in Rb cells and plays an important role in the 
adhesion-mediated proliferation and chemoresistance of 
tumor cells [49]. GD2 (a b-series ganglioside disialogan-
glioside) is expressed in tumors of neuroectodermal origin, 
including human melanoma, neuroblastoma, and Rb [50,51], 
with a limited expression in natural tissues [52]. CD171- and 
GD2-specific CAR T cells are highly activated by Rb cell 
collision and are highly efficient against Rb cells in vitro 
depending on the expression of the target antigen. CAR T-cell 
therapy can improve the treatment strategies for metastatic 
Rb.

The antigens on the targeted tumor cells are destroyed 
upon treatment with CAR T cells, but sequential antigen 
modification in CAR T-cell therapy increases its ability to kill 
Rb cells. This approach provides the basis for in vivo studies 
to select the most useful regimens and target compounds for 
the development of CAR T-cell therapy for Rb [53].

Signal transducer CD24—Cluster of differentiation 
24 (CD24) or heat-stable antigen CD24 (HSA) is a highly 
glycosylated protein that binds to membrane lipid raft micro-
domains through a glycosylphosphatidylinositol anchor [54]. 
Recent studies have shown that CD24 positivity is associ-
ated with poor prognosis in many types of tumors, including 

glioma [55], hepatocellular carcinoma [56], and breast cancer 
[57]. CD24 is highly expressed in Rb and is thus a potential 
indicator or predictor of the severity and prognosis of the 
disease. A positive association between CD24 and the chemo-
therapeutic response of Rb cells to VCR-based chemotherapy 
has recently been found [58]. However, the cellular mecha-
nisms involved in CD24 activity in Rb are still unclear. CD24 
inhibition can reduce autophagy activation via the PTEN/
Akt/mTORC1 pathway, thus increasing VCR sensitivity. It 
facilitates a new therapeutic target for Rb chemotherapy [59].

Nucleolin protein: The nucleolin (NCL) protein is a small 
nucleolar RNA termed U20 that is expressed differently on 
the surfaces of tumor cells, connects ligands, and regulates 
carcinogenesis and angiogenesis [60]. NCL is expressed 
in Rb tumor tissues and cell lines more than in the normal 
retina. Cell proliferation using aptamers (oligonucle-
otide or peptide molecules) is significantly inhibited in Rb 
cell lines (Y79 and WERI-Rb1) [61]. Nucleolin aptamer 
(NCL-APT) treatment downregulates the apoptosis protein 
inhibitors and alters the serum cytokine, tumor miRNA-18a, 
and serum miRNA-18a levels. The effect of NCL-APT and 
locked nucleic acid-modified NCL-APT on the Rb tumor 
was successfully tested using Y79 xenografts of nude mice 
[61,62].

A powerful method of accurately measuring the metabo-
lites in tissues and examining the lipid changes between 
normal and cancerous tissues is lipid imaging using desorp-
tion electrospray ionization mass spectrometry (DESI-MS) 
[63]. It is potentially helpful for studying the biology of retinal 
diseases. DESI-MS can also potently grade cancer stages, 
identify the margin of the surgical tumor, and examine tumor 
lipogenesis [63,64]. DESI-MS is used in NCL-APT therapy 
to observe the changes in the phosphatidylcholine levels in 
Rb cell lines and tumor tissues. Therefore, NCL-APT-based 
targeting is a useful treatment strategy in Rb especially in 
conjunction with DESI-MS for monitoring the therapeutic 
responses [61].

HMGA protein: The HMGA protein is overexpressed in 
Rb and is associated with the invasion and metastasis of 
the disease [65]. Aptamers, siRNAs, or DNA minor groove 
binders such as natropsin can optionally target HMGA 
proteins and mRNA transcripts [66]. siRNA causes apoptosis 
in cancer cells by targeting HMGA2 [67]. Another approach 
is HMGA aptamer therapy in Rb, which reduces cell prolif-
eration by activating the TGFb-SMAD4-mediated apoptotic 
pathway. In addition, combining the HGMA2 aptamer 
with ETP has a synergistic effect [68]. The third option for 
targeting HMGA in Rb cells is NCL antibody-mediated 
delivery of HMGA aptamer (NCLAb–HMGAap) [69]. 
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Recent studies have demonstrated that conjugate NCLAb–
HMGAap has unbeatable features, such as easier synthesis, 
superior conjugation, higher rate of cellular internalization in 
WERI-Rb1 cells through receptor-mediated internalization, 
and increased cytotoxicity (more than 50-fold) in WERI-Rb1 
compared to free HMGA aptamer and NCLAp–HMGA2si 
conjugate [69].

