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Background: Delivery of therapeutic small interfering RNA (siRNA) via functionalized 
nanoparticles holds great promise for cancer therapy. However, developing a safe and 
efficient delivery carrier of siRNA is a challenging issue.
Methods: RGDfC peptide was used to modify the surface of selenium nanoparticles 
(SeNPs) to synthesize a biocompatible siRNA delivery vehicle (R-SeNPs), and MEF2D- 
siRNA was loaded onto R-SeNPs to prepare a functionalized selenium nanoparticle 
R-Se@MEF2D-siRNA. The chemical properties of R-SeNPs were characterized, and the 
anticancer efficacy as well as related mechanisms of R-Se@MEF2D-siRNA were further 
explored.
Results: R-Se@MEF2D-siRNA was significantly taken up by SKOV3 cells and could enter 
SKOV3 cells mainly in the clathrin-associated endocytosis way. The result of in vitro siRNA 
release demonstrated that R-Se@MEF2D-siRNA could release MEF2D-siRNA quicker in 
a microenvironment simulating a lysosomal environment in tumor cells compared to 
a normal physiological environment. The results of qRT-PCR assay proved that 
R-Se@MEF2D-siRNA could effectively silence the expression of the MEF2D gene in 
SKOV3 cells. R-Se@MEF2D-siRNA remarkably suppressed the proliferation of SKOV3 
cells and further triggered its apoptosis. In addition, R-Se@MEF2D-siRNA had the cap-
ability to disrupt mitochondrial membrane potential (MMP) in SKOV3 cells and resulted in 
the overproduction of reactive oxygen species (ROS), indicating that mitochondrial dysfunc-
tion and ROS generation played an important role in the apoptosis of SKOV3 cells induced 
by R-Se@MEF2D-siRNA. In vivo, R-Se@MEF2D-siRNA also exhibited excellent antitu-
mor activity mainly through decreasing tumor cells proliferation and triggering their apop-
tosis in tumor-bearing nude mice.
Conclusion: R-Se@MEF2D-siRNA provides an alternative strategy for ovarian cancer 
treatment in the clinic.
Keywords: ovarian cancer, siRNA delivery, gene therapy, tumor targeting, MEF2D

Introduction
Ovarian cancer is one of the deadliest malignancies in women because of its high 
recurrence rate, and the 5-year survival rate is less than 50%.1 Chemotherapeutic 
drugs are commonly used for ovarian cancer therapy.2,3 Nevertheless, most cancers 
including ovarian cancer have developed inherent or acquired resistance.4 Thus, 
some novel therapeutic strategy should be developed to improve the treatment 
outcomes.5 Short interfering RNA (siRNA) technology is one of the most effective 
options for cancer therapy.6 Viruses were usually applied to deliver siRNA in the 
previous studies.7 Nevertheless, viral carriers had the risk of immunogenicity and 
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insertional mutagenesis.8,9 Thus, non-viral vehicle holds 
great potential for the gene treatment of cancers owing to 
its better safety.10

Selenium nanoparticles (SeNPs), due to their biocompat-
ibility, easy surface modification and low toxicity, have 
attracted much attention in the design of drug/gene 
vehicles.11–13 On the one hand, the trace element selenium 
(Se) plays a crucial role for preventing cancer.14 On the other 
hand, the presence of Se in the human body can ensure proper 
function of the immune system.15 The advantage of SeNPs 
makes it superior to organic nanoparticles or inorganic metal 
nanoparticles to deliver drug/gene.16 Therefore, SeNPs have 
gradually developed one of the most promising chemothera-
peutics gene/drugs vehicles.17 However, the lack of tumor- 
targeted ability is the biggest obstacle to the application of 
nanoparticles as gene/drugs carriers.18–20 Thus, in this study, 
the positively charged peptide RGDfC was used to install on 
the surface of SeNPs to fabricate a tumor-targeted siRNA 
delivery vehicle (R-SeNPs). RGDfC has the ability to selec-
tively bind with its receptor αvβ3 integrin that is highly 
expressed in various kinds of cancer cells, including SKVO3 
human ovarian cancer cells.21 In addition, R-SeNPs with 
a positive charge are prone to load with negative charge nucleic 
acid molecule siRNA via the electrostatic interaction.22

