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Systemic lupus erythematosus (SLE) and systemic scle-
rosis (SSc) are two severe autoimmune connective tissue
diseases. The fundamental knowledge about their etiol-
ogy is limited and the conditions display complex patho-
genesis, multifaceted presentations, and unpredictable
courses. Despite significant efforts, the lack of fully vali-
dated biomarkers enabling diagnosis, classification, and
monitoring of disease activity represents significant un-
met clinical needs. In this discovery study, we have for the
first time used recombinant antibody microarrays for min-
iaturized, multiplexed serum protein profiling of SLE and
SSc, targeting mainly immunoregulatory proteins. The
data showed that several candidate SLE-associated mul-
tiplexed serum biomarker signatures were delineated, re-
flecting disease (diagnosis), disease severity (phenotypic
subsets), and disease activity. Selected differentially ex-
pressed markers were validated using orthogonal assays
and a second, independent patient cohort. Further, bio-
marker signatures differentiating SLE versus SSc were
demonstrated, and the observed differences increased with
severity of SLE. In contrast, the data showed that the serum
profiles of SSc versus healthy controls were more similar.
Hence, we have shown that affinity proteomics could be
used to de-convolute crude, nonfractionated serum pro-
teomes, extracting molecular portraits of SLE and SSc, fur-
ther enhancing our fundamental understanding of these
complex autoimmune conditions. Molecular & Cellular
Proteomics 10: 10.1074/mcp.M110.005033, 1–14, 2011.

Systemic lupus erythematosus (SLE)1 (1, 2) and systemic
sclerosis (SSc), or scleroderma, (3, 4) are two severe, chronic

autoimmune connective tissue diseases with still unknown
etiology, complex pathogenesis, heterogeneous presentation,
and unpredictable course. As a consequence, the difficulties
in diagnosing, classifying, and treating both SLE (1, 5, 6) and
SSc (3, 4, 7, 8) are significant. Thus, further studies delineating
SLE and SSc, and revealing the underlying disease biology at
the molecular level are highly warranted.

SLE is a multifaceted disease, with a prevalence of 40 to
200 cases per 100,000 persons (2), for which the lack of
specific biomarkers is critical and impairs the clinical manage-
ment of these patients (6, 9–12). First, the clinical symptoms
vary so much that it often mimics or is mistaken for other
conditions (1, 2). Because no single diagnostic test is at hand,
SLE is currently diagnosed when at least 4 of 11 complex,
clinical criteria, as defined by the American College of Rheu-
matology (13, 14), are fulfilled. Second, the course of the
disease is characterized by alternating periods of flares and
remissions (1, 2). There are no biomarkers at hand for pre-
dicting and/or identifying the start and end of a flare, which
would be a key feature for optimizing treatment (1, 2, 5). Third,
the therapeutic regime could be even further optimized if
validated biomarkers for stratifying the patients into clinical
phenotypic subsets, reflecting disease severity (15), were
available. Fourth, the absence of markers has significantly
hampered the efforts to monitor and evaluate the effects of
(novel) therapeutics (6, 16). Considering the complexity of
SLE, it is reasonable to argue that more than one biomarker
signature will be required in order to reflect all aspects of SLE
(6). Hence, the need to define molecular portraits associated
with SLE is significant.

Compared with SLE (inflammatory phenotype) (1, 2), SSc
displays a less anti-inflammatory and more fibrotic phenotype
(4, 7, 17). This disorder, which has a prevalence of about 3 to
24 cases per million persons (18), is as SLE, diagnosed by
evaluating an intricate pattern of clinical features. Based on
the pattern of skin involvement (19), SSc is commonly classi-
fied into two subsets, limited cutaneous SSc (lcSSc) and
diffuse cutaneous SSc (dcSSc). As for SLE, the need for
specific biomarkers of SSc for diagnosis, classification, prog-
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nosis, and for monitoring the response to therapy is significant
(8, 20).