Vitamin D analogs: There is ample evidence of the role of 
vitamin D in cancer growth and development. The mecha-
nism of the anti-cancer activity of vitamin D is regulation 
of apoptosis, angiogenesis, cell differentiation, proliferation, 
and migration [70]. However, the applicability of vitamin D 
therapy to Rb has not been established due to the lack of 
preclinical models and the possibility of vitamin D toxicity 
[71]. In 1966, due to the observation of calcification in 
regressed tumors, Verhoeff proposed the use of vitamin D 
for the treatment of Rb [72]. Since then, several studies have 
assessed the effects of vitamin D analogs on Rb [73–75].

Vitamin D appears to act as a protective agent in the 
eye through ubiquitously expressed receptors, where its local 
production and activation is possible due to the presence of 
the required enzymes [76]. Vitamin D analogs may produce 
anti-tumor effects on Rb by targeting the hedgehog signaling 
pathway [77].

However, the mechanism of vitamin D analogs in the 
treatment of Rb is still unknown and needs further investiga-
tion. The upregulation of p53 and p21, though, was observed 
in the Y79 cell line following vitamin D analog therapy [71], 
which is related to an increased Bax protein concentration 
and a decreased Bcl-2 content [78]. Both in vitro and in vivo 
models have been used to investigate the anti-tumor effect of 
vitamin D analogs, including calcitriol.

Calcitriol (1, 25-dihydroxyvitamin D3), which is 
normally produced in the kidney, is the active form of vitamin 
D. It inhibits the growth of Y79 cells in vitro [79] and mini-
mized the tumor burden in both xenograft and transgenic 
mouse Rb models [71,79,80]. Despite the efficacy of calcitriol 
in both these models of Rb, its use as a treatment for Rb is 
limited due to its systemic toxicity (hypercalcemia and renal 
toxicity) [71,81].

Angiogenesis inhibition: Angiogenesis is known to be a major 
driving force in various tumors [82]. As Rb is an angiogen-
esis-dependent tumor, anti-angiogenic therapy is expected 
to have a positive effect on it [83]. Tigecycline, niclosamide, 
and quercetin have recently been investigated and have been 
determined to be potential candidates for the treatment of Rb 
by suppressing Rb cell proliferation through the modulation of 
angiogenesis pathways [84]. Anti-angiogenic compounds play 

an important role in Rb treatment. First, Rb is a completely 
vascularized tumor that depends on its vascular supply, and 
second, vascular endothelial growth factor (VEGF) is over-
expressed in Rb cells and Rb patients [83].

Bevacizumab (Avastin) obtained FDA approval for use in 
certain types of cancer [85]. Bevacizumab reduces the tumor 
microvascular density twofold, which reduces Rb growth by 
75% without significant systemic toxicity [83]. Angiogenesis 
inhibitors are safe for the adult retina, but there are concerns 
regarding their use in children with Rb due to their potential 
impact on the ocular development [86].

Celastrol nanomicelles: Celastrol nanomicelles (CNMs, 
27.2 mg/kg/2 days) [87] are traditional Chinese medicine 
components with strong anti-tumor [88], anti-inflammatory, 
and anti-angiogenic activities [89]. Celastrol nanoparticles 
(NPs) inhibit the growth of retinoblastoma SO-Rb50 cells 
in humans by inducing apoptosis. In recent studies, CNMs 
were able to inhibit the growth of Rb in a mouse model by 
preventing neovascularization, which may be relevant to the 
inhibition of the VEGF pathway and of hypoxia-induced 
HIF-1α. CNMs may be a potent alternative for Rb treatment 
[87].