The myocyte enhancer factor 2 (MEF2) family, contain-
ing the MEF2-A, -B, -C, and -D subtypes, belongs to one of 
the human transcription factors. MEF2 family members play 
an important role in the occurrence and development of 
cancers.23 Previous research showed that expression of 
MEF2D was elevated in ovarian cancer, pancreatic cancer, 
non-small cell lung cancer, colorectal cancer, and so on.24 

Thus, MEF2D-siRNA was loaded onto the surface of 
R-SeNPs to fabricate R-Se@MEF2D-siRNA, aiming at 
silencing MEF2D gene for ovarian cancer therapy. The antic-
ancer efficacy and mechanisms of R-Se@MEF2D-siRNA 
were studied using ovarian cancer SKVO3 cells and a nude 
mice model.

Materials and Methods
Materials
Lysotracker red, sodium selenite (Na2SeO3), Hoechst 33342, 
propidium (PI), and ascorbic acid (Vc) were obtained from 
Sigma (MO, USA). Annexin V/PI was purchased 
from Beyotime. Fetal bovine serum (FBS) was obtained 
from Gibco. All antibodies were purchased from CST 
(MA, USA). The sequence of MEF2D-siRNA was as fol-
lows: GCAACAGCCTAAACAAGGT.

Fabrication and Characterizations of 
R-SeNPs
Selenium nanoparticles (SeNPs) were synthesized in accord-
ing with previous reported literature.10 Briefly, 0.5 mL Na2 

SeO3 (5 mM) and 0.5 mL vitamin C (20 mM) were mixed and 
the mixture solutions were gently stirred for 2 hours to prepare 
SeNPs. Then, 1 mL of RGDfC solution (1 mg/mL) was 
dripped to previous mixture solutions. The mixture solutions 
were stirred at 25°C for 3 hours to fabricate R-SeNPs. The 
pure R-SeNPs solution was acquired by dialyzing (MW cut- 
off=3.5 kDa). The amount of RGDfC in nanoparticles was 
determined by high performance liquid chromatography 
(HPLC). Size distribution and zeta potential of R-SeNPs was 
examined by a Malvern Zetasizer.25 The polydispersity index 
of nanoparticles in this paper was in the range of 0.1~0.25. 
Elemental composition analysis of R-SeNPs was carried out 
using energy dispersive X-Ray (EDX). The chemical struc-
tures of R-SeNPs were analyzed by Fourier transform infrared 
spectroscopy (FTIR). Morphology of R-SeNPs was visualized 
by transmission electron microscopy (TEM).26 Briefly, TEM 
samples were prepared by dripping the nanoparticles solution 
onto a holey carbon film on copper grids, and air dried for 
examination using TEM.

R-Se@MEF2D-siRNA was obtained via dripping 
MEF2D-siRNA (100 nM) to R-SeNPs solution at 15°C for 
35 minutes. The N/P (nitrogen atom/phosphorus atom) ratios 
of R-SeNPs/MEF2D-siRNA are 1:1, 2:1, 4:1, and 8:1. The 
concentrations of loaded MEF2D-siRNA were tested using 
a nanodrop 2000 spectrophotometer, as in previous literature.5

Gel Electrophoresis Assay
A gel retardation assay was performed by incubating R-SeNPs 
with MEF2D-siRNA for 25 minutes at various N/P rates to 
determine complete complex formation. R-Se@MEF2D- 
siRNA was transferred to an agarose gel electrophoresis (1%) 
at 110 mV for 20 minutes and then the gel imagings were 
visualized by a gel documentation system.

Cell Culture
HUVEC and SKOV3 cells were purchased from ATCC 
(Manassas, VA, USA) and incubated in Dulbecco’s mod-
ified Eagle’s medium (DMEM) containing 10% FBS at 
37°C with 5% CO2.

