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Growing evidence suggests that T cells may play a critical role in combating severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2).Hence, COVID-19 vaccines that can elicit a robust T cell responsemay be particularly
important. The design, development and experimental evaluation of such vaccines is aided by an understanding
of the landscape of T cell epitopes of SARS-CoV-2, which is largely unknown. Due to the challenges of identifying
epitopes experimentally, many studies have proposed the use of in silico methods. Here, we present a review of
the in silicomethods that have beenused for the prediction of SARS-CoV-2 T cell epitopes. Thesemethods employ
a diverse set of technical approaches, often rooted in machine learning. A performance comparison is provided
based on the ability to identify a specific set of immunogenic epitopes that have been determined experimentally
to be targeted by T cells in convalescent COVID-19 patients, shedding light on the relative performance merits of
the different approaches adopted by the in silico studies. The review also puts forward perspectives for future re-
search directions.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the
causative agent of the ongoing COVID-19 pandemic, has resulted in
major loss of human life worldwide. At present, prior to themass distri-
bution of functioning vaccines, governments have mainly resorted to
traditional public health measures to control the spread of COVID-19,
such as social distancing, quarantine, mask mandates, and community
containment. The quest for an effective COVID-19 functioning vaccine
has been pursued at an unprecedented pace, with two vaccines already
being authorized for emergency use by the U.S. Food and Drug Admin-
istration (FDA) [1] (in less than a year), andmore than 300 vaccine can-
didates currently under trial [2].

Vaccines can stimulate both cellular and humoral responses, medi-
ated by T cells and antibodies respectively. Thus far, the majority of
COVID-19 vaccine candidates (including the approved ones) are based
on the spike (S) protein [2], which is themajor target of neutralizing an-
tibodies [3–5]. However, there is growing evidence to suggest that stim-
ulating broad T cell responses via vaccines may also be important [6,7].
This is supported by SARS-CoV-2 immunological studies reporting ro-
bust T cell responses to be correlated with favourable disease outcome
[8–10] and being potentially long-lasting [8]. Emerging data also sug-
gests the coordinated response of neutralizing antibodies and T cells
to be protective against COVID-19 [2,11]. Systematic longitudinal
SARS-CoV-2 immunological studies on larger cohorts will help to fur-
ther corroborate these findings, but nevertheless, they support the no-
tion that T cells, may play a prominent role in conferring protection
against COVID-19.

There is a large diversity of SARS-CoV-2 vaccines currently under
trial and these have been developed using both conventional and mod-
ern approaches [12]. Vaccines developed using conventional ap-
proaches, based on using a live-attenuated or inactivated virus, have
been effective in preventing infectious diseases caused by viruses such
as polio, measles, rubella, chickenpox, and many others. These ap-
proaches, however, have not produced successful vaccines against
other lethal viruses such as human immunodeficiency virus (HIV), hep-
atitis C virus, and dengue virus. Modern vaccine technologies
(e.g., peptide, subunit, DNA/RNA) provide promising alternatives. In
fact, for the case of SARS-CoV-2, the majority of vaccines in the ad-
vanced phase II or III of clinical trials are based on modern vaccine ap-
proaches [2]. These approaches introduce specific parts of the virus or
their genes into the body to produce a targeted immune response. As
a natural infection pathway is not followed, they can suffer from weak
immunogenicity, though immunogenicity may be boosted by augment-
ing with appropriately developed adjuvants [13,14].

Like for other viruses, T cells get activated by recognizing SARS-CoV-
2 peptides (short linear amino acid sequences) presented on the surface
of infected cells via human leukocyte antigen (HLA) molecules (Fig. 1).
The goal of a COVID-19 vaccine is to mimic this procedure by stimulat-
ing immune cells that specifically recognize SARS-CoV-2, thereby pre-
paring the immune system to combat the virus upon natural infection.
A common challenge faced bymodern vaccine approaches is to identify
specific SARS-CoV-2 peptides that are capable of inducing a robust and
protective T cell immune response. This is an important task in the over-
all vaccine development pipeline as it provides the basic recommenda-
tions for all downstream efforts to be subsequently pursued in vaccine
synthesis, laboratory testing, and clinical trials. Experimentally identify-
ing SARS-CoV-2 peptides that elicit T cell responses is difficult, due in
part to the enormous number of possible choices to test, and to the
high genetic variability of major histocompatibility complex (MHC)
genes that code for HLA molecules.

While each person has 12 unique types of HLA alleles, currently
more than 27,000 known HLA alleles are listed in the immune
polymorphism database [15], and these vary in their peptide binding
specificities. With the availability of a large amount of data related to
peptide-HLA binding, numerous attempts to solve the problem of
30
T cell epitope identification (i.e., predicting peptides capable of eliciting
T cell response) have been proposed that leverage this data through in
silicomethods [16–19]. For SARS-CoV-2, very soon after the first genetic
sequencesweremade available in January 2020, in silicomethods began
to be employed to predict and recommend T cell epitopes as potential
targets for a SARS-CoV-2 vaccine (Fig. 1). In addition to guiding vaccine
development, many of these predictions have been helpful in informing
experimental studies directed towards understanding immune re-
sponses naturally elicited in convalescent COVID-19 patients (Fig. 1).

This review discusses the rationale and features of the in silico
methods and tools that have been employed so far for SARS-CoV-2 T
cell epitope prediction. As we describe, a diverse set of computational
techniques have been employed, often exploiting machine learning ap-
proaches, and in some cases exploiting the expected cross-reactivity of
epitopes between genetically similar viruses. These in silico methods
and tools have often been developed independently and in many
cases have been trained using datasets related to other viruses or
other microbes, thereby making it difficult to understand the relative
performance of the epitope predictions for SARS-CoV-2. To help shed
light on these questions, this review presents a comparison of the pre-
dictions of 61 SARS-CoV-2 in silico studies, revealing commonalities
and differences among the specific SARS-CoV-2 epitopes predicted by
different methods. We also assess and compare the predictions when
applied to emerging data from nine experimental studies that have
identified SARS-CoV-2 T cell epitopes targeted in convalescent COVID-
19 patients. Insights into the current state of SARS-CoV-2 T cell epitope
prediction are also put forward, togetherwith perspectives on future re-
search directions and opportunities.

2. In silico methods used for SARS-CoV-2 T cell epitope prediction

We queried PUBMED on 8 September 2020 using the search terms
“T cell, covid-19, epitopes, computational, and in silico”, which pro-
duced a list of 40 publications. After excluding those that did not report
SARS-CoV-2 epitopes, this list was reduced to 31 publications (entries 1
to 31 in Table 1). Using the same search terms in Google Scholar on 8
September 2020, we gathered an additional 34 publications, giving a
total of 65 SARS-CoV-2 in silico epitope prediction studies (Table 1).
These studies can be broadly grouped into two classes based on their ra-
tionale for epitope prediction: those that predict SARS-CoV-2 epitopes
using SARS-CoV immunological data by exploiting the genetic similarity
between the two viruses (Ahmed et al. [20], Lee et al. [21], Grifoni et al.
[22], and Ranga et al. [23]), and those that apply peptide-HLA binding
prediction methods (the remaining 61 studies). We review and discuss
each of these approaches in the following.

2.1. Methods that exploit immunological data of SARS-CoV

Compared to other human coronaviruses, early studies using phylo-
genetic analysis [24,25] suggested SARS-CoV-2 to be most similar to
SARS-CoV, the virus that caused the 2003 SARS outbreak. In fact, the ge-
netic similarity of SARS-CoV-2 and SARS-CoVwas found to be quite high
in the structural proteins (~76% in S and >90% in N, M, and E proteins)
[20], which were known to induce robust and long-lasting T cell immu-
nity against SARS-CoV [26]. Motivated by the high genetic similarity of
SARS-CoV with SARS-CoV-2, multiple in silico studies [20–23] used the
information of T cell epitopes available from previous SARS-CoV immu-
nological studies to predict likely targets of SARS-CoV-2 T cell responses
(Table 1). This approach iswellmotivated,with cross-reactive T cell epi-
topes being reported previously for genetically similar viruses [27], in-
cluding zika virus, dengue virus, and other flaviviruses [28–31].
Interestingly, this was also the basic idea behind the first successful vac-
cine against an infectious disease, developed by Jenner in 1796, which
induced protective immunity against the smallpox virus through inocu-
lation with a related cowpox virus.



Fig. 1. Schematic illustration of T cell responses against SARS-CoV-2 and T cell epitope prediction using in silico approaches. (A) Viral peptides, derived from SARS-CoV-2 proteins after
multiple intra-cellular processing steps, are presented on the surface of infected cells and antigen presenting cells via HLA class I and class II molecules, respectively. Naïve T cells,
specialized in distinguishing foreign-peptides from self-peptides via training in the thymus, scan these peptide-HLA complexes to determine if the peptides belong to a foreign
microbe. Recognition of a foreign-peptide leads to activation, proliferation, and differentiation of naïve T cells into effector cells. There are two main types of effector T cells: CD8+ T
cells (or cytotoxic T lymphocytes; CTLs) that get activated by viral peptides bound to HLA class I molecules and help in killing the SARS-CoV-2 infected cells (right panel), while CD4+ T
cells (or helper T lymphocytes) get activated by peptides bound to HLA class II molecules and help in further enhancing SARS-CoV-2-specific CD8+ T cell and antibody responses (left
panel). These adaptive immune cells, activated by peptide-HLA complexes, can collectively mount a potent immune response against SARS-CoV-2. (B) In silico approaches analyze
SARS-CoV-2 protein sequences to predict a number of potential HLA-I and HLA-II epitopes that can be used to guide experiments to characterize T cell responses in COVID-19 patients
and to inform SARS-CoV-2 vaccine design.
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For identifying the SARS-CoV T cell epitopes likely to generate cross-
reactive immune responses against SARS-CoV-2, Ahmed et al. [20]
scanned all available SARS-CoV T cell epitopes in the ViPR database
[32] that had been determined previously by using experimental posi-
tive HLA binding or T cell assays, and identified epitopes that had an
exact match in the SARS-CoV-2 sequences available at that time. Subse-
quent studies by Lee et al. [21], Grifoni et al. [22], and Ranga et al. [23]
used the SARS-CoV epitopes as well as peptide-HLA binding prediction
methods (discussed in the next subsection) and proposed the common
ones as potential SARS-CoV-2 epitopes.

