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Abstract

Infectious diseases are often transmitted through local interactions. Yet, both surveillance

and control measures are implemented within administrative units. Capturing local transmis-

sion processes and spatial coupling between regions from aggregate level data is therefore

a technical challenge that can shed light on both theoretical questions and practical deci-

sions. Fox rabies has been eliminated from much of Europe through oral rabies vaccination

(ORV) programmes. The European Union (EU) co-finances ORV to maintain rabies free-

dom in EU member and border states via a cordon sanitaire. Models to capture local trans-

mission dynamics and spatial coupling have immediate application to the planning of these

ORV campaigns and to other parts of the world considering oral vaccination. We fitted a

hierarchical Bayesian state-space model to data on three decades of fox rabies cases and

ORV campaigns from Eastern Germany. Specifically, we find that (i) combining regional

spatial coupling and heterogeneous local transmission allows us to capture regional rabies

dynamics; (ii) incursions from other regions account for less than 1% of cases, but allow for

re-emergence of disease; (iii) herd immunity achieved through bi-annual vaccination cam-

paigns is short-lived due to population turnover. Together, these findings highlight the need

for regular and sustained vaccination efforts and our modelling approach can be used to pro-

vide strategic guidance for ORV delivery. Moreover, we show that biological understanding

can be gained from inference from partially observed data on wildlife disease.

Introduction

Disease dynamics are underpinned by the interplay between population connectivity and the

localized nature of transmission [1–4]. Many infectious diseases are transmitted primarily

through local interactions, but control strategies and surveillance are implemented at coarser

administrative scales. As a result, only aggregate data is available on the occurrence of infec-

tions, which makes it difficult to disentangle the extent to which disease dynamics are driven

by local transmission versus spatial coupling between subpopulations. Approaches that quan-

tify these processes have potential to guide the efficient use of resources for disease control.
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Epidemiological data are inherently complex due to variability arising from infectious dis-

ease dynamics, including stochastic spatial transmission processes and observation limits to

case detection. The study of wildlife disease is particularly complex for several reasons. Surveil-

lance only detects a (usually small) proportion of circulating infections and oftentimes the

incidence of disease in wildlife populations can only be inferred through indirect measures

(veterinary records, hunting reports), with variable levels of detection [5]. Under limited sur-

veillance failed invasions or low level persistence may be missed entirely. Wildlife populations

are often not monitored closely and therefore knowledge of their size and spatial distribution

are typically limited and imprecise [6]. Animals and humans move in different ways, as a result

of social groups, territorial boundaries, and specific habitats and geographical features that can

direct or impede movement [7, 8]. Many animals have faster demographic rates than humans

[9], such that the herd immunity achieved through vaccination is relatively short-lived. Finally,

vaccination programmes targeting wildlife are challenging to implement and monitor [10–12].

Traditional epidemiological models that assume homogenous mixing i.e. individuals inter-

acting randomly and uniformly with all others in the population, have yielded important

insights, such as thresholds for disease invasion and control [13–15]. But these models have

not accounted for heterogeneous mixing, which is critical for directly transmitted diseases in

wildlife populations. Individual-based models explicitly model interactions within discrete

spatial or social neighbourhoods [1, 16], but require detailed data that is rarely available for

wildlife populations. Approximations have been developed to capture interactions between

infected and susceptible individuals at the local level [17–21], for example, ‘heterogeneity’

parameters [17, 18, 22]. These approaches have been effective for human diseases such as chol-

era [23] and measles [1], but have not been applied to wildlife diseases such as rabies.

Rabies has been eliminated from fox populations throughout much of Europe by vaccinat-

ing foxes using oral baits containing vaccine. In just over three decades, vaccine baits have

been distributed across 2.36 million km2 [24–26]. Since the late 1980s the European Union

(EU) has co-financed Oral Rabies Vaccination (ORV) programmes in member and border

states [24, 25, 27]. Models that capture local transmission dynamics of fox rabies and regional

connectivity therefore have immediate application to the situation in Europe and elsewhere.

Here, we examine fox rabies dynamics in response to oral vaccination using a hierarchical

Bayesian state-space model fit to incidence data from Eastern Germany from 1982-2013. We

use a metapopulation approach to model transmission by representing space as a network of

subpopulations and estimating the movement of infected individuals (or coupling) between

them. We account for heterogeneous mixing using a transmission process that approximates

the scaling of individual interactions to the regional level. This study presents a first step

towards disentangling local transmission and spatial coupling between subpopulations from

aggregated and incomplete data on wildlife rabies.