Cellular Uptake of R-Se@MEF2D-siRNA
SKOV3 cells at the density of 5×104 cells/mL were cultured 
in 6-well plate for 24 hours. Afterwards, SKOV3 cells were 
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exposed to FAM-labeled R-Se@MEF2D-siRNAFAM (100 
nM of siRNAFAM). The SKOV3 cells were washed, supple-
mented with fresh complete medium, and visualized under 
a fluorescence microscope. Uptake of R-Se@MEF2D- 
siRNAFAM in HUVEC was carried out by using the same 
method as above. The αvβ3 integrin expression in SKOV3 
cells and HUVEC cells was analyzed by Western blot assay, 
as in a previous publication.10 In order to further verify 
whether RGDfC-mediated uptake occurred in SKOV3 
cells, a competitive inhibition experiment has been per-
formed. In brief, SKOV3 cells were pretreated with free 
RGDfC (0.5 μg/mL) for 2 hours. Subsequently, the cells 
were washed with cold PBS and exposed to R-Se@MEF2D- 
siRNAFAM for 1 hour, 2 hours, and 4 hours The uptake 
mechanisms of FAM-labeled R-Se@MEF2D-siRNAFAM in 
SKOV3 cells were studied using various endocytosis inhibi-
tors and analyzed by flow cytometer.27

The Release of MEF2D-siRNA from 
R-SeNPs
For assessing the release profiles of MEF2D-siRNA from 
R-SeNPs, 1 mg of R-Se@MEF2D-siRNA complexes with 
a N/P rate (8:1) were incubated with 1 mL PBS (pH 5.4 or 
7.4) and transferred into a dialysis tube. The tubes were 
immersed in 100 mL of PBS (pH 5.4 or 7.4) under hor-
izontal shaking (150 rpm). The released MEF2D-siRNA 
was detected for 15 hours by a spectromax quickdrop. At 
predetermined time points, aliquots of 0.5 mL outside the 
dialysis tubes were withdrawn for test and replenished 
with the equivalent volume of fresh PBS. The released 
amount of payload MEF2D-siRNA was determined by 
comparison with an experimentally determined standard 
curve.28

RT-qPCR Analysis
SKOV3 cells in six-well plates were incubated for 24 hours to 
reach about 75% confluence. SKOV3 cells were co-incubated 
with 100 nM equivalent siRNA of R-Se@MEF2D-siRNA or 
R-Se@siNC for 24 hours. The cells were rinsed and incubated 
in the fresh complete medium for another 24 hours. The 
cells without treatment were set as the control group. Total 
RNA was extracted from SKVO3 cells by TRIzol reagent in 
accordance with manufacturer’s instruction. The RNA con-
centration was measured using a NanoDrop™ 1000 
Spectrophotometer.29 The 2−ΔΔCT method was used to analyze 
the data. The primers sequences are shown in Table 1.

MTT Assay
The cytotoxicity of R-Se@MEF2D-siRNA was detected 
using MTT assay.30 In brief, SKOV3 cells in a 96-well 
plate were cultured for 12 hours to acquire about 50% 
confluence. Then SKOV3 cells were exposed to 
R-Se@MEF2D-siRNA and R-Se@siNC (various siRNA 
equivalent concentrations) for 48 hours. The previous 
media were taken out and the fresh media containing MTT 
(5 μg/mL) were supplemented in each well. The 96-well 
plate was kept in an incubator at 37°C for another 4 hours. 
Then the media were taken out, and 150 μL of DMSO was 
added to each well for shaking for 15 minutes. Finally, the 
cells were tested under a microplate reader at 570 nm.31

Flow Cytometry Assay
Flow cytometry was used to analyze the cell cycle distri-
bution and apoptosis. In brief, SKOV3 cells were treated 
with R-Se@MEF2D-siRNA or R-Se@siNC (100 nM of 
equivalent siRNA) for 24 hours, and then rinsed with PBS. 
The collected cells were fixed with methanol overnight 
and then stained with 1 μg/mL of propidium (PI) for 20 
minutes before testing using flow cytometry.32

Mitochondrial Membrane Potential 
(Δψm) Assay
For mitochondrial membrane potential (MMP) examina-
tion, the SKOV3 cells were treated with R-Se@MEF2D- 
siRNA or R-Se@siNC (100 nM of equivalent siRNA) for 
24 hours and then were co-incubated with 1 μg/mL of JC- 
1 for 15 minutes. Finally, the cells were washed and tested 
via a FACS flow cytometer.33