The sequence data of SARS-CoV-2 continues to be deposited into pub-
lic databases at an unprecedented rate, with the number of complete ge-
nome sequences available for SARS-CoV-2 in the GISAID database
exceeding 65,000 (as of September 2020), much greater than that avail-
able for many other viruses (e.g., ~12,900 whole genome sequences are
publicly available for HIV [33], and ~4400 for the hepatitis C virus [34]).
Taking advantage of this data, the authors of [20] later proposed a web-
based platform, COVIDep [35], for reporting SARS-CoV T cell epitopes as
potential vaccine targets for SARS-CoV-2 based on the latest sequence
data available. Compared to [20], which reported SARS-CoV epitopes
that were fully conserved within the SARS-CoV-2 sequences available in
February 2020, COVIDep provides a parameter that enables identification
of SARS-CoV epitopes that are identical among a desired fraction of the
latest available SARS-CoV-2 sequence data.

The epitopes predicted using SARS-CoV immunological information
have been used by multiple experimental studies for SARS-CoV-2 to
31
probe the immune responses in convalescent COVID-19 patients. As
will be discussed in Section 4, many epitopes predicted using this ap-
proach have been found to elicit a cross-reactive T cell response in
patients.

2.2. Methods based on prediction of peptide-HLA binding

The large majority of in silico SARS-CoV-2 vaccine design studies so
far have predicted T cell epitopes using existing peptide-HLA binding
prediction methods (see Table 1). A number of these studies also per-
formed a subsequent refinement step where the set of epitopes was
narrowed down by running computational tests to identify those capa-
ble of eliciting a robust and safe T cell response. In some cases, the re-
fined set of predicted epitopes were used to design a vaccine construct
by including appropriate signal sequences, proteasomal cleavage sites,
and linkers, and these were further tested in silico for features such as
immunogenicity, safety, and structural stability.

2.2.1. Initial epitope prediction methods
The in silico search for SARS-CoV-2 T cell epitopes has benefitted

from years of research in developing peptide-HLA binding algorithms.
Thesemethods have matured over time thanks to increased availability
of experimental data andmethodological advancements.Mostmethods
are specialized for predicting either HLA class I-restricted epitopes
(i.e., CD8+ T cell epitopes) or HLA class II-restricted epitopes
(i.e., CD4+ T cell epitopes), while some methods have been developed



Table 1
List of reviewed in silico SARS-CoV-2 T cell epitope prediction studies.

No. Study labela HLA-I epitope
predictionb

HLA-II epitope
predictionc

Immunogenicityd IFN-γ
productione

Conservation Allergenicityf Toxicityg Autoimmunity Vaccine
construct

1 Ahmed2020 [20] Using SARS-CoV
immunological
data

Using SARS-CoV
immunological
data

- - Y - - - -

2 Grifoni2020h [22] Using SARS-CoV
immunological
data,
NetMHCpan-4.0

Using SARS-CoV
immunological
data, Tepitool

- - - - - - -

3 Ranga2020 [23] Using SARS-CoV
immunological
data, NetCTL-1.2

- - - - - - - -

4 Lee2020h [21] Using SARS-CoV
immunological
data,
NetMHCpan-4.0

Using SARS-CoV
immunological
data

iPred - - - - - -

5 Baruah2020 [112] NetCTL-1.2,
NetChop,
CTLPred

- - IFNepitope - - - - -

6 Crooke2020 [96] NetCTL-1.2,
NetMHCpan-4.0

NetMHCIIpan-3.2 Vaxijen-2.0 - - AllerCatPro ToxinPred - -

7 Ojha2020 [113] NetCTL-1.2 IEDB (method
NSi)

- - - - - - Y

8 Wang2020 [114] NetMHCpan-4.0 IEDB
(recommended)

Vaxijen-2.0 - - - - Y -

9 Poran2020 [115] HLAthena NeonMHC2 Response against few
predicted epitopes
tested in recovered
patients

- - - - Y -

10 UlQamar2020 [116] IEDB
(consensus)

IEDB (consensus) Vaxijen-2.0 - - AllerTOP-2.0 NS - Y

11 Gupta2020vr [117] NetCTLpan-1.1 IEDB
(recommended)

Vaxijen-2.0 IFNepitope - AllerTOP-2.0 ToxinPred - -

12 Enayatkhani2020
[118]

RANKPEP RANKPEP - - AllerTOP-2.0 - - Y

13 Ong2020 [119] Vaxign, IEDB
(consensus)

Vaxign, IEDB
(consensus)

- - - - - Y -

14 Abdelmageed 2020
[120]

IEDB
(consensus)

IEDB
(recommended)

- - - - - - -

15 Mukherjee2020
[121]

Tepitool,
NetMHCpan-4.0,
nHLAPred,
CTLPred

Tepitool Vaxijen-2.0 - Y AllerTOP-2.0,
AlgPred

ToxinPred Y -

16 Vashi2020 [122] IEDB (method
NS)

IEDB (method NS) - - Y - - - -

17 Ahmad2020 [123] MHCPred MHCPred Vaxijen-2.0 - - AllerTOP-2.0 - Y Y
18 Naz2020 [124] Tepitool IEDB

(recommended)
Vaxijen-2.0,
Calis et al.

- - AllerTOP-2.0 - - Y

19 Chen2020 [125] NetMHCpan-4.0 IEDB
(recommended)

Vaxijen-2.0,
Calis et al.

- - AllerTOP-2.0 ToxinPred - Y

20 Martin2020 [126] NetCTL-1.2 IEDB
(recommended)

Vaxijen-2.0 IFNepitope - AllerTOP-2.0 ToxinPred - Y

21 Dong2020 [127] NetCTL-1.2 IEDB (consensus) - IFNepitope - - - - Y
22 Ghafouri2020 [128] IEDB (method

NS)
IEDB (method NS) Vaxijen-2.0 - - AllerTOP-2.0 ToxinPred - Y

23 Banerjee2020 [129] NetCTL-1.2 NetMHCII-2.3 - - - - - - Y
24 Samad2020 [130] NetCTL-1.2 IEDB (consensus) Vaxijen-2.0,

Calis et al.
IFNepitope - AllerTOP-2.0 ToxinPred - Y

25 Bhatnager2020
[131]

NetMHCpan-4.0,
CTLPred

IEDB
(recommended
2.2)

IFNepitope - AlgPred,
AllergenFP

NS - Y

26 Devi2020 [132] NetCTL-1.2 IEDB (consensus) Vaxijen-2.0, IFNepitope - AllerTOP-2.0 ToxinPred - Y
27 AbrahamPeele2020

[133]
NetCTL-1.2 IEDB (method NS) Vaxijen-2.0,

Calis et al.
IFNepitope - AllerTOP-2.0 ToxinPred - Y

28 Ismail2020 [134] NetMHC-4.0, ,
MHCPred

IEDB (consensus),
MHCPred

Vaxijen-2.0 IFNepitope - AllerTOP-2.0 ToxinPred Y Y

29 Jakhar2020 [135] NetCTL-1.2, IEDB
(method NS)

NetMHCIIpan-3.0 Vaxijen-2.0,
Calis et al.

IFNepitope Y - ToxinPred - Y

30 Panda2020 [136] NetCTL-1.2 - Vaxijen-2.0 - - - - - -
31 Campbell2020

[137]
pVACtools pVACtools - - - - - - -

32 Tilocca2020 [138] IEDB (method
NS)

IEDB (method NS) - - - - - - -

33 Santoni2020 [139] NetMHC-4.0,
NetCTL-1.2

- - - - - - Y -

34 Dijkstra2020 [140] NetMHC - - - - - - - -
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Table 1 (continued)

No. Study labela HLA-I epitope
predictionb

HLA-II epitope
predictionc

Immunogenicityd IFN-γ
productione

Conservation Allergenicityf Toxicityg Autoimmunity Vaccine
construct

35 Prachar2020 [83] NetMHC-4.0 NetMHCII-2.3 - - - - - - -
36 Ramaiah2020 [141] - IEDB (consensus) - - - - - - -
37 Gupta2020 [142] NetMHCpan-4.0 Sturniolo method Vaxijen-2.0,

Calis et al.
AllerTOP-2.0 ToxinPred

38 Srivastava2020
[143]

IEDB
(consensus)

SMM-align,
Sturniolo method

- IFNepitope - ToxinPred - Y

39 Mitra2020 [144] NetMHC-4.0,
NetCTL-1.2, IEDB
(consensus)

MHCPred,
NetMHCIIpan-3.2,
IEDB (consensus)