Materials and methods

We analysed monthly time series of fox rabies cases for the period 1982-2013 from 5 federal

states in Eastern Germany (Brandenburg, Mecklenburg-Vorpommern, Sachsen, Sachsen-

Anhalt, and Thüringen) in relation to the timing of ORV campaigns, fitting a hierarchical

Bayesian state-space model to these data.

0.1 Data collection

We compiled records of laboratory-confirmed rabies cases in foxes from regular reports by the

national veterinary authorities and summarized for each federal state (hereafter referred to as

region) on a monthly basis. Specimens of suspect rabid foxes were submitted primarily by
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veterinarians and hunters. From 1993, cross-sectional sampling of foxes was also conducted,

whereby a proportion of foxes hunted were tested for rabies providing a measure of rabies

prevalence in the population. The timing of ORV campaigns in each region was also compiled.

The Rabies Bulletin Europe (RBE) is a database consisting of national rabies surveillance data

managed by the WHO Collaborating Centre for Rabies Surveillance and Research at the Fried-

rich-Loeffler-Institut in Germany [28, 29]. A monthly average number of confirmed rabies

cases was calculated from the RBE quarterly reports for neighbouring regions in Poland and

the Czech Republic that border the five federal states in Germany.

0.2 Bayesian state-space model

A discrete time stochastic metapopulation model with three states: Susceptible (S), Infected (I),

and Vaccinated (V), was developed to model the numbers of foxes and rabies cases in different

regions through time. The Bayesian approach allowed us to complement the rabies case data

with prior information on some parameters from historical studies on fox demography.

A demographic process was used to model the numbers of susceptible and vaccinated foxes

in each region at monthly time steps. The starting susceptible population and carrying capacity

for each region were extracted from the literature, based on the average density of foxes per

km2 and multiplying this density by the area of the region [30–32]. Births were modelled as

occurring in April of each year with newborn foxes entering the susceptible population in July

coinciding with when they venture further from their den. All susceptible and vaccinated foxes

older than one year of age were considered reproductively active. This means that surviving

newborns from the past year give birth the following April. We assume that infected individu-

als transmit rabies and die within the same month, such that infectious animals in the current

month t, transmit infection to new animals that subsequently develop rabies the following

month t + 1. No exposed class was considered because the latent period of rabies infection

lasts an average of three weeks and thus all new infections at month t become symptomatic by

month t + 1 [33]. Data on the timing of vaccination campaigns in each region were incorpo-

rated explicitly.

Susceptible individuals S in region r, in month t were modeled as a function of juvenile

foxes entering the susceptible population three months after birth jr,t, surviving individuals Cr,t
and those removed due to vaccination Vr,t or infection Ir,t:

Sr;tþ1 ¼ jr;t þ Cr;t � Vr;t � Ir;t ð1Þ

The first term jr,t is a binomially distributed variable representing juvenile foxes entering

the susceptible population three months after birth and takes the form:

jr;t � Binðs3; ar;tÞ ð2Þ

where s3 is the 3-month survival probability and ar,t are the newborn foxes. Foxes live to a max-

imum age of about 4 years [32]. If we assume that only 1% of foxes are alive at age 4 years we

can use the following expression to determine the survival probability: s48 = 0.01, s = 0.01(1/48)

= 0.909. We delayed fox entry into the population until 3 months after birth, in part to account

for the time that foxes spend in the den, but also to account for the higher rate of natural mor-

tality experienced by juveniles [32].

ar;t � Poissonðar;tðSr;t þ Vr;tÞe�yÞ ð3Þ
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where

ar;t ¼

(
ar if t ¼ t0 þ k12

0; otherwise

�y � Nð0; tÞ ð4Þ

and αr is the per capita annual birth rate in region r in month t applied to all susceptible S and

vaccinated V individuals in the system. Fecundity is regulated by annual fluctuations in the

environment, e�y . Here, we use the exponential term e�y and a normal prior centred around 0

for �y to capture the effect of environmental noise on the size of the birth pulse. Under the

exponential, when � is 0, then e0 = 1, meaning there is no change in the size of the birth pulse.

An � smaller or greater than 0 will result in a smaller or larger birth pulse, respectively. The

prior for the precision term, τ, is specified such that the birth pulse can vary by + /− 10% in

line with fluctuations in the birth pulse observed in wild fox populations [34].

The realised per capita annual birth rate with density dependence takes the form:

ar ¼
blr

lr þ Sr;t þ Vr;t
ð5Þ

where b is the maximum annual per capita reproductive rate.