Detection of Reactive Oxygen Species 
(ROS)
ROS level of SKOV3 cells was examined as reported.34 

Briefly, SKOV3 cells were treated with R-Se@MEF2D- 
siRNA or R-Se@siNC (100 nM of equivalent siRNA) for 
24 hours before staining with 10 μM DCFH-DA for 20 

Table 1 The Primer Sequences of MEF2D and GAPDH for 
Quantitative Real-Time PCR

Gene Direction Primers (5ʹ-3ʹ)

MEF2D F AGGGAAATAACCAAAAAACTACCAAA

R GCTACATGAACACAAAAACAGAGACC

GAPDH F ATCCCATCACCATCTTCCAG

R ATGAGTCCTTCCACGATACC
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minutes. Then the imaging of cells was captured under 
a fluorescence microscope.

Xenograft Mouse Model
All animal experiments were approved by the Ethics 
Committee of Guangzhou Medical University and performed 
according to the protocols and guidelines of the Experimental 
Animal Center of Guangzhou Medical University. A BALB/c 
nude mice model (6-week old) was used to assess the antitumor 
activity of R-Se@MEF2D-siRNA. Briefly, the tumor-bearing 
mice were prepared by subcutaneously injecting 5×106 

SKOV3 cells in the abdomen. The tumor-bearing mice were 
intravenously injected with saline, R-Se@siNC, or 
R-Se@MEF2D-siRNA (0.2 mg/kg of siRNA) once every 3 
days after tumor volumes reached 100 mm3. Tumor volumes 
(mm3) were calculated using the following formula: 
(length×width2)/2.

The sections were stained with H&E, Ki67, pp53, cas-
pase3 and TUNEL, and photographed under a microscope 
(Leica DMi8) for histologic analysis.

Statistical Analysis
Data are presented as the means±SD. A one-way ANOVA 
test was used to determine significance among groups. 
*P<0.05 and **P<0.01 were considered significant and 
highly significant, respectively.

Results and Discussion
Characterization of R-SeNPs
The morphology and size of the prepared selenium nano-
particles R-SeNPs were visualized by transmission electron 
microscopy (TEM), which indicated the uniform spherical 
particles of R-SeNPs (~80 nm) (Figure 1A). Elemental 
compositions of R-SeNPs was analyzed by EDX. From 
Figure 1B, oxygen and carbon atom signal derived from 
RGDfC and a typical Se atom signal derived from SeNPs 
were detected in the spectrum of R-SeNPs, indicating the 
successful loading of RGDfC onto SeNPs. Moreover, FTIR 
spectrum of R-SeNPs (Figure 1C) demonstrated the similar 
FTIR spectrum of RGDfC with the characteristic peak at 
1,658 and 1,533 cm−1 of amide derived from RGDfC, 
indicating the effectual preparation of R-SeNPs. The sche-
matic illustration of the formation of RGDfC-Se@MEF2D- 
siRNA was presented in Scheme 1. From Figure 2, size 
distributions of R-SeNPs in deionized water and PBS 
observed for 15 days, and the result showed that R-SeNPs 
could keep a stable size of particles (<150 nm) for within 15 

days. The favorable stability of R-SeNPs in water and PBS 
supports its biological application. From Figure 3A, zeta 
potential of SeNPs transformed from −30.7 mV to 13.7 mV 
by loading with RGDfC, and the zeta potential of 
R-Se@MEF2D-siRNA was about 7.3 mV.

Study on siRNA Loading Ability
An agarose gel assay was applied to assess siRNA loading 
ability of R-SeNPs. Seen from Figure 3B, R-SeNPs could 
significantly bind MEF2D-siRNA and MEF2D-siRNA 
migration started to be retarded at a N/P ratio of 1:1. When 
a N/P ratio of R-SeNPs/MEF2D-siRNA reached 8:1, 
R-SeNPs could completely retard the migration of MEF2D- 
siRNA. These results showed that R-SeNPs had the ability to 
bind MEF2D-siRNA and protect its degradation.