Vaxijen-2.0 IFNepitope - AllerTOP,
AlgPred

ToxinPred Y Y

40 Singh2020 [145] NetCTL-1.2, IEDB
(consensus)

NetMHCIIpan-3.2 Vaxijen-2.0 IFNepitope - AllerTOP-2.0 Y Y

41 Saha2020 [146] ProPred1 ProPred Vaxijen-2.0 - - - - - Y
42 Nerli2020 [147] NetMHCpan-4.0 - Electrostatic surface

potential
- - - - - -

43 Liu2020 [108] NetMHCpan-4.0,
MHCflurry

NetMHCIIpan-4.0 - - - - - Y -

44 Khan2020 [148] NetCTL-1.2 PREDIVAC Calis et al. - - AlgPred ToxinPred Y -
45 Banerjee2020a

[149]
- IEDB (method NS) Vaxijen-2.0 - - - - - -

46 Bojin2020 [150] IEDB (method
NS)

IEDB (method NS) - - - - - - -

47 NazneenAkhand
2020 [151]

IEDB (method
NS)

IEDB (method NS) Vaxijen-2.0 IFNepitope - AllergenFP,
AllerTOP

ToxinPred - Y

48 Feng2020 [152] NetMHCpan,
iNeo-Pred

- NS - - - NS Y -

49 Bhattacharya2020
[153]

ProPred1 ProPred Vaxijen-2.0 - - - - - Y

50 Chauhan2020 [154] NetCTL-1.2, IEDB (consensus),
NetMHCIIpan-3.2

Vaxijen-2.0 IFNepitope - AlgPred,
AllerTOP-2.0

- - Y

51 Fast2020 [155] NetMHCpan-4.0 MARIA - - - - - - -
52 Joshi2020 [156] NetMHC-4.0,

MHCPred
NetMHCIIpan-3.2,
MHCPred

Vaxijen-2.0 - - - ToxinPred - -

53 Kar2020 [157] NetCTL-1.2, IEDB
(consensus)

NetMHCIIpan-3.2 Vaxijen-2.0,
Calis et al.

IFNepitope - AllerTOP-2.0,
AllergenFP

- - Y

54 Qamar2020 [158] IEDB
(consensus)

IEDB (consensus) Vaxijen-2.0 - Y AllergenFP ToxinPred - -

55 Ahammad2020
[159]

NetCTL-1.2 IEDB (consensus) Vaxijen-2.0,
Calis et al.

IFNepitope - AllerTOP-2.0 ToxinPred Y Y

56 Kiyotani2020 [160] NetMHCpan-4.0,
NetMHC-4.0

NetMHCIIpan-3.1 - - - - - - -

57 Sarkar2020 [161] NetMHCpan-4.0 IEDB (Sturniolo) Vaxijen-2.0 - - AllerTOP-2.0,
AllergenFP

ToxinPred Y Y

58 Romero-Lopez2020
[162]

Tepitool IEDB
(recommended
2.2)

Calis et al. - - - - - -

59 Sanami2020 [163] ProPred1 ProPred Vaxijen-2.0 IFNepitope - AllerTOP-2.0 ToxinPred Y Y
60 Kalita2020 [164] NetCTL-1.2, IEDB

(method NS)
NetMHCIIpan-3.0 - IFNepitope - - ToxinPred - Y

61 Rahman2020 [165] SMM SMM-align - IFNepitope - - - Y
62 Lin2020 [166] IEDB

(consensus)
IEDB (method NS) Vaxijen-2.0 - - AllergenFP ToxinPred - -

63 Yarmarkovich2020
[167]

NetMHC-4.0 NetMHCII-2.3 - - - - - Y -

64 Yazdani2020 [168] NetMHC-4.0,
CTLPred

IEDB (consensus),
RANKPEP

Vaxijen-2.0 IFNepitope - AllergenFP - - Y

65 Lucchese2020 [169] Identified
pentamers from
the proteome

- - - - - - Y -

a Studies that used SARS-CoV immunological data for prediction [1–4] are shown in bold font, while all other studies that used peptide-HLA binding prediction methods are in regular
font. In silico studies [1–30] were obtained from PubMed, while the remaining studies [31–65] were obtained by searching Google Scholar.

b HLA-I epitope prediction: ProPred1 [54], SMM [58,59], CTLPred [51], Tepitool [66], nHLAPred [67], NetMHC-4.0 [40], NetChop [48], NetCTL-1.2 [49], NetMHCpan [37], HLAthena [17],
MHCflurry [41], NetMHCpan-4.0 [16], iNeo-Pred [152], Vaxign [57], RANKPEP [52], pVACtools [65], NetMHC [36], NetCTLpan-1.1 [39], MHCPred [62], IEDB (consensus) [63].

c HLA-II epitope prediction: MHCPred [62], NeonMHC2 [19], NetMHCII-2.3 [42], NetMHCIIpan-3.0 [43], NetMHCIIpan-3.1 [44], NetMHCIIpan-3.2 [42], NetMHCIIpan-4.0 [18], SMM-
align [60], RANKPEP [52], Sturniolo method [61], ProPred [55], pVACtools [65], PREDIVAC [56], IEDB (recommended) [43], MARIA [45], IEDB (consensus) [64], Vaxign [57], Tepitool [66],
IEDB (recommended 2.2) [43].

d Immunogenicity: Vaxijen-2.0 [79], Calis et al. [80], iPred [81]; Electrostatic surface potential [147].
e IFN-γ production: IFNepitope [85].
f Allergenicity: AlgPred [91], AllerTOP [92], AllerTOP-2.0 [93], AllergenFP [94], AllerCatPro [95].
g Toxicity: ToxinPred [98].
h Lee2020 [21] and Grifoni2020 [22] reported two sets of epitopes: one set based on using SARS-CoV immunological data and the other using NetMHCpan-4.0. For the purpose of this

analysis, we have only considered the set of epitopes predicted using SARS-CoV immunological data.
i NS: Not specified.
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for predicting epitopes for both HLA classes. Based on the methodology
employed, these T cell epitope prediction methods can be broadly di-
vided into two groups: Machine learning (ML) based methods and
(non-ML) bioinformatics based methods.

The current state-of-the-art ML epitope prediction methods utilize
artificial neural networks (ANN). Such methods that have been used
for SARS-CoV-2 HLA-I epitope prediction include NetMHC [36],
NetMHCpan [37,38], NetCTLpan-1.1 [39], NetMHC-4.0 [40], HLAthena
[17], MHCflurry [41] and NetMHCpan-4.0 [16]. Correspondingmethods
that have been used for prediction of SARS-CoV-2 HLA-II epitopes in-
clude NetHMCII-2.3 [42], NetMHCIIpan-3.0 [43], NetMHCIIpan-3.1
[44], NetMHCIIpan-3.2 [42], NetMHCIIpan-4.0 [18], NeonMHC2 [19]
and MARIA [45] (for a historical perspective on the evolution of these
methods, see [46]). The suffix -pan in the names of these methods indi-
cates pan-specificity; i.e., the ability to predict peptide-HLA binding for a
large set of alleles within the HLA class, including the ones that are ab-
sent in the training set. This feature has beenmade possible by integrat-
ing information about the amino acids characterizing the HLA binding
groove in training the ANN [47].

The earlier ANN-based methods such as NetMHC, NetMHCpan,
NetHMCII-2.3, NetMHCIIpan-3.0, NetMHCIIpan-3.1, etc., were mostly
trained using data obtained from HLA binding assays, which character-
ize the binding affinity of synthetic peptides to HLAmolecules. Themost
recent ANN-based methods, such as MHCflurry, NetMHCpan-4.0, and
NetMHCIIpan-4.0, additionally employ data fromHLA ligand elution as-
says, which use advances in mass spectrometry techniques to isolate a
large number of peptides that are naturally processed and presented
by human cells expressing a single HLA. A few SARS-CoV-2 epitope pre-
diction studies such as HLAthena and NeonMHC2 have also used
methods that were trained solely on HLA ligand elution assay data.
However, it has been demonstrated for both HLA classes that the ANN
models trained using both types of data provide superior performance
to models trained on one type of data only [16].

Some methods used by SARS-CoV-2 epitope prediction studies in-
clude the HLA-I specific methods NetChop [48] and NetCTL-1.2 [49],
which incorporated additional intracellular factors involved in HLA an-
tigen presentation in an attempt to improve peptide-HLA binding pre-
diction. These factors include proteasomal cleavage sites and transport
efficiency of TAP (the transporter associated with antigen processing)
in antigen presenting cells [50]. However, inclusion of these factors
has been found to show only a marginal improvement in peptide-HLA
binding prediction over the ANN-based methods trained solely on HLA
binding assays [48].While almost all recent epitope predictionmethods
are ANN-based, a few early ones (such as CTLPred [51] and RANKPEP
[52]) were based on an alternative ML approach, support vector ma-
chines, and have also been used by SARS-CoV-2 studies (Table 1).