We use the form in Eq (5) instead of

ar ¼
bðSr;t þ Vr;tÞ

lr þ Sr;t þ Vr;t
ð6Þ

so that as the population, (Sr,t + Vr,t), approaches the carrying capacity, the birth rate tends to

0. In the other form, the birth rate would tend to 1 as the size of the population gets larger

which would not accurately capture the effect of density dependence.

The strength of density dependence is controlled by the parameter λr in the different

regions r and takes the form:

lr ¼
ðs � 1ÞKr

1 � s � b=12
ð7Þ

where s is the survival probability (see Eq (2)) and Kr is the carrying capacity in region r.
The second term in Eq (1) comes from a binomial distribution and represents the surviving

susceptible individuals in region r and month t,

Cr;t � Binðs; Sr;tÞ ð8Þ

where s is the survival probability (see Eq (2)) and is assumed to be fixed across time and

regions.

Infected individuals are modelled as:

Ir;t ¼ ð1 � rrÞI�r;t þ
X

i6¼r

rili;rI
�

i;t ð9Þ

where I�r;t is the number of infected individuals in region r prior to any movement. Infected

individuals leave the region with probability ρr. The summation term represents incursions

from other regions as a function of rabies incidence I�i;t in region i, the proportion of infected

animals leaving region i: ρi, and li,r the proportion of those moving to region r. This can be

modelled in different ways, but here we chose to equate it to the proportion of the border of
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region i that is shared with region r. We only considered the movement of infected animals as

healthy animals are more likely to be faithful to their home range, with the exception of rare

seasonal excursions. Where a healthy fox has moved outside its territory, we do not believe

that there will be significant changes in the population in neighbouring regions that will affect

the carrying capacity and population density.

The probability of leaving ρi was calculated as:

ri ¼
rmax

ffiffiffiffiffiffiffiffi
Amin

p

ffiffiffiffiffi
Ai

p ð10Þ

where ρmax is the maximum leaving rate. Under a diffusive assumption for movement the leav-

ing rate is expected to decrease as the size of the region increases relative to its perimeter and

the probability that any given infected animal moves outside of its region declines. To capture

this effect, we scaled the leaving rate by dividing it by the area of the region
ffiffiffiffiffi
Ai

p
, which is pro-

portional to how far individuals are from the perimeter of the region.

In the model, new infections are generated within region r from a Binomial distribution:

Ir;tþ1 � Binðpr;t; Sr;tÞ ð11Þ

where the new infected individuals Ir,t at time t + 1 in region r are generated from the suscepti-

ble individuals S with a risk of transmission probability pr,t represented by:

pr;t ¼
Ir;t

hAr þ Ir;t
ð12Þ

Here hAr is the half-saturation point for pr,t. That is the number of infected individuals that

raise the transmission probability to 0.5. We assume that this number is only a function of the

total area of the region, appropriately scaled by the constant h which is estimated from the

data. Subsequently, the risk of infection pr,t depends on the density of infected individuals
Ir;t

hArþIr;t
in the region, with the transmission rate per infected individual decaying as the number

of infected individuals grows.

The biological rationale behind Eq (12) is that in larger areas, susceptible individuals are

expected to be less accessible to infected individuals due to the greater distance to reach them.

The addition of infected individuals in the denominator allows us to account for saturation

effects that occur at high incidence, when infected individuals might contact fewer susceptibles

due to disease-induced mortality or because local contacts might already be latently infected.

Local susceptible depletion thereby reduces the transmission rate of each infected individual as

incidence increases.

The functional form of transmission, Eq (12), is a special case of the general incidence rate

model, G(I), in section 5 of [18]:

GðIÞ ¼
kIp� 1

1þmIp� 1
ð13Þ

where I is the number of infected individuals and k, p, q, and m are positive constants.

In [18], transmission rates are modelled using the product Sq G(I), where S is the number of

susceptible individuals and q creates nonlinearity in the mixing rates as the number of suscep-

tibles increases, in order to represent heterogeneities (e.g. due to spatially localised

transmission).
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In our model, the deterministic transmission rate from the binomial process of Eq (11) is

Spr,t. We can therefore see our approach as a special case of the more general approach sug-

gested by [18], if we set q = 1, p = 2,m = k = hAr−1.

The time evolution of the number of vaccinated individuals is modelled as:

Vr;tþ1 ¼ vr;t þ Xr;t ð14Þ

where vr,t represents the newly vaccinated individuals drawn from a binomial distribution.

vr;t � B n
Sr;t

Sr;t þ Vr;t
; Sr;t

 !