Selective Uptakes of R-Se@MEF2D- 
siRNA
High uptake of therapeutic siRNA makes a great contribution 
to good treatment efficacy. Many studies showed that αvβ3 

integrin, a receptor of RGD, was overexpressed in most 
cancer cells, including SKOV3 cells.35 The expression 
level of the integrin receptor on the cell membrane should 
be examined first in order to analyze whether the receptor 
contributes to the cellular uptake of R-Se@MEF2D-siRNA. 
The results indicated that the expression level of integrin 
receptor was higher in SKOV3 cells compared to HUVEC 
cells (Supplementary Figure S1), suggesting that RGDfC had 
a superior guided selectivity for SKOV3 cells to HUVEC 
cells. From Figure 4, the selective uptake of R-Se@MEF2D- 
siRNA in two cells was visualized under a fluorescence 
microscope, and the results showed that R-Se@MEF2D- 
siRNA exhibited greater cellular uptake in SKOV3 cells 
than that in HUVEC, suggesting RGDfC-modified functio-
nalized selenium nanoparticles could enhance the uptake of 
MEF2D-siRNA in SKOV3 ovarian cancer cells. In order to 
further verify whether RGDfC-mediated uptake occurred in 
SKOV3 cells, a competitive inhibition experiment was car-
ried out. Free RGDfC was added to SKOV3 cells first to 
block the interaction between RGDfC and its receptor integ-
rin, and then R-Se@MEF2D-siRNA was added to the med-
ium to study whether less R-Se@MEF2D-siRNA were taken 
by SKOV3 cells. As shown in Supplementary Figure S2, the 
pretreatment with free RGDfC in SKOV3 cells resulted in 
less uptake of R-Se@MEF2D-siRNA compared to SKOV3 
cells without pretreatment, suggesting RGDfC-mediated 
targeting played an important role in the uptake of 
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R-Se@MEF2D-siRNA in SKOV3 cells. In addition, fluor-
escence signal of SKOV3 cells increased from 1 hour to 4 
hours of co-incubated with R-Se@MEF2D-siRNA, suggest-
ing R-Se@MEF2D-siRNA entered SKOV3 cells in a time- 
dependent way.

Endocytosis is a key cellular process that leads to the 
internalization of selenium nanoparticles in cancer cells.36 

The uptake pathway of R-Se@MEF2D-siRNA was studied 

using an endocytosis inhibition experiment. As shown in 
Figure 5A, the incubation of R-Se@MEF2D-siRNA in 
SKOV3 cells at low temperature (4°C) or pretreatment with 
NaN3/DOG (a cell energy metabolism inhibitor) at 37°C 
remarkably reduced uptake of R-Se@MEF2D-siRNA, 
indicating an energy-dependent endocytosis way of 
R-Se@MEF2D-siRNA. Different endocytosis inhibitors, 
chlorpromazine (clathrin-associated endocytosis), amiloride 

100 nm
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Se
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5 6
(keV)

7

3500 3000 2500 2000 1500 1000 500
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A B
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1533

Figure 1 Characterizations of siRNA delivery carrier nanoparticles R-SeNPs. (A) The morphology and size characterization of R-SeNPs by TEM. (B) Elemental composition 
examination of R-SeNPs using EDX. (C) Chemical structure characterization of RGDfC and R-SeNPs using FT-IR spectra. 
Abbreviations: EDX, energy-dispersive X-ray; FT-IR, Fourier transform infrared spectroscopy; RGDfC, Arg-Gly-Asp-D-Phe-cys peptide; R-SeNPs, RGDfC-modified 
selenium nanoparticles; TEM, transmission electron microscopy.
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(macropinocytosis), and nystatin (caveolae-mediated endocy-
tosis) were used to study endocytosis mechanisms of 
R-Se@MEF2D-siRNA. From Figure 5A, uptake of 
R-Se@MEF2D-siRNA by SKOV3 cells was decreased by 
24% or 27% in the presence of nystatin or amiloride. 
Nevertheless, chlorpromazine-treatment made a great effect 
on the uptake of R-Se@MEF2D-siRNA, and the uptake was 

decreased by 48%, suggesting that SKOV3 cells take up the 
R-Se@MEF2D-siRNA mainly by the clathrin-associated 
endocytosis pathway.