Distinct from the ML methods just described, several SARS-CoV-2
studies have used (non-ML) bioinformatics methods to predict SARS-
CoV-2 epitopes. These methods use position-specific scoring functions
that assume each position in a peptide to be independently interacting
withHLA. They generally assign a score to the studied peptide according
to position-specific amino acid features such as amino acid frequencies
or amino acid physicochemical profiles (e.g., obtained from BLOSUM
matrices [53]) at specific peptide positions. Such methods that have
been used to predict SARS-CoV-2 epitopes include ProPred1 [54] for
predicting HLA-I epitopes, ProPred [55] and Predivac [56] for predicting
HLA-II epitopes, and Vaxign [57] for predicting epitopes for both HLA
classes. Some bioinformaticsmethods also use scoring functions involv-
ing the interactions of pairs of peptide positions with the HLA. Methods
in this category that have been used to predict SARS-CoV-2 epitopes in-
clude SMM [58,59] for predicting HLA-I epitopes, SMM-Align [60] and
the method by Sturniolo [61] for predicting HLA-II epitopes, and
MHCPred [62] for predicting epitopes restricted by both HLA classes.
In general, these bioinformatics methods work for a limited set of HLA
alleles, with the exception of Predivac [56] and themethod by Sturniolo
[61], both of which are pan-specific.
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Several SARS-CoV-2 studies have used the analysis resource pro-
vided by the immune epitope database (IEDB) [43] for epitope predic-
tion. The IEDB provides a collection of several of the above-mentioned
prediction methods, and also recommends a best performing method
for each HLA class. Some SARS-CoV-2 studies have used the IEDB’s
HLA class-specific consensus methods, which predict peptide-HLA
binding for their respective HLA class based on the consensus of several
prediction methods [63,64]. A few studies have also used pipeline tools
like pVACtools [65] and TepiTool [66], that allow users to predict epi-
topes for both HLA classes from a set of pre-defined ML and bioinfor-
matics methods. Another method used for predicting SARS-CoV-2
epitopes is nHLAPred [67], which uses a combination of ML and bioin-
formatics methods to predict HLA-I-restricted epitopes.

The variety of peptide-HLA binding prediction methods used by in
silico studies to predict SARS-CoV-2 epitopes raises questions as to
whether the predictions of these studies are overlapping or distinct,
and whether there are specific methods that appear most appropriate
for predicting SARS-CoV-2 epitopes. We explore these questions subse-
quently in Sections 3 and 4, where we show that multiple common
SARS-CoV-2 epitopes have indeed been predicted by independent in
silico studies, while also identifying methods whose predicted epitopes
are found to have induced T cell responses in convalescent COVID-19
patients.

2.2.2. Refinement of predicted epitopes
Beyond epitope prediction based on peptide-HLA binding, a number

of SARS-CoV-2 in silico studies used computational tools to screen the
predicted epitopes for their immunogenicity, and for their ability to
elicit a robust and safe T cell response. A brief description of these
tools and the rationale for using them is discussed below.

2.2.2.1. Screening predicted epitopes for their immunogenicity and robust-
ness. Presentation of a peptide by an HLA molecule, while necessary for
inducing a T cell response, does not guarantee T cell recognition and ac-
tivation. That is, presentation does not imply that thepeptidewill be im-
munogenic. Thus, it is important to assess the immunogenicity of the
predicted epitopes obtained from peptide-HLA binding prediction
methods. The specific factors that differentiate an immunogenic HLA-
presented peptide from a non-immunogenic one are still not well
known, though a number of factors have been suggested to be the
cause of this difference. For example, immunogenicity of a peptide
may increase due to abundance of peptide-HLA complexes displayed
on cells [68,69], early expression of the protein towhich the peptide be-
longs [63,70,71], competition with other peptide-HLA complexes for
stimulating T cells [72,73], and low genetic similarity of the peptide to
a self-peptide (i.e., a host derived peptide) [74–78].

Several existing computational tools have been used to assess the
immunogenicity of the SARS-CoV-2 epitopes obtained from peptide-
HLA binding prediction methods. Of these, Vaxijen-2.0 [79] is the most
commonly used and can predict immunogenicity of both HLA-I and
HLA-II epitopes. This method was originally developed to predict pro-
tein immunogenicity by accounting for higher order interactions be-
tween protein sequence positions and exploiting the physicochemical
properties (hydrophobicity, molecular size, polarity) of amino acids. It
was trained on a set of known immunogenic and non-immunogenic
proteins of viral, bacterial and tumor origins. Another common method
that has been used for determining immunogenicity of HLA-I-restricted
peptides in SARS-CoV-2 studies is the one available on the IEDB (Calis
et al. [80]). This methodwas developed by comparing a set of immuno-
genic and non-immunogenic presented peptides compiled from multi-
ple experimental sources. Specifically, immunogenicity of presented
peptides was found to be largely dependent on the amino acids present
at positions 4-6 of the peptide, and specific physicochemical properties
of the amino acids, having large and aromatic side chains, in the peptide.
Amodel exploiting these featureswas then developed to predict immu-
nogenicity of a given HLA-I-restricted peptide.
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In addition to Vaxijen-2.0 and Calis et al., one SARS-CoV-2 study [21]
used iPred [81] for immunogenicity prediction, which is also based on
physicochemical properties of the amino acids in the peptide. A novel
method to predict the immunogenicity of SARS-CoV-2 HLA-I restricted
peptides was also proposed in Gao et al. [82] which utilizes a physics-
basedmodel and takes into account factors such as peptide-HLA binding
affinity and similarity of a peptide with pathogen-derived and human-
derived peptides. For model training and testing, a well-characterized
dataset of immunogenic HIV T cell epitopes was used. This model was
reported to outperform Calis et al. [80] in predicting immunogenic epi-
topes for the HIV dataset. Gao et al. used this method to filter the SARS-
CoV-2 epitopes proposed in Ahmed et al. [20] and Prachar et al. [83]
based on their predicted immunogenicity.

For the specific case of peptides presented by HLA class II, the acti-
vated CD4+ T cells differentiate into T helper (Th) cells of various
types having distinct effector functions [72]. Of particular importance
are the Th1 and Th2 cells. Th1 cells secrete the interferon-gamma
(IFN-γ) cytokine and promote cell-mediated immunity, while Th2
cells secrete the interleukin-4 cytokine and promote humoral immunity
[84]. For inducing robust cell-mediated immunity, multiple in silico
SARS-CoV-2 vaccine design studies have further screened the predicted
immunogenic HLA-II peptides to identify those that are likely to induce
IFN-γ (Table 1). This was done primarily using the computational
method IFNepitope [85], anML approach that uses a dataset comprising
peptides experimentally determined to induce IFN-γ, along with pep-
tides that induce cytokines other than IFN-γ. This method was trained
on data of IFN-γ inducing epitopes obtained from IEDB.

In addition to screening for immunogenicity, to ensure that stimu-
lated T cell responses are robust to genetic variations arising during
viral evolution, it is important to identify epitopes that are highly con-
served. For SARS-CoV-2, while the mutation rate appears low due to
the presence of a genetic proof-reading exoribonuclease nsp14 protein
[86], it is still important to consider conservation of epitopes to avoid
mutations that accumulate in the population [87]. Thus, a few in silico
SARS-CoV-2 vaccine design studies have considered the conservation
of predicted immunogenic epitopes among the available SARS-CoV-2
sequences (or a subset of them) for providing vaccine target recommen-
dations (Table 1). The majority of the in silico SARS-CoV-2 studies have
computed the conservation of predicted epitopes using in-house code,
while a few have used the epitope conservancy tool available at the
IEDB [43].

2.2.2.2. Screening predicted epitopes for their allergenicity, toxicity and au-
toimmunity. Vaccines are generally administered to otherwise healthy
individuals as a preventive measure against disease. A crucial factor
when selecting epitopes for a vaccine, apart from the ability of the epi-
topes to elicit a protective immune response, is whether or not they
have any associated safety concern. Any adverse reaction caused by a
vaccine is likely to contribute to anti-vaccine sentiment and potentially
lead to loss of public trust in immunization programs [88,89]. Even
though any potential vaccine would ultimately need to undergo rigor-
ous in vivo and in vitro safety trials, computational tools can help, as a
first step, to screen for potential safety concerns. Here,we give a brief re-
view of computational tools that have been used for assessing allerge-
nicity, toxicity, and autoimmunity of SARS-CoV-2 epitopes. Almost all
studies proposing an in silico vaccine perform these tests on the vaccine
construct, while some also perform these at the initial epitope selection
step (see Table 1).

Allergenicity of a substance is its potential to cause hypersensitivity
in an individual by evoking an immune response [90]. The reason why
certain proteins or peptides cause an allergic reaction in humans is not
precisely known. Several SARS-CoV-2 studies have used more than
one computational tool to test for allergenicity of predicted epitopes
(see Table 1). These include AlgPred [91], AllerTOP [92], AllerTOP-2.0
[93], AllergenFP [94], and AllerCatPro [95]. AlgPred is a suite of multiple
allergenicity prediction approaches based on motif alignment, support
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vector machines, and hybrid approaches; AllerTOP, AllerTOP-2.0, and
AllergenFP are three related methods based on the physicochemical
similarity of the considered protein with known allergens; while
AllerCatPro is a recently developedmethod that uses 3D structure infor-
mation along with sequence similarity with known allergens to predict
allergenicity. In a comparative test, AllerCatPro was shown to have su-
perior performance to the other methods in identifying allergens [95].
However, of the 65 in silico studies considered in this review (Table 1),
only one study [96] used AllerCatPro for allergenic screening of pre-
dicted SARS-CoV-2 epitopes.

Toxicity is the capacity of a substance to damage a living organismby
interacting with biomolecules and disrupting normal cellular functions
[97]. The effects of this disruption may range from slight symptoms
like nausea in mild cases, through to death in severe cases. SARS-CoV-
2 studies that tested for toxicity of predicted epitopes have used
ToxinPred [98], a support vector machine based method that uses a
position-specific scoring function to predict peptide toxicity from se-
quence information. ToxinPred has been trained on a set of known
toxic (of bacterial and animal origin) and non-toxic peptides obtained
from the Universal Protein Resource [99]. While a number of SARS-
CoV-2 in silico studies have used ToxinPred (Table 1), the accuracy of
these toxicity predictions for viral epitopes has yet to be confirmed.