ð15Þ

and ν is the rate of bait uptake by the population of susceptible and vaccinated individuals in

region r at time t. The bait uptake rate ν was given a fixed Beta prior with mean 0.30 and vari-

ance of 0.005 based on field studies [35]. To account for the depletion of baits by already vacci-

nated conspecifics, the rate of bait uptake by susceptible individuals is determined relative to

their proportion in the population
Sr;t

Sr;tþVr;t
. Vaccination is switched on and off by an indicator

variable that is 0 in all months apart from those when a vaccination campaign occurred when

it equals 1. Vaccination campaigns were typically carried out in September or October and

April during the study period. The term Xr,t in Eq (14) represents surviving vaccinated individ-

uals from the previous time step drawn from a Binomial distribution.

Xr;t � Binðs;Vr;tÞ ð16Þ

where s is the survival probability (see Eq (2)).

We assumed that infected individuals Ir,t were observed imperfectly each year with proba-

bility θy:

Î r;t � Binðyy; Ir;tÞ ð17Þ

where the observational noise θy varies stochastically on an annual basis.

In the cross-sectional sampling regime, hunted foxes Hr,t had a probability of being

observed to be infected equal to the risk of transmission pr,t.

Ĥ posr;t � Bðpr;t;Hr;tÞ ð18Þ

where Ĥposr;t is the number of positive cases out of the total foxes hunted Hr,t.
1 Model fitting. All models were fitted using the software JAGS [36], which uses Gibbs

sampling to generate posterior distributions of the parameters given the likelihood, prior dis-

tributions and the data itself. We ran the models for 3,000,000 iterations, with a burn-in of

30,000 and a thin interval of 300, giving 10,000 samples. We inspected the model for conver-

gence and effective sample size. To account for the fact that fox-mediated rabies had been cir-

culating in Germany since the late 1940s, we started the model 10 years (120 time steps) prior

to when the time series began to allow the system to settle at an endemic equilibrium. Fitting

of the model required considerable computational time and a compromise in what parameters

were estimated in order for the model to converge. This was resolved pragmatically by fixing

some parameters that were not central to the research questions or for which good quality

information was available (Table 1).

We were primarily interested in estimating four main parameters: the heterogeneity param-

eter for transmission h, the probability of an infected fox leaving an area ρmax, the observation

rate θ, and the precision τ of the environmental noise (Table 2). Both the observation rate

(observational noise) and environmental noise varied annually. Therefore, in addition to
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reporting the estimates of the parameter, we also tracked the values that the annual observa-

tional noise and environmental noise terms took for the year. The model was highly sensitive

as there are multiple ways to explain an increase in new infections such as a larger population,

or a smaller population and a higher transmission rate, or a higher rate of detection. For this

reason, we thought very carefully about the priors we chose from a biological perspective. The

heterogeneity parameter h for transmission was given a gamma prior with mean 4 and vari-

ance 9. We experimented with the sensitivity of the model to the parameter θ, for quantifying

case detection. We chose a prior for ρmax (the rate at which infected foxes leave their focal

region) where the posterior, informed by data, would have to move away from 0, ‘no move-

ment’, to support connectivity between regions. Because infected foxes have a limited dispersal

range [37], we expected the value of ρmax to be small. To limit the search to a biologically plau-

sible range of values for the leaving rate, we used a Beta prior with mean 0.004 and variance

0.000005 that declined with distance from 0. The precision of the environmental noise term τ
was given a gamma prior with mean 1000 and variance 5000, based on fluctuations in fox

reproductive effort reported in the literature [34]. This allowed the litter size (or birth pulse) to

vary between 0.9 and 1.1 of the mean litter size each year.

Table 1. Fixed parameters used in the Bayesian hierarchical model.

Variable Description Parameter JAGS code Value References

Birth per capita birth rate b b 4 [32, 38]

Survival survival probability s s 0.908 [32, 39]

Vaccination Rate ν v dbeta(12.3, 28.7) (0.3, 0.005) [35]

Area (km2) Size of region A A

Shared border (km) 15 x 15 matrix l qb

Carrying Capacity region 1 K1 K[1] 117916

region 2 K2 K[2] 92720

region 3 K3 K[3] 72584

region 4 K4 K[4] 81784

region 5 K5 K[5] 64688

Area (km2) region 1 A1 A[1] 29479

region 2 A2 A[2] 23180

region 3 A3 A[3] 18146

region 4 A4 A[4] 20446

region 5 A5 A[5] 16172

https://doi.org/10.1371/journal.pone.0220592.t001

Table 2. Priors used for the stochastic parameters in the Bayesian hierarchical model.