Ribavirin: One of the potentially eukaryotic translation 
initiation factors (eIF) that plays a key role in the develop-
ment and transformation of various cancers is eIF4E [90]. 
However, few studies have investigated its potential role in 
Rb treatment [20]. Angiogenesis is one of the key pathways 
in Rb tumor survival and metastasis. Bevacizumab and 
pigment epithelium-derived factor result in angiogenesis 
inhibition in Rb, with negligible systemic toxicity [83,91]. 
Ribavirin is a pharmacologic eIF4E function inhibitor [92] 
that targets angiogenesis and potentially suppresses VEGF-
induced migration by disrupting capillary network formation. 
Mechanistically, ribavirin decreases the protein but not the 
mRNA levels of c-Myc, cyclin D1, and VEGF and inhibits the 
eIF4E function in Rb cells. The combined use of ribavirin and 
CBP leads to an efficacious treatment with a greater potential 
for inhibiting Rb than the use of single drugs separately [20].

Neurotransmitter pathway disruption: The growth of Rb 
by disrupting the pathways of neurotransmitter receptors, 
transporters, and biosynthetic enzymes, which are expressed 
in human Rb, can be reduced both in vivo and in vitro [93]. 
Mixtures of genes commonly found in the cells of retinal 
progenitors and differentiated retinal neurons (photorecep-
tors and amacrine cells) are also expressed in human Rb. 
Amacrine cells are interneurons that form synapses with 
ganglion or bipolar cells, which are distributed in the inner-
most part of the inner nuclear layer of the retina and play 
a critical role in processing visual signals [84]. Thirteen 
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well-defined drug agents targeting major neurotransmitter 
pathways were tested in vitro, and it was found that mono-
aminergic amacrine cell transporter inhibitors, along with 
fluphenazine and chlorpromazine injections for 3 consecutive 
weeks, prevent the proliferation of Rb cell lines (Weri, Y79, 
and Rb355) [93].

Activator protein-2 (AP-2, a family of transcription 
factors, with AP-2α, AP-2β, AP-2δ, AP-2ε, and AP-2γ) has 
a regulatory role in biologic functions, including differentia-
tion, cell proliferation, apoptosis, and carcinogenesis [94,95]. 
In the amacrine cells in fetal chickens, mice, and humans, the 
AP-2 family is expressed in the early stages of the develop-
ment of the retina [95,96]. Co-expression of AP-2α/AP-2β is 
observed in a high percentage of amacrine cells [95]. The 
AP-2 expression scheme in the Rb cell lines mimics the 
amacrine cell differentiation patterns [97]. Transfection of 
AP-2α and AP-2β expression into Rb cells induces apoptosis 
and inhibits proliferation [98].

Arsenic trioxide: Arsenic trioxide (white arsenic or As2O3; 
ATO) was approved for medical use by FDA in 2000 for 
relapsed/refractory acute promyelocytic leukemia [99,100]. 
ATO is thought to function through mechanisms distinct 
from those of traditional chemotherapeutic agents (e.g., the 
reactive oxygen species due to oxidative damage leading to 
apoptosis) and is not prone to drug resistance [101].

ATO inhibits the growth of Rb cell lines (both Y79 and 
SNUOT-Rb1) at high and low levels of concentration through 
apoptosis and differentiation, respectively. Weekly intravit-
real injection of 0.1 μM or 5 μM ATO minimized the tumori-
genesis in the SNUOT-Rb1 cells in orthotopic xenograft mice 
and showed no change in retinal thickness despite a more 
pronounced decrease at higher doses. Moreover, inflamma-
tory cells were not observed in ATO treatment in the choroid, 
retina, or vitreous [18].

EDL-155: EDL-155, an isoquinoline derivative, was found to 
have high concentrations and to be effective in vivo, but it 
was found to have relatively weak potency in cultured Y79 
cells [102]. In a Y79-Luc Rb xenograft mouse model, the 
tumor burden was significantly reduced with the periocular 
administration of EDL-155 (20 mg/kg/day in 0.1% dimethyl 
sulfoxide in saline) within 4 consecutive days, without any 
toxic side effect. EDL-155 disrupts the mitochondrial func-
tion and causes autophagy, thereby killing Rb cells [102].