Autoimmunity refers to the process of the body launching an im-
mune response against its own healthy self [100]. In the context of T
cells, this would constitute a T cell mounting a response against a self-
peptide. The exact causal mechanism that triggers such a response in
not known, though there is evidence that itmaybe triggered in some in-
dividuals in the aftermath of a viral or bacterial infection [101,102].
While evidence for a vaccine-induced autoimmune response has not
been found in controlled studies, occasional case reports of such an oc-
currence are present in the literature [103,104]. This gives rise to some
concern that if a vaccine contains viral epitopes similar to self-peptides,
it may evoke an autoimmune response [105,106]. To account for this,
some of the SARS-CoV-2 studies have checked for sequence similarity
between the human proteome and viral epitopes to identify epitopes
thatmay potentially induce an autoimmune reaction [107]. The compu-
tational hurdle here is the large size of the human proteome which
makes testing multiple epitopes for sequence similarity challenging.
However, of all possible SARS-CoV-2 peptides of lengths 8-10 (HLA-I re-
stricted) and 13-20 (HLA-II restricted), only ~0.03% were found to
match exactly with the human proteome [108], suggesting that autoim-
munity may not be a common issue for SARS-CoV-2.

Although the above-mentioned screening tests are well motivated,
the ability of the specific tools used to effectively screen SARS-CoV-2
epitopes for immunogenicity, induction of IFN-γ, allergenicity, and tox-
icity still remains unclear. In an attempt to shed some light on the pre-
dictive nature of these tools, in Section 4 we analyze and compare
their predictions when applied to epitopes of SARS-CoV-2 that have
been confirmed experimentally in patients.

2.2.3. Design of a vaccine construct
While some of the SARS-CoV-2 in silico studies only identified a list

of epitopes, several went a step further to propose a multi-epitope vac-
cine construct (see Table 1). Briefly, this entailed selecting appropriate
linkers, which play a key role in the structural stability of the vaccine,
and adjuvants, which help to boost the immune response. These in silico
designs spanned a host of modern vaccine technologies, e.g., subunit
vaccines, peptide vaccines, RNA and DNA vaccines [109,110]. Almost
all SARS-CoV-2 studies that presented an in silico design of a multi-
epitope vaccine construct also performed in silico tests for immunoge-
nicity, conservation, allergenicity, and toxicity using the tools reviewed
above, regardless of whether or not these tests were performed at the
epitope level. As mentioned above, the majority of these in silico tools
were originally developed to analyze proteins, and thus they may be
more appropriate for analyzing multi-epitope vaccine constructs
than individual epitopes. In addition, physicochemical composition,
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secondary and tertiary structure predictions, as well as molecule
docking studies with human immune receptors were also investigated
for the proposed constructs. None of these studies, however, tested
their predictions experimentally. As the focus of the current review is
on epitope identification, we refer the interested reader to [111] for
more details on vaccine constructs.

3. Comparison of studies predicting SARS-CoV-2 epitopes

To compare the predictions of the in silico studies (listed in Table 1),
the predicted epitopes and their specific HLA allele associations [170]
were compiled. In cases where the specific HLA allele information was
unavailable, we recorded it as “NA”. For a meaningful comparison, we
focused only on the predicted T cell epitopes comprising 8 to 20
amino acids, representing the typical combined range of CD4+ and
CD8+ T cell epitopes [171,172]. This excluded Enayatkhani et al. [118],
Yarmarkovich et al. [167], Yazdani et al. [168], and Lucchese et al.
[169] from the analysis, giving a remaining set of 61 studies (Fig. 2).

The number of T cell epitopes predicted by these SARS-CoV-2 studies
varied widely (minimum = 1 epitope; maximum = 3407 epitopes),
even for studies that used the same peptide-HLA prediction method
(Fig. 2). This can be attributed to differences in subsequent prediction
refinement steps and the study objectives. Studies reporting a very lim-
ited number of T cell epitopes (<10), e.g., Joshi et al. [156], Rahman et al.
[165], Khan et al. [148], Jakhar et al. [135], Samad et al. [130], were pri-
marily focused on designing a short vaccine construct for eliciting a
targeted immune response. Most of these studies refined the set of ini-
tial epitopes obtained by peptide-HLA binding prediction methods
based on the tests described in Section 2.2.2. In contrast, the studies
that predicted a large set of epitopes (>400) had objectives such as
identifying all possible epitopes having high coverage in a specific eth-
nic population (Feng et al. [152]), identifying epitopes recognized by a
large number of HLA alleles including rare ones (Campbell et al.
[137]), or finding all possible epitopes binding to a specific allele even
with low predicted affinity (Nerli et al. [147]). These did not perform
any refinement of the set of epitopes obtained using the peptide-HLA
binding methods.

A number of the SARS-CoV-2 studies had a sizeable overlap among
their predicted set of epitopes (Fig. 2). This is not surprising since
many had used similar computational pipelines (Table 1). For example,
the 4 studies based on exploiting SARS-CoV immunological data all re-
lied on sequence similarity of SARS-CoV-2 epitopes with known SARS-
CoV epitopes, resulting in considerable overlap among their predicted
set of epitopes (Fig. 2). Similarly, there was overlap among predictions
of several studies based on peptide-HLA binding prediction (Fig. 2),
which mostly used a similar set of methods for epitope prediction
(Fig. 3). The ones that stand out among the latter group of studies for
having a large overlap with multiple others include Feng et al. [152],
Campbell et al. [137], and Nerli et al. [147] (Fig. 2), whichmay be attrib-
uted to the large number of epitopes that they predicted.

The in silico predicted epitopes lie within each of the 12 SARS-CoV-2
proteins. The structural S protein, which is also one of the most immu-
nogenic proteins of SARS-CoV-2, was themost commonly analyzed pro-
tein (Fig. 2). Surprisingly, the other structural proteins (M, N and E), also
reported to be immunogenic in SARS-CoV-2 [6] as well as SARS-CoV
[173,174], were analyzed by only a few studies. The N protein, in partic-
ular, is highly expressed [115], and the epitopes derived from this pro-
tein may be especially worthy of further experimental investigation.
Compared to other proteins, the number of epitopes predicted for the
longer proteins (ORF1a, ORF1b, and S) was much larger. As expected,
the number of unique T cell epitopes predicted per protein across all
studies was found to be strongly correlated with the length of protein
(r = 0.99).

Similar numbers of unique HLA-I and HLA-II restricted epitopes
were predicted by the SARS-CoV-2 studies listed in Table 1 (2,239
HLA-1 and 2,580 HLA-II), while a good number of epitopes (464) had
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missing (“NA”) HLA class restriction. For the studies predicting epitopes
exclusively based on peptide-HLA binding methods, it is surprising to
observe epitopes having unknown HLA class restriction. This is because
almost all predictionmethods (discussed in Section 2.2.1) require spec-
ifying theHLA allele for predicting associated epitopes. However, a close
inspection of the related studies revealed that this was due to either
non-reporting of HLA allele restriction of the predicted epitopes
(e.g., Sarkar et al. [161]), or cases where only the number of unique
HLA alleles associated with the predicted epitopes were reported with-
out specifying the individual correspondences (e.g., Sanami et al. [163]).
As for the studies leveraging the immunological data of SARS-CoV from
public databases, the SARS-CoV epitopes having no HLA class informa-
tion were assigned the “NA” HLA class.

4. Correspondence between predicted and experimentally-
determined T cell epitopes

With a large number of studies predicting SARS-CoV-2 T cell epi-
topes using different computational pipelines (involving specific epi-
tope prediction and refinement methods), it is difficult to assess their
accuracy solely based on their performance in predicting epitopes of
other organisms [175]. For this purpose, “ground truth” information of
experimentally-determined SARS-CoV-2 T cell epitopes is required.
This data has started to emerge from immunological assays that analyze
immune responses in COVID-19 patients. As of 8 September 2020, we
found eight experimental studies [8,9,115,176–180], reviewed in
[181], as well as an additional study [182], that reported positive T cell
immune responses from blood samples of convalescent COVID-19 pa-
tients against epitopes derived from SARS-CoV-2 proteins. Compiling
data from these nine studies yielded a total of 324 (unique) epitopes.
These 324 epitopes present a sampling (albeit not comprehensive) of
the landscape of epitopes targeted by COVID-19 patients, and hence
they provide an initial basis forwhich to conduct a comparative analysis
of different in silico epitope prediction methods.

The nine experimental studies measured T cell responses after stim-
ulation of the peripheral bloodmononuclear cells (PBMCs) from conva-
lescent COVID-19 patients. Of these, some studies obtained a set of
peptides to synthesize using one or more of the in silico epitope predic-
tionmethods, whichwere then used to stimulate the PBMCs. Three such
studies [8,9,180] used NetMHCpan-4.0, two studies [177,182] used
NetMHC4.0, while one study [115] used HLAThena and NeonMHC2 to
select the set of peptides to synthesize. Two of these studies [8,182]
also investigated a few epitopes that were predicted in [20,22] using
SARS-CoV immunological data. This set of immunological studies dem-
onstrates the application of multiple in silico T cell epitope prediction
methods in guiding experimental investigations. Specifically, immune
responses are measured against a reduced set of defined peptides pre-
dicted in silicowhich helps in identifying precise epitopes. In alternative
experimental studies, stimulation was done using pools of overlapping
k-mer peptides. One such study [176] synthesized pools of 15-mer over-
lapping peptides tomeasure T cell responses, while another study [179]
synthesized pools of 15-18-mer overlapping peptides in addition to epi-
topes predicted using SARS-CoV immunological data [20]. While using
pools of overlapping peptides does not reveal the precise “epitope”
stimulating the T cell response, it still provides the information of im-
munogenic peptides encompassing the epitopes. Lastly, one study
[178] employed a new experimental framework called T-Scan [183] to
identify SARS-CoV-2 epitopes.