Considering the nature of SLE (1, 2) and SSc (3, 8, 17),
deciphering the serum, plasma, and/or urine proteomes,
would shed further light on these diseases, and could provide
the candidate biomarker signatures much longed for (6, 8,
10–12, 20). Despite major efforts, using a plethora of meth-
ods, including conventional proteomic technologies, such as
two-dimensional gels and mass spectrometry, our knowledge
about the serum, plasma, and urine signatures reflecting SLE
(6, 10–12) and SSc (3, 7, 8, 20) is still very limited, and mainly
restricted to single laboratory variables displaying inadequate
specificity and sensitivity. Targeting crude proteomes, such
as serum, has proven challenging using standard proteomic
approaches because of sample complexity and methodolog-
ical shortcomings (21–23).

In recent years, affinity proteomics, mainly represented by
antibody-based microarrays, have been established as a
technology capable of performing multiplex profiling of com-
plex proteomes in a sensitive manner (24–26). In this context,
we have developed a state-of-the-art recombinant antibody
microarray technology platform (24, 27, 28) and validated its
use within disease proteomics (24, 29–32). Focusing on var-
ious cancers (30–33) and inflammatory conditions (31) (Win-
gren et al., unpublished observations), we have deciphered
candidate serum/plasma and tissue biomarker signatures for
e.g. disease diagnosis, prognosis, and classification, as well
as for monitoring the molecular effects of therapy and for
selecting patients eligible for therapy.

In this proof-of-concept study, we have explored the po-
tential of our recombinant antibody microarray set-up for
profiling the serum proteome of SLE and SSc, targeting high-
and low-abundant immunoregulatory proteins in crude, di-
rectly biotinylated sera. The data showed that several SLE-
associated candidate serum protein signatures could for the
first time be identified reflecting disease, disease severity
(phenotypic subsets), and disease activity. Although SLE and
SSc could be differentiated, the data implied that the serum
profiles of SSc versus controls were more similar. Hence, this
study demonstrated that a minimally invasive blood sample
harbored disease-specific information reflecting autoimmune
connective tissue diseases, further enhancing our fundamen-
tal understanding of SLE and SSc.

MATERIALS AND METHODS

Clinical Samples—This study was approved by the regional ethics
review board in Lund, Sweden. In total, 65 serum samples were
collected at Lund University Hospital (Lund, Sweden), including 20
SSc patients (Table I), 30 SLE patients (Table II), and 15 healthy
volunteers (mean age 44 (range 20–69), gender female:male 14:1).
The SLE and SSc patients were all recruited from the Department of
Rheumatology (Lund University Hospital) (34, 35). Serum samples of
the SSc patients were collected at the first enrolment for inquiry of the
SSc diagnosis, and the demographics are described in Table I. The
SSc patients fulfilled the inclusions criteria of (a) a definitive diagnosis
of SSc according to the ACR (36); (b) a disease duration of less than

5 years from the onset of skin involvement; and (c) had not been
previously treated with any of the following drugs: azathioprine,
chlorambucil, colchicine, cyclophosphamide, cyclosporine S, D-pen-
icillamine, methotrexate, or mycophenolate mofetil. The SSc patients
were grouped according to whether they had limited cutaneous SSc
(lcSSc, n � 10) or diffuse cutaneous SSc (dcSSc, n � 10) (19), and the
clinical data were obtained as previously described (37). The SLE
patients had clinical SLE diagnosis and displayed four or more ACR
classification criteria (13, 14). The serum samples were collected
during follow-up when the patients were presented with a flare. The
demographics are described in Table II. The SLE patients were
grouped according to disease severity as previously described (15):
(1) skin and musculoskeletal involvement (SLE1, n � 10); (2) serositis,
systemic vasculitis but not kidney involvement (SLE2, n � 10); and (3)
presence of SLE glomerulonephritis (SLE3). The clinical disease ac-
tivity was defined as SLEDAI-2K score (38). All samples were ali-
quoted and stored at �80 °C until further use. A second, independent
patient cohort, containing 20 SLE3 patients and 20 healthy volun-
teers, collected at Lund University Hospital (Lund, Sweden) (the de-
mographics are described in supplemental Table 1) were used to
validate selected differentially expressed analytes, including �10 cy-
tokines (low-abundant markers) and one complement protein (high-
abundant marker).