The pH-Sensitive Release of MEF2D-siRNA
The releases of MEF2D-siRNA from R-SeNPs were detected 
in PBS of pH 5.4 and pH 7.4 simulating an acidic endosomes/ 

Scheme 1 Schematic illustration of the formation of RGDfC-Se@MEF2D-siRNA. 
Abbreviations: RGDfC, Arg-Gly-Asp-D-Phe-Cys peptide; RGDfC-Se@MEF2D-siRNA, RGDfC-modified selenium nanoparticles loaded with MEF2D-siRNA; Vc, ascorbic 
acid.
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Figure 2 Particle size survey of R-SeNPs in deionized water (A) and PBS (B). 
Abbreviations: PBS, phosphate buffer saline; R-SeNPs, RGDfC-modified selenium nanoparticles.
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was assessed by agarose gel electrophoresis assay. 
Abbreviations: M-siRNA, MEF2D-siRNA; MEF2D-siRNA, MEF2D-targeted siRNA; R-SeNPs, RGDfC-modified selenium nanoparticles; R-Se@MEF2D-siRNA, RGDfC- 
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lysosomes microenvironment and normal physiological envir-
onment, respectively.37 From Figure 5B, the obvious burst 
releases of MEF2D-siRNA in both pH values were observed 
within the initial 2 hours. Furthermore, R-Se@MEF2D- 
siRNA in PBS of pH 5.4 exhibited quicker release of MEF2D- 
siRNA and the release rate was about 83% at 15 hours. 
Nevertheless, the release rate of MEF2D-siRNA in pH 7.4 
(61%) was lower than that in pH5.4 (83%) at 15 hours. This 
phenomenon could explain that acidic conditions increased the 
protonation of R-SeNPs, and thus weakened electrostatic 
interactions between R-SeNPs and MEF2D-siRNA, which 
promoted the release of MEF2D-siRNA from R-SeNPs. The 

acid-sensitive siRNA release feature of R-Se@MEF2D- 
siRNA exhibited unique advantages in cancer therapy.

R-Se@MEF2D-siRNA Silences the 
Expression of the MEF2D Gene
R-SeNPs was applied to deliver MEF2D-siRNA to SKOV3 
cells, aiming at silencing the gene expression of MEF2D. 
A quantitative real time polymerase chain reaction (qRT- 
PCR) was applied to assess the mRNA level of MEF2D in 
SKOV3 cells. Seen from Figure 5C, R-Se@MEF2D-siRNA 
remarkably decreased the MEF2D mRNA level of SKOV3 
cells. However, R-Se@siNC hardly influenced the 
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1 h

2 h

4 h

R-Se@MEF2D-siRNA Hoechst 33342 Merged

A HUVEC

1 h

2 h

4 h

Merged

B

R-Se@MEF2D-siRNA Hoechst 33342

Figure 4 The uptake of R-Se@MEF2D-siRNA was visualized by fluorescence microscope. (A) R-Se@MEF2D-siRNA was taken up by SKOV3 cells. (B) R-Se@MEF2D- 
siRNA was taken up by HUVEC. Scale bar indicates 20 μm. 
Abbreviations: Hoechst 33342, Bisbenzimide H33342; HUVEC, human umbilical vein endothelial cells; R-Se@MEF2D-siRNA, RGDfC-modified selenium nanoparticles 
loaded with MEF2D-siRNA; SKOV3, human ovarian cancer cells.
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Figure 5 (A) The uptake of R-Se@MEF2D-siRNA in SKOV3 cells was influenced by low temperature and endocytosis inhibitors. *P<0.05, **P<0.01 vs control. (B) The 
release of MEF2D-siRNA from R-SeNPs at pH5.4 and pH7.4. *P<0.05 vs pH5.4 group. (C) Relative expressions of MEF2D in SKOV3 cells were examined using qRT-PCR. 
**P<0.01 vs control group. 
Abbreviations: DOG, 2-deoxy-D-glucose; R-Se@MEF2D-siRNA, RGDfC-modified selenium nanoparticles loaded with MEF2D-siRNA; R-Se@siNC, RGDfC-modified 
selenium nanoparticles loaded with siRNA (negative control).