Variable Parameter JAGS code Distribution Prior Mean and variance Reference

Leaving probability ρ c Beta dbeta(1.26176, 156.45824) (0.008, 5e-5) [34]

Heterogeneity parameter h h Gamma dgamma(1.7777, 0.4444) (4, 9)

Environmental Noise τ tau Gamma dgamma(200, 0.2) (1000, 5000)

Observation Probability θ obs1 Beta dbeta(9.45, 179.55) (0.05, 0.00001)

Population Region 1 start_pop[1, 1] Gamma dgamma(50.06, 0.0007) (70750, 100e6)

Population Region 2 start_pop[2, 1] Gamma dgamma(30.95, 0.0006) (55632, 100e6)

Population Region 3 start_pop[3, 1] Gamma dgamma(18.97, 0.0004) (43550, 100e6)

Population Region 4 start_pop[4, 1] Gamma dgamma(24.08, 0.0005) (49070, 100e6)

Population Region 5 start_pop[5, 1] Gamma dgamma(15.06, 0.0004) (38813, 100e6)

https://doi.org/10.1371/journal.pone.0220592.t002
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2 Model evaluation. To assess the model fit we used a probability integral transform, test-

ing whether the observed rabies cases can reasonably be assumed to be arising from the chosen

model. This was done by comparing the observed number of rabies cases to the posterior dis-

tribution of the expected number of infected cases estimated from the MCMC samples, calcu-

lating the percentile where the data point fell within the cumulative distribution function [40].

Because the credible intervals are calculated from the posterior of the expected values and not

the posterior of the prediction, which also includes an error term, the credible intervals are

more conservative and reflect only the uncertainty around the regression and not the predic-

tion. As a result, they are narrower than the credible intervals of the prediction because they

do not include this error.

To assess the model fit through time we plotted the computed monthly probability integral

transform values through time. To explore the full range of potential rabies epidemic scenarios

within the parameter space, we simulated from the fitted model providing the same initial con-

ditions including the size of the region, connectivity between regions, carrying capacity, initial

number of susceptible and infected individuals, and rates of vaccination. We also assessed the

model predictions when the model was provided with the first data point and the first 20 data

points in the time series in each region using the probability integral transform to assess the

prediction.

Results

Across all regions the number of reported annual fox rabies cases ranged from 959 to 2375

pre-vaccination, with 2277 cases in 1990, the first year of vaccination. A swift decline in rabies

followed, with 1643, 321, 28, 4 cases detected in the subsequent years. Fitting the model to the

fox rabies case data generated estimates of local transmission and spatial coupling between

regions. The model captured key aspects of fox demography including the birth pulse, fluctua-

tions in fecundity with environmental noise, and in surveillance, yielding a close fit to the case

data in all 5 regions (Fig 1). From the fitted parameters (95% highest posterior density [HPD]

for h of 1.56–1.63; for ρmax of 0.010–0.032; for θ of 0.099–0.116; and τ of 596–791), we esti-

mated that less than 8% of the fox population were infected by rabies annually and that inci-

dence declined to zero within 5 years from the start of ORV campaigns (annual endemic

incidence ranged from <1% to a possible maximum of 15%). Using our fitted parameter val-

ues in Eqs 10 and 11, we estimate the basic reproduction number for rabies, R0, to be approxi-

mately 1.49 but up to as high as 2.5 following the influx of susceptibles from the birth pulse.

The model accommodated uncertainty in the biological and observation processes, allowing

inference of missing time series of infected, susceptible, and vaccinated individuals by latent

process methods.

In terms of model fitting, the posterior for transmission heterogeneity h was both within

the broad support of the prior and more precise than the prior after being informed by the

data (Fig 2). Too much flexibility in θ caused the model to explain most cases in terms of

detectability, rather than the epidemiological processes. In these cases, θ tended to settle on

posterior values that were too large compared to expert opinion for rabies and known limits of

passive surveillance. Specifically, we found that wider priors for θ (e.g. mean = 0.10, vari-

ance = 0.01), went to biologically implausible areas of parameter space (around 30-40% of

cases observed) (S2 Fig). The more flexible model also resulted in larger unrealistic values of h
and poor model convergence that we believe is due to the biological processes not being cap-

tured effectively. We addressed this pragmatically by incorporating expert opinion into our

prior for detectability (mean = 0.05, variance = 0.00025).