Gene therapy: Gene therapy is the therapeutic transfer of 
nucleic acid polymers into diseased cells for the treatment 
of an underlying disease [103]. Suicide gene therapy includes 
the process of transferring the gene materials of a virus or of 
bacteria into tumor cells to convert a non-toxic compound to 

a lethal drug. A phase 1 study showed that intravitreal injec-
tions of adenovirus vectors including herpes simplex virus-
tyrosine kinase (HSV-TK), along with ganciclovir (GCV), is 
safe and effective in vitreous seeding [104]. Also, HSV-TK/
GCV can lead to the significant destruction of retinal tumor 
cell lines [19]. Despite these promising results, the use of this 
approach in gene therapy as a first-line treatment for Rb is 
unlikely, and it may be useful as a complement to the standard 
therapy for refractory vitreous seeding [104].

VCN-01 is a clinically oncolytic adenovirus that is 
genetically engineered from type 5 (Ad5) modified adeno-
virus and is used to inhibit the proliferation of cancer cells 
with a high content of free E2F1, following the dysfunctional 
Rb1 pathway [105]. It successfully annihilated chemoresistant 
specimens in vitro and effectively killed cancer cells derived 
from mouse Rb xenograft models. A recent study has shown 
that VCN-01 is safe in mice and juvenile rabbits [106]. 
According to the preliminary phase 1 results from Rb patients 
treated with intravitreal VCN-01, there was evidence of viral 
replication in the tumor cells, which led to anti-tumor activity 
in vitreous seeds of Rb. This treatment causes localized 
vitreous inflammation without any systemic inflammation.

The intravitreal injection of VCN-01 in xenograft models 
of Rb improved the ocular survival rate compared to the 
conventional chemotherapy, and inhibited micrometastatic 
spread to the brain. These promising results suggest that the 
development of oncolytic adenoviruses targeting Rb1 may 
provide selective and independent treatment options for Rb 
[106].

Local drug delivery systems: Over the past decade, nanotech-
nology-based drug delivery systems for cancer therapy have 
made significant progress by providing site-specific delivery 
options and increasing bioavailability [107]. Various mate-
rials have been widely used as intraocular drug carriers, such 
as dendrimers, liposomes, biodegradable polyesters, meso-
porous silica, and gold NPs [107]. These modified particles 
can target specific cells. In addition, they can be designed to 
increase the therapeutic efficacy of the drug molecules and 
ensure the continuous release of the drug contained in them 
[108].

The use of NP-based systems enhances drug delivery to 
the posterior part of the eye. It also expands the intravitreal 
half-life of chemotherapeutic agents [109]. The rapid develop-
ment of nanotechnology has allowed the use of intelligent 
nanosystems for cancer imaging, targeted drug delivery, and 
cancer regression monitoring in post-treatment oncology. 
In personalized nanomedicine (at least pre-clinically), drug 
delivery systems including NPs are used [110].
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NPs as alternative drug delivery systems for systemic 
administration provide an essential substrate for improving 
the ocular transmission of therapeutic agents such as 
melphalan (MEL) by maintaining the stability of the drug, 
decreasing the need for frequent prescribing, targeting only 
cancerous tissues, having a long-term curative effect, mini-
mizing complications, and reducing the number of invasive 
procedures and the need for the systemic administration of 
MEL [111]. Surface-modified NP formulations, when used in 
vivo, may improve Rb treatment. Surface-modified NPs with 
ligands such as MPG or TET1 pave the way for overcoming 
in vivo delivery challenges and increase the effectiveness of 
MEL [111].

Polylactic-co-glycolic acid: Polylactic-co-glycolic acid 
(PLGA) is especially used in ocular therapy due to its 
biocompatibility, favorable degradation, and approved 
clinical applications [112]. Previously, PLGA NPs were used 
as vectors for the intraocular delivery of active agents such 
as flurbiprofen [113].

Flurbiprofen-rich NPs showed a greater anti-inflam-
matory effect than the available eye drops in animal models 
of ocular inflammation, indicating that NPs increase the 
bioavailability of flurbiprofen. Surface-modified NPs and 
MPGs have a greater effect on Rb cells than unmodified NPs 
[111].