We compared the 324 experimentally-determined epitopes (includ-
ing both precise epitopes and immunogenic peptides) against all unique
8-20 residue-long in silico predicted T cell epitopes (5273) (Fig. 2).
We found that 309 of the experimentally-determined epitopes
encompassed at least a single predicted epitope, while 163 of these
epitopes matched identically to predicted ones. Looking closely at
those in silico studies that predicted at least one of the 163 identically-
matched epitopes, we observed that studies which used SARS-CoV
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Fig. 3. Common in silico prediction methods that have been used by the reviewed SARS-
CoV-2 studies. Only methods that were explicitly mentioned by at least 5 in silico SARS-
CoV-2 studies (Table 1) are shown here. The methods are grouped according to the
category shown in the legend.
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immunological data had collectively a higher hit rate (proportion of
identically-matched epitopes in the set of predicted epitopes) (25%) as
compared to the studies that used peptide-HLA binding prediction-
based methods (3%). This difference in hit rate points to the usefulness
of using SARS-CoV data to predict immune targets for SARS-CoV-2.

Most in silico prediction studies aswell as experimental studieswere
biased towards certain HLA alleles. Together, the nine experimental
studies reported T cell epitopes associated with 18 different HLA alleles,
with the largest proportion of the reported epitopes (35/116) associ-
ated with the HLA-A*02:01 allele. This is not surprising since HLA-
A*02:01 is the most prevalent HLA-I allele globally [184]. Similarly,
roughly a third of the epitopes predicted by in silico methods were
also associated with HLA-A*02:01. Thus, the experimentally-
determined and predicted epitopes associatedwithHLA-A*02:01 repre-
sent a reasonable dataset for assessing the predictions of SARS-CoV-2 in
silico studies. Altogether, 33 of the 35 experimentally-determined HLA-
A*02:01-associated epitopes matched identically with predicted epi-
topes, and these were derived from five proteins (S, ORF1a, N, ORF3a
and M) (Fig. 4). Most of these epitopes (27/33) were reported to elicit
a T cell response in multiple convalescent COVID-19 patients, with 10
of them eliciting responses in more than 5 patients. This suggests the
potential immunodominance of these epitopes [185,186] across the
segment of population bearing the HLA-A*02:01 allele (Fig. 4). Of
these 33 epitopes, in silico studies based on peptide-HLA binding predic-
tion and those leveraging SARS-CoV immunological data predicted 32
Fig. 2. Summary and comparison of 61 in silico studies that have predicted SARS-CoV-2 T cell e
each pair of studies. The fraction is computed relative to the number of epitopes predicted by
shown within parentheses on the right). Four in silico studies that used SARS-CoV immunolo
ones predicted based on homology with SARS-CoV epitopes were included. Study labels ind
fraction of predicted epitopes for each HLA class in each study, with the total number shown w
derived from each SARS-CoV-2 protein for each in silico study. Each column in this heatm
heatmap. Missing tiles indicate no predicted epitopes. (Bottom right panel) Bar plots show th
with the total number shown within parentheses. Predicted epitopes were assigned HLA class
as “NA” otherwise.
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and 17, respectively. After grouping the in silico studies based on the
peptide-HLA prediction tool used, those involving NetMHCpan-4.0 (de-
spite the differences in refinement steps) appeared to predictmost (30/
33) of the epitopes (Table 2). However, the method leveraging SARS-
CoV immunological data had the highest hit rate in predicting
experimentally-determined HLA-A*02:01-associated epitopes (14.8%)
(Table 2).

A large fraction of these experimentally-determined epitopes (27/
33) were predicted to promiscuously bind to multiple HLA alleles by
in silico methods (Table 3). For example, the S-derived epitope
269YLQPRTFLL277 was collectively predicted by 12 in silico methods to
bind to 43 HLA alleles in addition to HLA-A*02:01. This HLA promiscuity
of the experimentally-determined epitopes predicted by in silico
methods (Table 3) can help guide future experimental studies to iden-
tify the potential immunodominance of these epitopes across a large
segment of the global population carrying different HLA alleles.

We used the compiled experimental SARS-CoV-2 data to assess the
predictions of various refinement tools employed in SARS-CoV-2 in
silico studies (Table 1). We selected the refinement tools for which a
web-server was available and used the recommended parameters on
the web-server of each tool to analyze the experimentally-determined
SARS-CoV-2 epitopes. This compiled data of experimentally-
determined epitopes, obtained from positive T cell responses in conva-
lescent COVID-19 patients, serves as a reasonable ground truth for the
tools predicting immunogenicity.

For Vaxijen-2.0 [79], themost commonly used tool by SARS-CoV-2 in
silico studies for screening epitopes for immunogenicity (Fig. 3), we ob-
tained predictions for the experimentally-determined epitopes using
the available web-server by selecting the organism as “viruses”, as
recommended by the authors. Our analysis revealed that Vaxijen-2.0
classified only ~56% (182/324) of the experimentally-determined epi-
topes as immunogenic (Fig. 5). Unlike Vaxijen-2.0, Calis et al. [80] was
developed for predicting immunogenicity of only HLA class I epitopes
and does not perform binary classification. Instead, it provides a score
to each epitope, with a high score representing high confidence in the
epitope being immunogenic. We considered all epitopes predicted to
have positive scores as immunogenic and vice versa, in accordance
with the majority of SARS-CoV-2 in silico studies that used Calis et al.
to predict epitope immunogenicity (Table 1). Assessing the immunoge-
nicity of 98 HLA class I experimentally-determined epitopes, Calis et al.
predicted only ~63% (62/98) of them to be immunogenic (Fig. 5). To in-
vestigate the performance of these methods in more detail, we tested
their accuracy in predicting the top 10 HLA-A*02:01-associated
immunodominant epitopes (Fig. 4). In this case, Vaxijen-2.0 and Calis
et al. predicted 30% (3/10) and 60% (6/10) of these to be immunogenic.
Hence, the most commonly-used methods for immunogenicity predic-
tion incorrectly classified over a third of the 328 experimentally-
determined epitopes as non-immunogenic. The accuracy of these
methods does not appear to improve even for predicting the highly im-
munogenic epitopes, highlighting their suboptimal performance.

For a selected subset (20) of HLA-II restricted experimentally-
determined epitopes, the recognizing CD4+ T cells were confirmed to
be producing IFN-γ using flow cytometry [9]. We used this subset of epi-
topes to assess performance of the IFNepitope tool [85] commonly used in
SARS-CoV-2 in silico studies (Fig. 3). The predictions of IFNepitope for the
selected experimentally-determined epitopes were obtained from the
pitopes. (Top left panel) Heatmap shows the fraction of common epitopes predicted across
the study indicated in each row (the total number of epitopes predicted in each study are
gical data are indicated in bold font. Of the epitopes predicted by these studies, only the
icated in the figure correspond to those in Table 1. (Top right panel) Bar plots show the
ithin parentheses. (Bottom left panel) Heatmap shows the number of predicted epitopes

ap corresponds to the study mentioned at the top of each column in the top left panel
e fraction of predicted epitopes, across studies, derived from each SARS-CoV-2 protein,
based on the HLA allele (bearing 4-digit resolution or higher) reported against them; or



Fig. 4. Summary of the experimentally-determined HLA-A*02:01-associated SARS-CoV-2 epitopes that were also predicted by in silico studies. (Left panel) List of 33 experimentally-
determined HLA-A*02:01-associated epitopes that matched identically with epitopes predicted by in silico studies. (Middle panel) Number of convalescent COVID-19 patients bearing
the HLA-A*02:01 allele whose blood sample responded (filled bar) and did not respond (empty bar) upon stimulation with the epitope. (Right panel) Number of in silico studies that
predicted the epitope in the context of HLA-A*02:01. Orange represents the number of studies that used SARS-CoV immunological data, while purple represents the number of studies
based on peptide-HLA binding prediction. The labels of the in silico studies (Table 1) predicting each epitope are listed on the right. Epitopes are colored according to the SARS-CoV-2
protein from which they are derived (counts shown in legend) and ordered in descending order of the number of patients whose samples responded. The two experimentally-
determined HLA-A*02:01 epitopes which did not match identically with any epitope predicted by in silico studies were 906YLFDESGEFKL916 in ORF1a and 20FLAFVVFL27 in E. These
epitopes were reported to induce a T cell response in 9/36 and 2/3 COVID-19 convalescent patients, respectively.
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Table 2
Approaches adopted by in silico studies that predicted at least half of the experimentally-determined HLA-A*02:01-associated epitopes.