International Journal of Nanomedicine 2020:15                                                                          submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
9765

Dovepress                                                                                                                                                            Wang et al

http://www.dovepress.com
http://www.dovepress.com


expression of the MEF2D gene. The above results revealed 
that R-Se@MEF2D-siRNA could significantly silence the 
MEF2D gene in SKOV3 cells.

R-Se@MEF2D-siRNA Inhibits the 
Proliferation of SKOV3 Cells
The proliferation inhibition of SKOV3 cells was assessed 
using MTT assay. From Figure 6A, the proliferation of 
SKOV3 cells was remarkably suppressed by 
R-Se@MEF2D-siRNA and the cell viability rate was 
39.6% after 48 hours. Nevertheless, no obvious effect on 
viability of cells treated with R-Se@siNC was observed, 
indicating that R-Se@MEF2D-siRNA inhibits the prolif-
eration of SKOV3 ovarian cancer cells by silencing gene 
expression of MEF2D. The carrier itself (R-Se@siNC) did 
not exhibit obvious cytotoxicity against SKOV3 cells at 
such low concentrations as used in this study. Besides, 
R-Se@MEF2D-siRNA exhibited weak cellular uptake in 
HUVEC and had slight cytotoxicity against HUVEC 
(Figure 6B), further confirming the good biocompatibility 
of R-Se@MEF2D-siRNA. This finding was consistent 
with previous publications.13,29

Apoptosis of SKOV3 cells induced by R-Se@MEF2D- 
siRNA was assessed using flow cytometry. From Figure 
6C, a sub-G1 apoptosis peak in the R-Se@MEF2D-siRNA 
group was more obvious (20.15%) compared to the 
R-Se@siNC group (6.42%) or untreated control group 
(6.19%), proving that R-Se@MEF2D-siRNA obviously 
induced the apoptosis of SKOV3 cells. In addition, 
R-Se@MEF2D-siRNA did not have a significant effect 
on cell cycle distribution of SKOV3 cells.

R-Se@MEF2D-siRNA Induces 
Mitochondria Dysfunction and ROS 
Overproduction
The loss of mitochondrial membrane potential (MMP, ΔΨm) 
can initiate apoptosis of tumor cells. Thus, we used flow 
cytometry to examine whether R-Se@MEF2D-siRNA trig-
gered SKOV3 cells apoptosis by damaging the MMP.38 The 
change of ΔΨm of the cells were detected by staining with 
JC-1 to study the initiation of cell apoptosis, in which the red 
fluorescence indicates normal cells and the green fluores-
cence signal indicates apoptotic cells with mitochondrial 
dysfunction. Seen from Figure 7A, a part of red fluorescence 
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Abbreviations: R-Se@MEF2D-siRNA, RGDfC-modified selenium nanoparticles loaded with MEF2D-siRNA; R-Se@siNC, RGDfC-modified selenium nanoparticles loaded 
with siRNA (negative control).
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transformed into green fluorescence, indicating 
R-Se@MEF2D-siRNA elevated the mitochondria depolari-
zation of SKOV3 cells. The mitochondrial dysfunctions of 
SKOV3 cells exposed to R-Se@MEF2D-siRNA remarkably 
increased from 1.7% (untreated cells) to 21.32%. The above 
result indicates that the mitochondrial dysfunction induced 
by R-Se@MEF2D-siRNA makes an important contribution 
to the apoptosis of SKOV3 ovarian cancer cells.

Overproduction of reactive oxygen species (ROS) 
caused by antitumor drugs plays an essential role in the 
apoptosis and death of cancer cells.39 Therefore, in this 
study, the ROS level of SKOV3 cells was detected via 
fluorescence method. Figure 7B shows that 
R-Se@MEF2D-siRNA-treatment resulted in an obvious 
increase of DCF green fluorescence signal in SKOV3 
cells, suggesting the ROS overproduction. Nevertheless, 
R-Se@siNC did not affect the MMP and the ROS level in 
comparison with the control group. The above results 
indicate that mitochondrial dysfunction and ROS 

overproduction induced by R-Se@MEF2D-siRNA play 
an important role in apoptosis of SKOV3 cells.