Other available drugs are anthracyclines (doxorubicin, 
idarubicin), which destroy cancer cells through DNA inter-
calation and inhibition of topoisomerase, and also have the 
ability to inhibit metastatic Rb [114]. The intravitreal injection 
of doxorubicin encapsulated in poly-β-hydroxybutyrate-based 
microspheres in rabbit ocular tissue showed reduced toxicity 
to the surrounding natural structures [115]. In addition, 
encapsulation reduces the peak doxorubicin level compared 
to free doxorubicin in ocular tissues. The ex vivo transscleral 
release of doxorubicin encapsulated in PLGA polymer NPs 
or liposomes (Doxil®, Tibotec Therapy) demonstrated that 
doxorubicin is easily released in the sclera isolated from 
humans, but its encapsulation (both in PLGA and liposomes) 
reduces the rate of transmission [116]. PLGA NPs were 
studied on Y79 Rb cell lines for the delivery of doxorubicin 
[117] and ETP [118] and may be prominent candidates for 
continuous drug delivery models.

Gold NPs: Gold NPs are highly absorptive of near-infrared 
light and can kill cancer cells due to their unique physical 
properties [118]. Moreover, light-activated drug secretion can 
be achieved by using gold NPs that bind to chemotherapeutic 
agents [119]. Gold nanocages are surrounded by a smart 
polymer; the nanocages absorb light and change in response 
to heat, causing the polymer to break down and release 

doxorubicin [120]. Gold NPs can also easily cross the blood-
retinal barrier and do not cause significant cytotoxicity [121]. 
Gold liposomes and virus-like NPs containing TPT have been 
administered intravitreally in rabbit models of vitreous seeds 
[122].

Fibrin glue: Fibrin glue, a biodegradable carrier, is another 
injectable that is currently being tested as a delivery system 
for chemotherapy agents [123]. CBP [124] and TPT [125] 
secreted from fibrin stocks have both been shown to maintain 
their biologic activity against cultured Rb cells and to reduce 
the tumor volume in a transgenic mouse model of Rb [126]. In 
another study, fibrin sealants allowed the continuous transfer 
of CBP to the ocular tissues and were rapidly cleared in vivo 
[127]. Clinical studies have also shown promising results for 
TPT conjugated with fibrin [128].

Dendrimers: Dendrimer macromolecules (synthetic poly-
mers) are spherical macromolecules 1–100 nm in size, with 
three different domains [129]. They have controllable shapes, 
sizes, surface properties, and voids and can be considered 
suitable candidates for drug delivery systems because they 
control the physical and chemical environment during their 
synthesis [130] and because of their appropriate design 
parameters, reproducibility and optimization, and ability to 
overcome drugs’ physicochemical limitations (e.g., solubility, 
specificity, stability, biologic distribution, and therapeutic 
efficacy). Dendrimers are also capable of eliminating biologic 
barriers such as the first pass effect, immune cleaning, cell 
infiltration, and off-target interactions [131].

The effect of dendrimers as drug delivery systems in 
ophthalmology has also been studied. They play an effective 
role in the transmission of drugs to the intraocular tissues 
[132]. A recent study reported the successful injection of the 
subconjunctival polyamidoamine dendrimer G3.5 into trans-
genic Rb mice without toxicity. Also, higher doses of NPs can 
even lead to reduced tumor burden in the untreated contra-
lateral eye. Another study showed that dendrimer NP-based 
CBP significantly minimized the tumor load compared to 
free CBP in a mouse model of Rb [133].

New hydrogel implant: The new hydrogel implant can deliver 
low-molecular-weight hydrophilic anti-tumor drugs such as 
TPT and VCR in therapeutic doses. It can prevent the strong 
complications of systemic or intravitreal/intra-arterial 
chemotherapy by facilitating lower exposition, long-term 
medicinal action, and transscleral drug delivery (bypassing 
the bloodstream) and by reducing the cytotoxicity/necrosis 
risks (with controlled drug release at the site of drug use) 
[134]. The purpose of the new hydrogel implant is the direct 
delivery of anti-tumor drugs to the globe. This implant has 
two components: an inner hydrophilic layer of 2-hydroxyethyl 
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methacrylate (HEMA) filled with the drug and an outer 
hydrophobic layer of 2-ethoxyethyl methacrylate to protect 
the healthy tissue from in vivo exposure to the chemotherapy 
agent [134].