No. In silico studies Approach Total number of
predicted epitopes

Number of predicted epitopes matching
experimentally-determined epitopes

Hit
ratea

1 Nerli2020 [147], Wang2020 [114],
Bhatnager2020 [131]

Based on peptide-HLA binding prediction
(involving NetMHCpan-4.0)

722 30 4.2%

2 Ahmed2020 [20], Grifoni2020 [22],
Ranga2020 [23], Lee2020 [21]

Using SARS-CoV immunological data 115 17 14.8%

a Hit rate represents the positive predicted value (i.e., ratio of the number of predicted epitopes matching experimentally-determined epitopes to the total number of in silico predicted
epitopes).
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associated webserver using the recommended approach (motif and SVM
hybrid) and model (IFN-γ vs non-IFN-γ). This analysis showed that
IFNepitope correctly predicted only 40% (8/20) of the experimentally-
determined IFN-γ producing SARS-CoV-2 epitopes (Fig. 5).

In contrast to immunogenicity and IFN-γ production, no information
was available regarding allergenicity and toxicity of the experimentally-
determined epitopes from the immunological studies. Thus, no ground
truth information is available to assess the performance of tools
predicting these epitope characteristics. Nevertheless, we can still ana-
lyze the experimentally-determined epitopes using these tools and, at
least for the case of allergenicity prediction tools, compare their relative
predictions. We used the default parameter settings in the webservers
for all allergenicity and toxicity prediction tools. Our analysis showed
that AllerTOP-2.0 [93] and AllergenFP [94], the two most commonly
used tools for determining allergenicity (Fig. 3), predicted a high frac-
tion ~43% (142/328 and 140/328, respectively) of the experimentally-
determined epitopes to be allergenic, with less than half of these (66)
being commonly predicted by both methods. Hence, the variation in
predictions of these methods was high. This disparity was even more
evident for the AllerCatPro method [95], which predicted all
experimentally-determined epitopes to be non-allergenic (Fig. 5).
Hence, due to thewide variation in predictions and a lack of experimen-
tal data to validate them, the practical applicability of the allergenicity
tools for SARS-CoV-2 remains unclear and further investigation is re-
quired. Lastly, in terms of toxicity prediction, ToxinPred [98] was the
only tool used to predict toxicity of epitopes by the SARS-CoV-2 in silico
studies (Table 1). Our analysis revealed that it predicted 98% (322/328)
of the experimentally-determined epitopes to be non-toxic. However,
similar to the case of allergenicity predicting tools, evaluating the accu-
racy of these toxicity predictions is not possible at present due to a lack
of relevant experimental information.

5. Summary and perspectives

In silico epitope identification is an important component in the vac-
cine development pipeline as it provides recommendations for immune
targets that may be exploited by vaccine designs. It is also very helpful
for guiding immunological assays designed to understand T cell re-
sponses elicited by vaccines or those mounted naturally against
COVID-19 infections. This review has made vivid the large amount of
work that has been done already in predicting and analyzing epitopes
of SARS-CoV-2, with a focus on T cells. The 65 studies that we have
reviewed employed different computational approaches, along with
an impressive array of computational tools.

The aim of this review was not only to summarize the methods that
have been employed so far, but also to provide a comparative analysis of
their epitope predictions, as well as to offer insights into the perfor-
mance of the different approaches. The ability to test prediction accu-
racy hinges on the availability of experimental ground truth data,
which is rapidly evolving but still remains limited. Data limitations pre-
cluded, for example, the performance evaluation of tools that predict
epitope safety features. However, data fromnine independent immuno-
logical studies of convalescent COVID-19 patients provided a set of T cell
epitopes that offered ameans to test the basic ability of the in silico T cell
40
prediction methods for identifying SARS-CoV-2 epitopes reported to be
immunogenic.

The fact that the large majority (>95%) of the experimentally-
determined epitopes for HLA-A*02:01 were identical to an epitope pre-
dicted by at least one in silico method offers strong evidence for the
practical significance of these methods in identifying immunogenic T
cell epitopes in the context of SARS-CoV-2. While the comparison car-
ried out here cannot ascertainwhich predictionmethod performed bet-
ter (given thatmany studies differed in their prediction refinement step
and objectives), we could still compare the hit rates of in silico studies
grouped according to their common underlying approach for predicting
SARS-CoV-2 epitopes (Table 2). This analysis showed that for HLA-
A*02:01 (the HLA allele with the largest number of epitopes available),
the two approaches with the highest hit rates in predicting the set of
experimentally-determined SARS-CoV-2 epitopes were peptide-HLA
binding prediction using NetMHCpan-4.0 and the approach that lever-
aged SARS-CoV immunological data. Hence, these distinct approaches
both appear to be well supported for their further use in guiding addi-
tional epitope identification for SARS-CoV-2, and for their application
to identify epitopes for other viruses.

Our analysis has provided insights into the computational tools that
have been used by a number of SARS-CoV-2 in silico studies to further re-
fine the set of predicted epitopes based on specific features.Most notably,
the observation that themost commonly used tools for predicting epitope
immunogenicity identified almost one-third of the experimentally-
determined immunogenic epitopes to be non-immunogenic points to
their suboptimality in relation to SARS-CoV-2. Similarly, the performance
of the tool that has beenused for screeningHLA class II epitopes for induc-
ing IFN-γ productionwas also found to be suboptimal. It should be recog-
nized however, that these in silico screening tools are general-purpose
tools that were developed more than seven years ago. For SARS-CoV-2,
there appears to be significant room for improvement, andmore special-
ized tools (e.g., Gao et al. [82])may bemore effective.While several of the
surveyed studies used in silico tools to assess the safety (allergenicity, tox-
icity) of SARS-CoV-2 epitopes, the accuracy of these predictions could not
be validated due to the lack of experimental data. Discordance in the pre-
diction of someof these safety assessment tools (Section4) alsohighlights
the need for further research and systematic experimental validation. This
is an important research direction since the utility of such in silico tools in
pre-clinical trials is gaining recognition by both regulatory bodies and
funding agencies [187,188], as it is in line with the principles of 3Rs (re-
placement, reduction, refinement) for humane animal research.

Several experimentally-determined epitopes associated with HLA-
A*02:01 appear to be immunodominant across multiple convalescent
COVID-19 patients. Interestingly, the majority of these epitopes were
predicted to have promiscuous HLA association by multiple methods.
This suggests that vaccines designed to target such epitopes have the
potential to provide high population coverage. However, the promiscu-
ity of these epitopes remains to be verified experimentally, and this
would appear to be an important direction for future studies.

In this reviewwe have focused on T cells, which form one arm of the
adaptive immune system. The other arm, comprising antibodies pro-
duced by B cells, is also important for preventing viral infection. In
fact, recent experimental studies have suggested that protection against
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SARS-CoV-2 may be mediated collectively by both T cells and anti-
bodies [11]. There have been extensive efforts in characterizing
the neutralizing antibodies against SARS-CoV-2 [3–5], as well as in
identifying the B cell epitopes which may be targeted by neutraliz-
ing antibodies. Of the in silico SARS-CoV-2 studies that have been
reviewed (Table 1), many had also predicted B cell epitopes for po-
tentially eliciting a neutralizing antibody response. Some of these
Table 3
Distinct HLA alleles predicted, across in silico studies, to be associated with the 33 experimenta

No. Epitopea Protein In silico prediction
methods
(count)

In silico predicted HLAs

1 139LLYDANYFL147 ORF3a 1 A*02:01
2 3886KLWAQCVQL3894 ORF1a 3 A*02:01, A*02:02, A*02:03, A*02

A*02:205, A*02:214, A*02:228, A
A*03:01, A*31:01

3 269YLQPRTFLL277 S 12 A*01:01, A*02:01, A*02:02, A*02
A*02:180, A*02:187, A*02:196, A
A*02:54, A*02:69, A*02:71, A*02
B*08:41, B*08:56, C*03:03, C*03

4 4094ALWEIQQVV4102 ORF1a 3 A*02:01, A*02:02, A*02:03, A*02
A*02:19, A*02:196, A*02:205, A
A*02:71, A*02:73, A*02:85, A*02

5 1000RLQSLQTYV1008 S 6 A*02:01, A*02:02, A*02:03, A*02
6 222LLLDRLNQL230 N 6 A*02:01, A*02:02, A*02:03, A*02

A*02:181, A*02:19, A*02:196, A
A*02:71, A*02:73, A*02:85, A*02
B*14:02, B*46:01, B*51:01, C*01
C*08:02, C*12:03, C*14:02, C*14

7 2332ILFTRFFYV2340 ORF1a 4 A*02:01, A*02:03, A*02:06, A*02
A*02:173, A*02:181, A*02:187, A
A*02:28, A*02:29, A*02:30, A*02
A*02:61, A*02:66, A*02:67, A*02

8 107YLYALVYFL115 ORF3a 4 A*02:01, A*02:02, A*02:09, A*02
A*02:187, A*02:196, A*02:205, A
A*02:69, A*02:71, A*02:73, A*02

9 72ALSKGVHFV80 ORF3a 3 A*02:01, A*02:50
10 1220FIAGLIAIV1228 S 8 A*02:01, A*02:02, A*02:03, A*02

A*02:205, A*02:214, A*02:228, A
A2, B*46:01, C*03:04, C*12:03, C

11 221LLLLDRLNQL230 N 2 A*02:01
12 3403FLNGSCGSV3411 ORF1a 4 A*02:01, A*02:02, A*02:03, A*02
13 417KIADYNYKL425 S 8 A*02:01, A*02:05, A*02:06, A*02