Labeling of Serum Samples—The serum samples were labeled
using previously optimized labeling protocols for serum proteomes
(27, 28, 39). Briefly, the serum samples were diluted 1:45 in phos-
phate-buffered saline (PBS), resulting in a concentration of about 2
mg/ml, and biotinylated at a molar ratio of biotin:protein of 15:1 using
EZ-Link Sulfo-NHS-LC-Biotin (Pierce, Rockford, IL). Unreacted biotin
was removed by dialysis against PBS for 72 h, using a 3.5 kDa
molecular weight (MW) dialysis membrane (Spectrum Laboratories,
Rancho Dominguez, CA). The samples were aliquoted and stored at
�20 °C.

Production and Purification of Single-chain Fragment Variable
(scFv)—One hundred thirty-five human recombinant single-chain
fragment variable (scFv) antibody fragments directed against 60 dif-
ferent analytes mainly involved in immunoregulation, anticipated to
reflect the events taking place in SLE and SSc (supplemental Table 1),
were selected from the n-CoDeR library (40) and kindly provided by

TABLE I
Demographic data of the SSc patients included in the study

Parameter lcSSc dcSSc

No. 10 10
Gender (female:male) 10:0 7:3
Age at onset 51 (44–70)a 47 (34–55)a

Duration (months) 31 (24–43)a 17 (10–28)a

Skin score 10 (9–12)a 17 (10–28)a

Organ involvement
Esophagus 10 9
Lung 5 7
Heart 1 4
PAH 1 0
Kidney 1 1
Muscle 0 1
Joint 1 1

No. ANA positive 10 10
No. anti-Scl-70 positive 0 4
No. anti-centromere positive 8 0
No. ESR raised 2 5
No. CRP raised 3 6
No. IgG raised 2 4

a Median (25th and 75th percentile).

10.1074/mcp.M110.005033–2 Molecular & Cellular Proteomics 10.5

http://www.mcponline.org/cgi/content/full/M110.005033/DC1
http://www.mcponline.org/cgi/content/full/M110.005033/DC1


BioInvent International AB (Lund, Sweden). The specificity, affinity
(normally in the nM range), and on-chip functionality of these phage
display derived scFv antibodies (40) was ensured by using (i) stringent
phage-display selection protocols (40), (ii) multiple clones (�4) per
target analyte, and (iii) a molecular design, adapted for microarray
applications (24, 41) (Wingren et al., unpublished observations). The
specificity of several of the antibodies have previously also been
validated using well-characterized, standardized serum samples, and
orthogonal methods, such as mass spectrometry, ELISA, MSD, CBA,
and MS, as well as using spiking and blocking experiments
(supplemental Table 2). All scFv antibodies were produced in 100 ml
E. coli cultures and purified from expression supernatants, using af-
finity chromatography on Ni-NTA agarose (Qiagen, Hilden, Germany).
Bound molecules were eluted with 250 mM imidazole, extensively
dialyzed against PBS, and stored at 4 °C, until further use. The protein
concentration was determined by measuring the absorbance at 280
nm (average concentration 480 �g/ml, range 100 to 800 �g/ml). The
degree of purity and integrity of the scFv antibodies were evaluated
by 10% SDS-PAGE (Invitrogen, Carlsbad, CA).

Fabrication and Processing of Antibody Microarrays—For produc-
tion of the antibody microarrays, we used a set-up previously opti-
mized and validated (27, 28, 30, 32). Briefly, the scFv microarrays
were fabricated, using a noncontact printer (Biochip Arrayer, Perkin
Elmer Life and Analytical Sciences). The antibodies were spotted onto
black polymer MaxiSorb microarray slides (NUNC A/S, Roskilde,
Denmark), resulting in an average of 11 fmol scFv per spot (range
2–19 fmol). Eight replicates of each scFv clone were arrayed to ensure
adequate statistics. The on-chip performance of the antibodies has
been previously validated (27, 30–32, 41), for review see (41–44). In
total, 160 antibodies and controls were printed per slide orientated in
two columns with 8 � 80 spots per column.