In vivo Anti-Tumor Efficacy and Toxicity 
Studies
The SKOV3 tumor xenograft was applied to assess the 
in vivo anticancer efficacy of R-Se@MEF2D-siRNA. 
From Figure 8A, as expected, R-Se@MEF2D-siRNA sig-
nificantly delayed the tumor growth compared to the saline 
group (control) and R-Se@siNC group (negative control), 
verifying good antitumor efficacy of R-Se@MEF2D- 
siRNA. As seen from Figure 8B, the body weights of 
mice during the treatment period showed a slight increase, 
indicating that R-Se@MEF2D-siRNA was biocompatible 
materials in mice at the used dose. The anticancer mechan-
ism of R-Se@MEF2D-siRNA was further elaborated by 
histological studies. Ki67-staining was used to examine 
the proliferation of tumor cells. The caspase-3, pp53, and 
TUNEL staining were applied to study tumor cells 
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Figure 7 (A) R-Se@MEF2D-siRNA induced changes of MMP in SKOV3 cells. The MMP values of treated cells were examined by flow cytometry using JC-1 staining. (B) 
R-Se@MEF2D-siRNA increased the ROS level of SKOV3 cells. The treated SKOV3 cells were co-incubated with DCFDA for 30 minutes and then visualized by 
a fluorescence microscope to measure intracellular ROS levels. Scale bar indicates 20 μm. 
Abbreviations: R-Se@MEF2D-siRNA, RGDfC-modified selenium nanoparticles loaded with MEF2D-siRNA; R-Se@siNC, RGDfC-modified selenium nanoparticles loaded 
with siRNA (negative control).
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apoptosis (Figure 8C). Compared to the saline-treatment 
group, the treatment of R-Se@MEF2D-siRNA observably 
reduced the Ki67-positive tumor cells, suggesting that the 
proliferation of tumor cells was suppressed by 
R-Se@MEF2D-siRNA. As expected, R-Se@MEF2D- 
siRNA could obviously induce tumor cell apoptosis. 
These results indicated that R-Se@MEF2D-siRNA pre-
sented a significant antitumor efficacy in ovarian cancer 
treatments by suppressing the proliferation of SKOV3 
ovarian cancer cells and inducing its apoptosis.

To assess in vivo toxicity of R-Se@MEF2D-siRNA, 
heart, kidneys, liver, lung and spleen of mice were collected 
and stained with H&E. As shown in Figure 9, the H&E 
stained heart, kidneys, liver, lung, and spleen tissue sections 
in the R-Se@MEF2D-siRNA-treatment group showed no 
obvious abnormality compared to saline or R-Se@siNC 
negative groups, further proving the good in vivo 

biocompatibility of R-Se@MEF2D-siRNA. Thus, 
R-Se@MEF2D-siRNA exhibited promising potential to be 
a prodrug for ovarian cancer therapy.

Conclusions
In this study, a tumor-targeted siRNA delivery carrier 
R-SeNPs was fabricated to deliver MEF2D-siRNA to 
SKOV3 cells for ovarian cancer therapy. R-Se@MEF2D- 
siRNA exhibited significant uptake in SKOV3 cells by cla-
thrin-associated endocytosis and release of MEF2D-siRNA 
from R-SeNPs in acidic condition was quicker than that in 
normal physiological condition. R-Se@MEF2D-siRNA 
could efficaciously silence gene expression of MEF2D in 
SKOV3 cells and suppress proliferations of SKOV3 cells, 
and trigger SKOV3 cells apoptosis. More importantly, 
R-Se@MEF2D-siRNA exerted significant antitumor activity 
with low toxic side-effects in tumor-bearing nude mice. 

Figure 8 (A) Tumor volume change curves in different treated groups during 21 day treatment. **P<0.01 vs saline. (B) The weight of mice was recorded during 21 day 
treatment. (C) The immunohistochemical analysis of tumor tissues in different treated mice. Scale bar indicates 50 µm. 
Abbreviations: R-Se@MEF2D-siRNA, RGDfC-modified selenium nanoparticles loaded with MEF2D-siRNA; R-Se@siNC, RGDfC-modified selenium nanoparticles loaded 
with siRNA (negative control).
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Taken together, R-Se@MEF2D-siRNA holds promising 
potential for ovarian cancer gene therapy.
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