A recent study assessed the stability of VCR and TPT, 
their transmitting properties, and the properties of HEMA-
based hydrogels. The study showed that VCR is generally 
more stable while the drug concentration, medium type, and 
temperature affected the stability of TPT. The best results 
were obtained in water with a higher concentration at 4 °C 
and in the RPMI 1640 culture medium [134]. On the basis 
of the obtained results, it was recommended that the new 
hydrogel implant be used as a potent therapeutic tool for the 
delivery of topical medications in the treatment of Rb and 
other ocular disorders.

ncRNAs: ncRNAs are transcripts that are not converted to 
proteins. They are scattered throughout the human genome 
and are also abnormally regulated in tumor cells. They are 
commonly located in fragile regions, in heterozygosity loss 
sites, and in breakpoint regions. They indicate a new series 
of genes involved in tumorigenesis [135,136]. ncRNAs are 
divided into two categories according to function: those with 
an oncogenic function and those acting as tumor suppressors 
[137]. They are also classified into two groups on the basis of 
the length of their sequence: short ncRNAs, with a maximum 
length of 200 nucleotides, and long ncRNAs (lncRNAs), 
which are transcripts with more than 200 nucleotides [138]. 
Recently obtained evidence has shown that lncRNAs are 
involved in many cellular processes, such as cell proliferation, 
differentiation, migration, and invasion. Multiple lncRNAs, 
including BANCR [139], AFAP1-AS1 [140], NEAT1 [141], 
XIST [142], PlncRNA-1 [143], HOTAIR [144], PANDAR 
[145], DANCR [146], and THOR [147], cause the progres-
sion and metastasis of Rb, but some lncRNAs, such as MEG3 
[148], MT1JP [149], and H19 [150], play a tumor-suppressive 
role.

New evidence also suggests that some lncRNAs, such as 
MALAT1, H19, and BANCR [149,151,152], are beneficial in 
the diagnosis and prognosis of Rb. lncRNA has differential 
expression in Rb and normal tissues, making it a potential 
biomarker for the diagnosis of Rb. It may also be a potential 
target for Rb therapy. The most studied class of ncRNAs is 
the microRNAs (miRNAs), which are about 22 nucleotides 
long and involved in regulating the expression of more 
than 60% of all genes [153]. They are also a group of small 
ncRNAs with independent promoters posited in intergenic 
sites [154], but they can also be transcribed in introns with the 
same host gene promoter [155]. They play an important role in 
cellular physiology and functions and are also involved in the 

development of various cancers by regulating the expression 
of the target genes; thus, they have been suggested as attrac-
tive biomarkers of tumors for the detection of Rb [153,155]. 
There are several evidences that the deregulation of different 
miRNAs is involved in different stages of Rb [156]. Recent 
studies have reported that miRNAs such as miR-30, miR-
let-7e, miR-21, miR-204, and miR-320 are dysregulated in 
Rb patients  and have been recommended as diagnostic 
biomarkers for Rb detection [157–159].

Several critical miRNAs, such as hsa-miR-373, hsa-
miR-181a, hsa-miR-125b, and hsa-let-7b, cause Rb progres-
sion and metastasis. They might act as tumor suppressors by 
co-regulating CDK6, CDC25A, and LIN28A. Some miRNAs, 
such as hsa-miR-25, hsa-miR-18a, and hsa-miR-20a, might 
exert their function by co-regulating BCL2L1 [160]. Few 
studies, however, have evaluated the circulation of miRNAs 
as diagnostic and prognostic biomarkers in Rb [161]. Thus, 
further research is needed to identify miRNAs and circu-
lating miRNAs that are suitable candidates for the treatment 
and diagnosis of Rb [162].

Aqueous humor markers: Unlike other cancers, Rb cannot be 
classified through biopsy. Thus, it does not have any genetic 
tumor marker [163]. Tissue biopsy is contraindicated in Rb 
largely because it is invasive and poses a risk of extraocular 
tumor spread [164]. Nonetheless, studies of tumors in enucle-
ated eyes have provided abundant information regarding the 
genetics of Rb [165].