For handling of the arrays, we used a protocol recently optimized
(33). Briefly, the slides were manually blocked in 5% (w/v) fat-free milk

powder (Semper AB, Sundbyberg, Sweden) in PBS, and then placed
in a Protein Array Work station (Perkin Ellmer Life and Analytical
Sciences) for automated handling. The slides were washed with 0.5%
(v/v) Tween-20 in PBS. The biotinylated serum sample was diluted 1:2
(resulting in a total serum dilution of 1:90) in 1% (w/v) fat-free milk
powder and 1% (v/v) Tween in PBS (PBS-MT) prior to incubation on
the array. The arrays were visualized with 1 �g/ml Alexa-647 conju-
gated streptavidin diluted in PBS-MT. Finally, the arrays were dried
under a stream of nitrogen gas and scanned with a confocal microar-
ray scanner (ScanArray Express, Perkin Elmer Life and Analytical
Sciences) at 5-�m resolution, using three different scanner settings.
The ScanArray Express software V3.0 (Perkin Elmer Life and Analyt-
ical Sciences) was used to quantify the intensity of each spot, using
the fixed circle method. The local background was subtracted to
compensate for possible local defects, the two highest and the two
lowest replicates were automatically excluded and each data point
represents the mean value of the remaining four replicates. The
coefficient of correlation for intra-assays was �0.99 and for interas-
says �0.96, respectively.

Data Normalization—Only nonsaturated spots were used for further
analysis of the data. Chip-to-chip normalization of the data sets was
performed, using a semiglobal normalization approach (24, 30, 32),
conceptually similar to the normalization developed for DNA microar-
rays. Thus, the coefficient of variation was first calculated for each
analyte and ranked. Fifteen percent of the analytes that displayed the
lowest coefficient of variation values over all samples were identified,
corresponding to 21 analytes, and used to calculate a chip-to-chip
normalization factor. The normalization factor Ni was calculated by
the formula Ni � Si/�, where Si is the sum of the signal intensities for
the 21 analytes for each sample and � is the sum of the signal
intensities for the 21 analytes averaged over all samples. Each data
set generated from one sample was divided with the normalization
factor Ni. For the intensities, log2 values were used in the analysis.

TABLE II
Demographic data of the SLE patients included in the study

Parameter SLE1 SLE2 SLE3

No. 10 10 10
Gender (female:male) 10:0 8:2 8:2
Age at onseta 45 (26–51) 38 (27–46) 28 (24–34)
Duration (months)a 102 (42–179) 79 (15–206) 74 (10–139)
SLEDAI-2Kb 6 (4–10) 7 (2–32) 16 (10–32)
ANA (titre)b 217 (0–3200) 217 (14–1600) 217 (0–1600)
Anti-DNA (% positive)c 10 60 70
Complement protein C1q (%)b 105.5 (58–217) 109 (0–133) 58.5 (35–158)
Complement protein C3(mg/ml)b 1.10 (0.35–1.48) 0.85 (0.37–1.56) 0.59 (0.34–1.22)
Complement protein C4 (mg/ml)b 0.16 (0.09–0.43) 0.13 (0–0.28) 0.11 (0.04–0.33)
CRPb 12 (0–89) 13.5 (0–75) 11.5 (0–33)
Treatment

Prednisolon 4 8 0
Hydrochloroquine 5 4 2
Azathoprine 2 4 1
Cyclosporine S 1 0 3
Cyclosphosphamide 1 0 3
Methotrexate 0 0 1
Intravenous Ig 0 0 1