PLOS ONE Local rabies transmission and regional spatial coupling in European foxes

PLOS ONE | https://doi.org/10.1371/journal.pone.0220592 May 29, 2020 8 / 19

https://doi.org/10.1371/journal.pone.0220592


Fig 1. State-space model results for 5 federal states in Eastern Germany: Brandenburg, Mecklenburg-

Vorpommern, Sachsen-Anhalt, Sachsen, and Thüringen. The gray line represents the estimated percentage of the

population vaccinated. The dark blue line is the monthly reported rabies cases for each region. The light blue shaded

region is the 95% credible intervals.

https://doi.org/10.1371/journal.pone.0220592.g001
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The posterior for ρmax (the rate at which infected foxes leave their focal region) supported

our hypothesis of connectivity between regions by moving away from 0. The posterior distri-

bution of the environmental noise term τ shifts to the left of the prior, which suggests that the

population fluctuates slightly more than specified by the prior. Although the fluctuations esti-

mated from the model were larger than previously reported [34], they rarely exceeded 10%

with the largest reaching 15%. This could be due to more extreme environmental changes dur-

ing this period compared to when Lindström’s study was conducted.

Fig 2. The posterior distribution and priors for the parameters estimated in the hierarchical Bayesian state-space model. The posterior

distribution is shaded in blue (dark blue represents the 2.5-97.5% credible intervals, the light blue represents the 0-2.5% and 97.5-100% credible

intervals), the black line represents the prior distribution. In order from top to bottom and left to right are the parameters representing fluctuations in

fecundity due to environmental noise τ, rate of migration of rabid foxes between regions ρmax in the equation, rabies transmission heteorgeneity h,

zoomed out to show the prior, and zoomed in to show the distributions better, and the annual probability of observing rabies cases θ.

https://doi.org/10.1371/journal.pone.0220592.g002
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The multi-year peaks in observed cases are largely explained by the annual birth rate and

variation in both the observation rate and environmental noise (Fig 3). The environmental

noise term influences the size of the susceptible population by increasing or decreasing the size

of the birth pulse. In the model this results in more infected individuals, while a larger observa-

tion rate means that although more cases were detected, fewer cases occurred overall.

We estimated that incursions from neighbouring regions accounted for on average 1% or

less of monthly rabies cases in a region, with the mean number of incursions varying between

0 and 4 per month in each region and from 0-24 per year (Fig 4. Low numbers of estimated

external incursions from 2000 onwards reflect coincident declines in rabies cases in all 5

regions resulting from coordinated vaccination.

Under the fixed vaccination rate (mean = 0.30, variance = 0.005), herd immunity peaked at

between 60-75% of the population vaccinated in each region (Fig 1). Swift reductions in herd

immunity occurred due to the entry of juvenile foxes into the population three months after

the birth pulse (July), reducing the percentage of vaccinated individuals in the population by

more than half. Between the annual entry of juvenile foxes, levels of herd immunity were

maintained as vaccinated and susceptible individuals experience the same rate of natural mor-

tality and rabies only claims a small proportion of the susceptible population (Fig 1).

From the plot of the probability integral transform calculated from the MCMC samples of

the model fit, we can see that the model does not capture the largest peaks in observed cases

and misses some of the observed cases between the birth pulses, when the population is at its

lowest (Fig 5A). In the model, mortality is constant across the population, however, foxes expe-

rience a higher rate of mortality in the first months of life. Therefore, sharper population

declines might be expected to follow the birth pulse due to this high juvenile mortality.

Fig 3. Annual observational and environmental noise estimates over time. The top and bottom panel show the annual observational noise estimates

(red) and annual environmental noise estimates (blue) over time. The dark lines represent the mean estimates, the lighter envelope represents the 95%

credible intervals. The environmental noise parameter fluctuates between − 10 and + 15%. The observational noise term ranges between 5% and 18%.

https://doi.org/10.1371/journal.pone.0220592.g003
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Generally the fluctuations in observed cases were more variable compared to the model expec-

tations. This could be because the model only allows for annual variability in the probability of

detection and environmental variability rather than monthly variation. This was a deliberate

modelling choice, as we found that too much flexibility in the detection probability or environ-

mental noise (i.e. allowing these variables to vary by month or have a wider prior) resulted in

overfitting and came at the expense of convergence of the other parameters, in particular

transmission heterogeneity. Even though the fitted model expects a more gradual and

smoothed number of cases than the observed data and the credible intervals are misleadingly

narrow, the expectation is not far off from the observed cases and the model successfully cap-

tures the effect of vaccination.