Aqueous humor (AH) as an “alternative tumor biopsy” 
[167] addresses the problems associated with tissue biopsy. 
The recently shown cell-free tumor DNA (cfDNA) in AH 
has a potential biomarker role [168]. AH paracentesis is now 
a standard protocol during administrations of intravitreal 
chemotherapy for Rb patients. Anterior chamber paracentesis 
is conducted before the intravitreal injection of the chemo-
therapy agent to induce transient hypotony and therefore 
prevent the reflux of tumor cells during injection [169]. It has 
been found in recent studies that the reproducible AH samples 
reflect the genomic status of the tumor and Rb somatic 
chromosomal copy number alterations (SCNAs), which are 
involved in Rb tumorigenesis. The recurrent SCNAs of Rb in 
the AH predict the tumor’s response to globe salvage therapy 
[170], Hence, these results show that a 6p gain in the AH is 
a strong prognostic biomarker for poor clinical response to 
treatment [170]. Thus, circulating tumor cell- and cfDNA-
based fluid biopsies in the blood or other fluids can now be 
used clinically for the management of Rb without the need for 
enucleation [171,172].

Exosomes: A new biomarker called exosome has been 
introduced in fluid sampling to monitor tumor progression 
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and drug resistance. Exosomes are NPs derived from cell 
membranes (30–100 nanometers in diameter) and contain 
RNA, miRNA, lipids, and proteins. Their microvesicles 
secreted by invasive tumor cells can be found in a variety of 
body fluids [173]. In recent years, numerous investigations 
have been made to show that there is a relationship between 
proteins’ and peptides’ levels of expression and different 
pathological diseases [174]. In a recent study, exosomes from 
Rb tumors and tumor seeding in the vitreous humor from Rb 
cell lines were isolated using high-resolution mass spectrom-
etry [175]. This paves the way for the definition of exosomal 
markers as potential diagnostic and potential markers of 
prognostic and therapeutic targets in Rb.

MLN4924: Neddylation or adding Nedd8 modifies post-trans-
lational protein and has been linked to cancer development 
in 1997 [176]. MLN4924, also known as pevonedistat, is a 
neddylation inhibitor currently being studied on solid tumors 
[177] and blood malignancies [178] in phase I clinical trials.

The members of the choline family are the physiologic 
substrates of neddylation. The neddylation of all cullins 
is effectively blocked by MLN4924 and leads to the accu-
mulation of their substrates, thus causing multiple cellular 
reactions, including cell cycle arrest, apoptosis, aging, and 
cell-type dependent-manner autophagy [179].

A recent study showed that in Rb, MLN4924 potently 
prevents Rb1 loss (Rb1null) and MYCN amplification. 
The maximum tolerable dose for intravitreal MLN4924 is 
10–30 μg [180].

In addition, S-phase kinase-associated protein 2 (SKP2) 
has been identified as a potential therapeutic target [181]. A 
recent study demonstrated that the loss of SKP2 destroys 
Rb1null cells. Thus, intravitreal MLN4924 is an excellent 
new therapy for Rb, killing cancer cells by removing SKP2 
complexes [180].

Conclusion: Despite the availability of various treatments for 
Rb, there is still an urgent need for new therapeutic options to 
prevent the delayed side effects of the current interventions 
and to maintain the patient’s vision to the extent possible. 
Rb treatment options have evolved rapidly in recent years by 
changing the paradigm from the standard treatment protocols 
to targeted chemotherapy agents.

Targeted therapy is a promising treatment for various 
kinds of cancer. New Rb treatments and modalities have been 
explored, such as the use of new transporters and pathways for 
the local delivery of therapeutic agents and targeted molecular 
therapies. According to the available literature, anti-tumor 
drugs with molecular targeting are effective in treating Rb. 
Recent studies have predicted that future combinations of 

new targeted chemotherapeutic agents with local delivery, 
including CBP, TPT, and MEL, will increasingly play an 
important role in the management of Rb by creating safe and 
effective treatments that can help better control tumors while 
maintaining the patients’ vision.

Despite the advances in the management of Rb in recent 
years, there are still some fundamental limitations in the 
clinical use of the new targeted therapies and delivery path-
ways. The long-term effects of these new treatment options 
also need to be further evaluated. It is hoped that with the 
benefit of better insight into the relationship between Rb cell 
biology and the future development of targeted and less toxic 
therapies, non-responder Rb cases will be a thing of the past.
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