Definition
SLE1 Skin and musculoskeletal involvement
SLE2 Serositis, systemic vasculitis, but not kidney involvement
SLE3 SLE glomerulonephritis

a Median (25th and 75th percentile).
b Median � range.
c Mean.
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Data Analysis—The support vector machine (SVM) is a supervised
learning method in R (45–47) that we used to classify the samples.
The supervised classification was performed using a linear kernel, and
the cost of constraints was set to 1, which is the default value in the
R function SVM, and no attempt was performed to tune it. This
absence of parameter tuning was chosen to avoid overfitting. The
SVM was trained using a leave-one-out cross-validation procedure.
Briefly, the training sets were generated in an iterative process in
which the samples were excluded one by one. The SVM was then
asked to blindly classify the left out samples as either disease or
healthy, and to assign a SVM decision value, which is the signed
distance to the hyperplane. No filtration on the data was done before
training the SVM, i.e. all antibodies used on the microarray were
included in the analysis. Further, a receiver operating characteristics
(ROC) curve, as constructed using the SVM decision values and the
area under the curve (AUC), was calculated. AUC values were in
general interpreted as 0.5–0.6 � poor; 0.6–0.7 � fair; 0.7–0.8 �
medium; 0.8–0.9 � good; 0.9–1.0 � excellent. The discriminatory
power of clinical laboratory parameters (anti-DNA antibodies, anti-
nuclear antibodies (ANA), complement protein C1q, complement
protein C3, complement protein C4, C-reactive protein (CRP),
and/or SLEDAI-2K) were evaluated single predictors or in combi-
nation by using the same leave-one-out SVM procedure as for the
array data.

Significantly up- or down-regulated plasma proteins (p � 0.05)
were defined based on the relative protein levels and identified using
Wilcoxon signed-rank test, log transformed and mean centered. It
should be noted that the approach did not differentiate whether the
observed up- or down-regulated levels of an analyte was because of
an increased or decreased production or an increased or decreased
consumption. The samples were visualized using Qlucore (Lund,
Sweden) or R (heat maps).

Finally, we investigated the impact of the small sample groups at
the end results of the statistical analysis. To this end, we randomly
changed the group labels across the samples, and re-ran the classi-
fication using the randomized (permutated) groups. The randomiza-
tion process was repeated 20 times for each classification. The anal-
ysis showed that the even though the sample groups were small, the
classifier performed among the best when the groups were made up
of their original, correct members (when the original group displayed
an adequate ROC AUC value) (supplemental Fig. 1A). Thus, the data
showed that the successful classification adequately reflected the
original stratification, and was not the results of a confounding factor
derived from the small sample groups. In the cases where SVM
models also were built using data subsets composed of only signif-
icant analytes, a corresponding analysis was performed (sup-
plemental Fig. 1B). Here, each permutated model was constructed
using only the analytes found to be significant for each individual
permutation, i.e. the analytes selected for training and testing each
permutation was identified using the same criterion (wilcoxon p
value � 0.05) as for the original stratification.

Validation of Array Data—A human Th1/Th2 10-plex MSD (Meso
Scale Discovery, Gaithersburg, MD) assay was run in an attempt to
validate the antibody microarray results (differentially expressed ana-
lytes), focusing on SLE. Both patient cohorts of SLE were profiled
using MSD (supplemental Figs. 2–6). Each well of the MSD 96-plate
had been prefunctionalized with antibodies against IFN-�, IL-1�, IL-2,
IL-4, IL-5, IL-8, IL-10, IL-12p70, IL-13, and TNF-� in spatially distinct
electrode spots. The assay was run according to the protocol pro-
vided by the manufacturer and the electrochemiluminiscence-based
readout was performed in an MSD SECTOR® instrument. The limit of
detection was defined as 2.5 times the standard deviation of the zero
point in the standard curve. The MSD assay was applied to both
patient cohorts.

Further, the levels of three complement proteins, including C1q,
C3, and C4, were determined by an electroimmuno-, turbidometric-,
and/or nephelometric-based assay in the first patient cohort
(supplemental Figs. 2 and 6). Finally, the levels of complement protein
C3 was determined in both patient cohorts using our array set-up
(supplemental Figs. 3 and 5).

RESULTS

Profiling of SLE and SSc Serum Proteomes—First, we de-
termined a focused serum proteome profiles of SLE and SSc,
and compared them to that of the healthy controls. The top
�25 significantly (p � 0.05) expressed nonredundant analytes
are shown as heat maps in Fig. 1. Although only four analytes
(e.g. IFN-�, and IL-4) were found to be differentially expressed
in SSc (Fig. 1A), the data showed that the expression patterns
of 40 analytes differed between SLE versus controls, including
both down-regulated (e.g. C1q, C3, and C5) and up-regulated
analytes (e.g. IL-6, IL-10, IFN-�, and TNF-�) (Fig. 1B). It should
be noted that we could not differentiate whether the observed
up- and down-regulated levels of an analyte was because of
an increased or decreased production or increased or de-
creased consumption.