From the model projections, the most dominant features were oscillations due to the entry

of juvenile foxes after the birth pulse (Fig 5B and 5C). In the first prediction, when the model

Fig 4. Estimated incursions per region through time. The map and incursions are colour-coded by region (BB = Brandenburg, MV = Mecklenburg-

Vorpommern, SN = Sachsen, ST = Sachsen-Anhalt, and TH = Thüringen). Light grey regions represented neighbouring regions included in the model

from Germany, Czech Republic, and Poland. The darker lines represent the mean number of incursions estimated per region. The lighter envelopes

indicate the credible intervals.

https://doi.org/10.1371/journal.pone.0220592.g004
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is only provided with the first data point in the time series, all of the cases fall within the credi-

ble intervals and the majority of data points are within the middle 50% of the credible intervals,

which suggests that the model prediction is too broad (Fig 5B). The model’s prediction

improves when provided with the first 20 data points in the time series and is good at project-

ing the long-term behaviour and decline of rabies. However the prediction misses the tail end

of the cases (Fig 5C). Although the credible intervals around the model predictions reduced

when more data was provided, the model was unable to capture the multi-year oscillations in

cases, which in the model fit were explained by annual fluctuations in environmental noise

and variation in the annual observation rate (Fig 3).

Discussion

Approaches to understand interactions between spatial and demographic processes are likely

to reveal key insights into disease dynamics in wildlife populations. Here, we present a method

to capture local transmission processes and spatial coupling between regions from partially

Fig 5. Model fit and projections with the first data point and first 20 data points of the time series with accompanying probability integral

transform plots. The left panels show A. the model fit, B. the model projection with the first data point of the time series, and C. the model projection

with first 20 data points of the time series. The right panels show the corresponding probability integral transform, i.e. where the observed case falls in

the cumulative distribution function, over time for the three cases A-C. The dark blue line represents the observed rabies cases and the light and dark

shaded blue regions represent the 95% and 50% Credible Intervals (CI) estimated from the MCMC samples, respectively. The colours in the probability

integral transform plot indicate whether the observed cases falls inside (red) the 95% CI, outside (turquoise) the 95% CI but within the 100% CI, or

outlier (green) when the case falls outside the CI entirely.

https://doi.org/10.1371/journal.pone.0220592.g005
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observed data on wildlife diseases. Using a hierarchical Bayesian State-space metapopulation

approach we were able to recreate observed dynamics, and infer missing time series by latent

process methods. Specifically we find that (i) spatial coupling and local transmission can be

estimated from aggregated data using a metapopulation modelling approach and a heteroge-

neous mixing term that captures the low incidence dynamics of rabies at a regional level; (ii)

incursions of rabid foxes from other regions that account for less than 1% of cases are sufficient

to trigger rabies re-emergence; and (iii) herd immunity achieved through bi-annual vaccina-

tion campaigns is short-lived due to fox population turnover. Together these findings have

important practical implications for the design of control measures.

Partially observed disease data is common in the study of wildlife disease. Using a Bayesian

state-space model we were able to accommodate uncertainty in the biological and observation

processes and infer missing time series by latent process methods. By combining a metapopu-

lation model representing space as a network of subpopulations with different rates of cou-

pling, and a transmission process that approximates the scaling of individual interactions to

regional dynamics, we provide a framework to estimate the rate of incursions and to model

local dynamics. The heterogeneous mixing term involved a decay function that allowed for a

reduction in transmission as the number of infected individuals increased. Our approximation

was able to capture the low incidence of fox rabies and prevented unrealistically large epidem-

ics. Earlier studies have accounted for heterogenous mixing in childhood diseases [17, 22] and

influenza [18], however, this study is the first to use such an approximation for rabies. The

approach has potential application for other diseases that circulate through local interactions

but for which surveillance data is aggregated.

We report an R0 estimate for rabies in red foxes, but this was sensitive to the susceptible fox

population size, which is not known for this area and is expected to fluctuate seasonally. Since

our model operates in discrete time (in monthly intervals), we also implicitly assume a genera-

tion interval of one month for fox rabies. While this assumption is reasonable, it may still

introduce bias to our R0 estimate. Fitting to more localized outbreaks rather than to region-

scale dynamics might also generate more accurate R0 estimates. Nonetheless our estimate of R0

was comparable to those from the literature, including 1.26 from an outbreak in Italy [41].