A*02:173, A*02:186, A*02:187, A
A*02:69, A*02:90, A*02:95, A*11
A*31:01, A*32:01, B*07:02, B*08

14 821LLFNKVTLA829 S 4 A*02:01, A*02:03, A*02:06, A*02
15 424KLPDDFTGCV433 S 3 A*02:01
16 825FGDDTVIEV833 ORF1a 2 A*02:01, C*05:21, C*05:30
17 3467VLAWLYAAV3475 ORF1a 3 A*02:01, A*02:02, A*02:03, A*02
18 3639FLLPSLATV3647 ORF1a 5 A*02:01, A*02:02, A*02:03, A*02

A*02:181, A*02:19, A*02:196, A
A*02:50, A*02:51, A*02:54, A*02

19 1062FLHVTYVPA1070 S 5 A*02:01, A*02:03, A*02:06, A*02
20 983RLDKVEAEV991 S 6 A*02:01, A*02:02, A*02:03, A*02
21 995RLITGRLQSL1004 S 2 A*02:01
22 26FLFLTWICL34 M 4 A*02:01, A*02:07
23 338KLDDKDPNF346 N 2 A*02:01, C*05:33
24 386KLNDLCFTNV395 S 3 A*02:01, A*02:03
25 112YLGTGPEAGL121 N 1 A*02:01
26 316GMSRIGMEV324 N 5 A*02:01, A*02:03, A*02:50
27 219LALLLLDRL227 N 1 A*02:01
28 202KIYSKHTPI210 S 5 A*02:01, A*02:07, A*30:01, A*32
29 857GLTVLPPLL865 S 4 A*02:01, A*02:07
30 958ALNTLVKQL966 S 5 A*02:01, A*02:03
31 996LITGRLQSL1004 S 4 A*02:01, B*07:02, B*08:01, C*03
32 1185RLNEVAKNL1193 S 6 A*02:01, A*02:03, A*02:11, A*02

A*32:01, B*27:20
33 976VLNDILSRL984 S 7 A*01:01, A*02:01, A*02:03, A*02

A*02:19, A*02:196, A*02:209, A*
A*02:73, A*02:85, A*02:99, A*03
A*33:01, A*68:01, A*68:02, B*07
B*57:01, B*58:01, C*04:01, C*05

a Epitopes are listed in the same order as in Fig. 4.
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epitope predictions, particularly those made by methods leveraging
SARS-CoV data [20,22], have also been observed experimentally
[35,189–193]. The development of in silico methods to identify B
cell epitopes for SARS-CoV-2 is currently an active area of research.
Like for the case of T cells, ML methods may also be considered for
predicting B cell epitopes (e.g., [194]), however developing predic-
tive models for B cells is more complicated since the predicted
lly-determined HLA-A*02:01-restricted SARS-CoV-2 epitopes.

:06, A*02:121, A*02:131, A*02:141, A*02:158, A*02:173, A*02:181, A*02:196,
*02:238, A*02:25, A*02:257, A*02:266, A*02:70, A*02:71, A*02:73, A*02:85, A*02:95,

:03, A*02:06, A*02:07, A*02:12, A*02:13, A*02:131, A*02:142, A*02:150, A*02:170,
*02:205, A*02:214, A*02:233, A*02:238, A*02:247, A*02:257, A*02:44, A*02:50,
:73, A*02:85, A*23:01, A*24:02, A*32:01, B*07:02, B*08:01, B*08:22, B*08:38,
:04, C*04:01, C*06:02, C*07:02, C*12:03, C*14:02
:06, A*02:11, A*02:121, A*02:139, A*02:141, A*02:150, A*02:16, A*02:173, A*02:181,
*02:214, A*02:228, A*02:238, A*02:25, A*02:257, A*02:266, A*02:50, A*02:70,
:95, A*68:02, A*69:01, B*15:01
:06, A*02:07, A*68:02
:04, A*02:07, A*02:11, A*02:13, A*02:132, A*02:141, A*02:150, A*02:16, A*02:173,
*02:205, A*02:214, A*02:228, A*02:238, A*02:25, A*02:262, A*02:54, A*02:70,
:95, A*03:01, A*23:01, A*32:01, B*08:01, B*08:22, B*08:38, B*08:41, B*08:56,
:02, C*02:02, C*03:02, C*03:03, C*03:04, C*03:71, C*04:01, C*05:01, C*06:02, C*07:02,
:03, C*17:01
:09, A*02:107, A*02:118, A*02:121, A*02:131, A*02:141, A*02:158, A*02:160,
*02:196, A*02:205, A*02:214, A*02:228, A*02:238, A*02:25, A*02:257, A*02:266,
:31, A*02:33, A*02:34, A*02:40, A*02:42, A*02:51, A*02:58, A*02:59, A*02:60,
:68, A*02:70, A*02:71, A*02:73, A*02:74, A*02:85, A*02:95, B*08:01
:11, A*02:12, A*02:121, A*02:131, A*02:141, A*02:158, A*02:16, A*02:173, A*02:181,
*02:214, A*02:228, A*02:238, A*02:25, A*02:263, A*02:266, A*02:54, A*02:58,
:85, A*02:95, A*33:08, A*74:04, B*40:13

:06, A*02:07, A*02:131, A*02:150, A*02:170, A*02:179, A*02:187, A*02:196,
*02:238, A*02:248, A*02:257, A*02:50, A*02:69, A*02:71, A*02:85, A*02:95, A*68:02,
*15:02

:06, A*02:16, A*02:171, A*02:50, A*68:02
:07, A*02:102, A*02:104, A*02:128, A*02:131, A*02:142, A*02:155, A*02:161,
*02:196, A*02:209, A*02:22, A*02:229, A*02:243, A*02:25, A*02:262, A*02:50,
:01, A*24:02,
:01, B*27:05, B*35:01, B*38:01, B*39:02, C*04:01, C*07:02, C*15:02, Cw*04:01
:07, B*08:01

:06, A*02:11, A*02:148, A*02:22, A*02:230, A*02:253, A*02:258, A*68:02
:06, A*02:11, A*02:12, A*02:13, A*02:132, A*02:141, A*02:158, A*02:16, A*02:173,
*02:205, A*02:214, A*02:228, A*02:238, A*02:25, A*02:263, A*02:27, A*02:28,
:61, A*02:70, A*02:71, A*02:73, A*02:85, A*02:99, A*68:02
:07, B*54:01
:06, A*02:07, A*02:16, A*68:02, C*04:01

:01, C*03:04, C*15:02

:03, C*03:04, C*12:03
:128, A*02:171, A*02:196, A*02:230, A*02:238, A*02:253, A*02:258, A*02:99,

:06, A*02:07, A*02:11, A*02:13, A*02:132, A*02:148, A*02:151, A*02:171, A*02:186,
02:22, A*02:230, A*02:238, A*02:253, A*02:258, A*02:52, A*02:54, A*02:70, A*02:71,
:01, A*11:01, A*23:01, A*24:02, A*26:01, A*30:01, A*30:02, A*31:01, A*32:01,
:02, B*08:01, B*15:01, B*35:01, B*40:01, B*44:02, B*44:03, B*46:01, B*51:01, B*53:01,
:04, C*05:23, C*05:33



Fig. 5. Results obtained for the 324 experimentally-determined SARS-CoV-2 T cell
epitopes [8,9,115,176–180,182] when they were provided as input to the computational
tools most commonly used in the reviewed SARS-CoV-2 in silico studies for refinement
of epitopes obtained by peptide-HLA binding prediction methods. Positive outcomes
indicate the number of epitopes the computational tool predicts to have the
characteristic (immunogenicity, IFN-γ production, allergenicity, toxicity) being tested,
and vice versa for negative outcomes. “NA” indicates the number of epitopes that could
not be analyzed by the specific tool. In case of Calis et al. [80], the method is applicable
to HLA-I epitopes only, while in the case of IFNepitope, this was because only a subset of
the experimentally-determined epitopes had IFN-γ production information available.
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epitopes must fold into conformations that are similar to the native
protein for eliciting an antibody response.

For SARS-CoV-2, as well as other coronaviruses, one feature that
simplifies the identification of potentially robust epitopes is the fact
that the genetic variation is quite low. For example, almost all (~99%)
of the epitopes that were predicted by a study in early 2020 [24] are
still highly conserved (>99%) within SARS-CoV-2 sequences [35], de-
spite a three orders of magnitude increase in the amount of sequence
data available. Hence, based on our current understanding, T cell escape
by genetic variationmay not be a significant factor for SARS-CoV-2. This
is in contrast to other viruses that are highly mutable, such as HIV and
hepatitis C virus, for which more elaborate computational methods
have been developed to facilitate robust T cell epitope identification
and to aid vaccine design [195–207].

Generally speaking, the knowledge being gained through the
broad application of in silico T cell epitope prediction methods and
tools to SARS-CoV-2 can help guide further studies aimed at epitope
determination and vaccine design for various other viruses. For ex-
ample, the observed cross-reactivity of T cell epitopes between
SARS-CoV and SARS-CoV-2 motivate studies that seek to identify
epitopes that are genetically similar across a spectrum of
coronaviruses (e.g., SARS-CoV, MERS-CoV, SARS-CoV-2, common
cold human coronaviruses, as well as animal coronaviruses). The
identification of such epitopes could help guide “pan-coronavirus”
vaccine designs that are aimed at safeguarding against both current
human coronaviruses and novel coronaviruses that may leap from
other species to infect humans in the future [208,209]. An increased
understanding of the landscape of SARS-CoV-2 immunogenic T cell
epitopes targeted by COVID-19 patients would open up the space
of possibilities to explore, and this could play an important role in
the search for a pan-coronavirus vaccine.
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