In order to evaluate the ability of the set-up to differentiate
SSc and SLE versus controls based on the observed protein
expression profiles, we ran a leave-one-out cross-validation
based on all antibodies with a SVM, and collected the deci-
sion values for all samples. These prediction values were then
used to construct a ROC curve, and the AUC value was
calculated (Fig. 1). The results showed that SLE versus con-
trols could be reasonably differentiated (AUC � 0.76) (Fig.
1B), with a specificity and sensitivity of 0.80% and 0.67%,
respectively. Using orthogonal assays, targeting low-abun-
dant markers (�10 cytokines; MSD-based assay) (supple-
mental Fig. 2A) and high-abundant markers (�3 complement
proteins; electroimmuno-, turbidometric-, and/or nephelo-
metric-based assays) (supplemental Fig. 2B), differentially ex-
pressed analytes were successfully validated. In contrast,
SSc versus controls could not be distinguished (AUC � 0.47)
(Fig. 1A).

Next, we examined whether a multiplexed serum profile
differentiating SLE versus SSc could be determined (Fig. 1C).
The data showed that 42 analytes were significantly differen-
tially expressed of which all, but 3 (C1q, C3, and mucin-1),
were up-regulated in SLE (e.g. IL-6, IL-12, IFN-�, and TNF-�).
Although the discriminatory power was poor (AUC � 0.59)
using unfiltered data, i.e. all antibodies, the AUC value was
found to be 0.69 when only the differentially expressed ana-
lytes were used.

Serum Protein Profiles of SSc Phenotypic Subsets—In an
attempt to further refine the serological portrait of SSc, we
determined the expression profiles of the two commonly rec-
ognized phenotypic subsets, dcSSc and lcSSc (Fig. 2). The
data showed that seven significantly differentially expressed
analytes were observed for dcSSc versus controls (the most
prominent being IFN-� and IL-4), five for lcSSc versus controls
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(e.g. IL-4, MCP-4, and CD-40), whereas none could be ob-
served for dcSSc versus lcSSc. Using unfiltered data, the
phenotypic subsets could neither be differentiated from the
controls nor from each other (AUC � 0.50). In contrast, based
on the differentially expressed analytes only, both dcSSc
(AUC � 0.71) and lcSSc (AUC � 0.90) could be distinguished
from the controls.

Classification of SLE—We then determined the serum pro-
tein profile of three phenotypic subsets of SLE grouped ac-
cording to increased disease severity, SLE1 � SLE2 � SLE3,
and compared them with that of the controls (Fig. 3). The
results showed that the number of differentially expressed
analytes (15 � 28 � 44) and AUC values (0.55 � 0.67 � 0.99)
increased with the severity of the symptoms.

In more detail, in the case of SLE1, complement proteins
were found to be down-regulated (i.e. found at lower levels)
(e.g. C1q, C3, C5, and Factor B), whereas several cytokines
were found to be up-regulated (e.g. IL-4, IL-6, IL-10, TNF-�)
(Fig. 3A and 3D). Despite the observed differences in serum
protein expression patterns, SLE1 versus controls could not