Incursions can play a crucial role in sustaining disease circulation, however many models

do not explicitly consider between-region transmission. We estimated that incursions com-

prise less than 1% of overall cases, reflecting the predominantly local nature of rabies transmis-

sion and the large size of the federal states. Although long-distance translocations of infected

wildlife are known to occur [42], fox rabies transmission is thought to mainly result from

movement of rabid and latently infected foxes. Even a small number of incursions from neigh-

bouring regions through such movement can enable disease resurgence in a rabies-free region

and are an important consideration in the design of vaccination strategies [43]. Coordinated

vaccination efforts between regions can act to isolate foci of infection [44] and are crucial to

the success of fox rabies elimination strategies [29]. Eastern Germany was able to rapidly elimi-

nate rabies compared to elsewhere in Germany thanks to coordinated vaccination effort [29].

Herd immunity in foxes is dynamic as a result of demographic processes, declining by

more than half following entry of juvenile foxes into the population following the birth pulse.

Influxes of new susceptible individuals may result in isolated infections becoming rapidly

reconnected with susceptible hosts and transmission maintained in the absence of adequate

immunity [5]. Our analyses of vaccination suggest that herd immunity is only maintained

through regular ORV campaigns due to high population turnover. This may also have impor-

tant implications for other wildlife diseases with marked birth pulses [45].

While our model generally captured rabies dynamics, it struggled to capture monthly varia-

tion in cases and long-term multi-year dynamics. The strongest mechanistic feature of our
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model driving these fluctuations was the entry of juvenile foxes into the population after the

birth pulse. This is evident from both model projections with 1 or 20 data points (Fig 5B and

5C). Although the credible intervals around the model predictions reduced when more data

was provided (20 data points compared to 1 data point), the model did not capture multi-year

oscillations in cases, which were explained by the annual environmental and observation noise

parameters. It is probable that changes in resource availability and variation in detection

explains some of the variation, but, we did not have any data to inform these parameters aside

from expert opinion. We speculate that nuances in the dynamics may be obscured due to the

aggregation of data. The behaviour of the observation parameter θ over time suggests either

marked changes in case detection or other mechanisms not being captured that the model is

apportioning to the observation rate. In analysing the data at a finer spatial scale we observe

multiple foci of cases within a region. However, because the data are aggregated these local

dynamics are not evident. Nonetheless, the model expectation is not far off from the observed

cases and the model successfully captures the effect of vaccination. Therefore, although the

model fit is overconfident, overall it does a good job of capturing the disease dynamics.

Our modelling framework addressed the general challenge of modeling heterogeneities in

transmission but still had limitations. Heterogeneous contact structure between subpopula-

tions within metapopulations can critically influence disease dynamics [46]. We scaled con-

nectivity between regions as a function of area and shared border length, assuming animals

closer to a border have a greater chance of transmitting rabies to foxes in neighbouring

regions. Analytical progress in scaling within and between subpopulation mixing [47] may

also be applicable to fox rabies. Capturing the most localised transmission with our term for

heterogeneous mixing was computationally intensive and required us to constrain parameters

within practical limits. In future work, we hope to explore the computational issues of our

model and evaluate the suitability of methods to approximate the computationally expensive

likelihood function [48, 49]. Recent empirical studies of hosts with GPS collars and/or proxim-

ity sensors suggest an important role for contact heterogeneities in rabies dynamics [50–52].

But inference from studies of healthy animals may be limited, given the behavioural changes

associated with rabies infection [53–55]. Models have potential to bridge this gap [56]. We

advocate testing these approaches to identify which can fully capture spatially resolved patterns

of rabies spread and persistence and be applied expediently.

Conclusion

Disease dynamics play out across space, irrespective of borders. Modelling approaches to

understand interactions between spatial and demographic processes can reveal key insights

into disease dynamics and are crucial to the planning of regional vaccination strategies. Several

studies have been central for guiding control of fox rabies in Europe. A simple deterministic,

compartmental model based on fox population biology compared the dynamics of rabies

under culling versus vaccination [38]. Spatially explicit individual-based models of rabies have

since been used to evaluate vaccination strategies for elimination [39, 57] and emergency vac-

cination under limited resources [58, 59]. Our study adds to the considerable body of work

that has been central for guiding the control of fox rabies in Europe [38, 58, 59]. It is the first to

estimate key epidemiological parameters, including spatial coupling and local transmission,

using a model fit to data. Our findings have implications for strategies aiming to achieve and

maintain rabies freedom and the modeling approach can be used to further explore vaccina-

tion strategies to inform ongoing vaccination in Eastern Europe [43]. This work also makes an

important methodological contribution to the study of spatial disease dynamics in other wild-

life diseases where only limited epidemiological and demographic data are available.
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