be discriminated (AUC � 0.55). Although complement pro-
teins were down-regulated in SLE2 as well (e.g. C1q), the
pattern of up-regulated cytokines contained a mixture of both
Th1 cytokines (e.g. IL-2, IL-12, IFN-�, and TNF-�) and Th2
cytokines (e.g. IL-6, IL-10) (Figs. 3B and 3D). The discrimina-
tory power of this serum biomarker profile was moderate
(AUC � 0.67), corresponding to a specificity of 60% and
sensitivity of 80%. In contrast, SLE3 versus controls could
readily be discriminated (p � 6�10�7; AUC � 0.99) with a
sensitivity and specificity of 100 and 93%, respectively (Figs.
3C). Of note, in the training of the SVM, no filtration of data
was made, i.e. all the measurements were included. Apart
from the complement proteins (e.g. C1q, C3, and C5) and
IL-18 (down-regulated), the pattern of 44 differentially ex-
pressed analytes contained mainly up-regulated cytokines,
including both Th1 and Th2 cytokines (Figs. 3C and 3D). For
all three comparisons, a set of differentially expressed mark-
ers (cytokines) were successfully validated using a 10-plexed
MSD-based assay (supplemental Figs. 3A–3C). Furthermore,
the differential expression pattern observed for both a high-
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FIG. 1. Expression profiling of serum proteomes from SSc and SLE using a 135-recombinant-antibody microarray. The samples were
classified using a leave-one-out cross validation approach with a SVM, and illustrated as ROC curves. The patients are ordered by decreasing
decision value as assigned by the SVM classifier (middle panel). Differentially expressed analytes are shown in heat maps: green, down-
regulated; red, up-regulated; and black, equal levels. A, Classification of healthy controls (blue) versus SSc (red). Four differentially expressed
analytes, recognized by five antibodies, were identified. B, Classification of healthy controls (blue) versus SLE (red). Forty nonredundant
differentially expressed analytes, recognized by 58 antibodies were identified, of which the 25 highest ranked, i.e. significantly differentially
expressed (p values), analytes are shown. C, Classification of SSc (blue) versus SLE (red). Forty-two nonredundant differentially expressed
analytes, recognized by 62 antibodies were identified, of which the 25 highest ranked analytes (p values) are shown.
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abundant marker (complement protein C3) and a set of low-
abundant markers (cytokines) were also validated on an inde-
pendent, second patient cohort (SLE3 versus healthy
controls) using both array technology and a MSD-based as-
say (supplemental Figs. 3D and 3E). Hence, the data showed
that first candidate SLE serological biomarker signatures re-
flecting disease severity had been delineated using recombi-
nant antibody microarrays.

Refined Classification of SLE versus SSc—Considering the
fact that the phenotypes of SLE were reflected in the serum
profiles, we compared the molecular pattern of the pheno-
typic subsets of SLE with that of SSc to refine the observed
serological differences between these conditions (Fig. 4). As
the subsets of SSc could not be differentiated (Fig. 2), SSc
was kept as one cohort. The data showed that the number of
significantly differentially expressed analytes (3 � 36 � 49)
and AUC values (0.40 � 0.69 � 0.98) for SLE phenotypic
subsets versus SSc increased with the severity of SLE (Fig. 4).

In the case of SLE versus SSc, only three differentially
expressed analytes (C1q, C3 and TNF-�) were detected, and
the cohorts could not be differentiated (AUC � 0.40) (Figs. 4A
and 4D). In contrast, SLE2 versus SSc could be differentiated

(AUC � 0.69) with a 75% specificity and 60% sensitivity, and
36 differentially expressed analytes were observed (Figs. 4B
and 4D). Except for mucin-1 and Ku 70/80 (down-regulated),
a pattern of mainly up-regulated analytes was observed for
SLE2, including both Th1 and Th2 cytokines. Further, SLE3
versus SSc was readily classified (AUC � 0.98; p � 6�10�7),
displaying a sensitivity and specificity of 100 and 85%, re-
spectively (Fig. 4C). Although complement proteins (e.g. C1q,
C3, and C5) and TNF-� were found to be down-regulated (i.e.
found at lower levels), a majority of the 49 significantly differ-
entially expressed analytes were found to be up-regulated in
SLE3 and composed of a panel of both Th1 and Th2 cytokines
(Figs. 4C and 4D). Hence, the serological portraits differenti-
ating SLE and SSc had been further deciphered and refined
(cfs. Figs. 1 and 4).

Refined Classification of SLE Reflecting Disease Severity—
Next, we further investigated whether the SLE samples could
be classified according to disease severity, determined á
priori based on an intricate pattern of clinical parameters (Fig.
5). To this end, we compared the serum protein profiles of the
three SLE phenotypic subsets with each other. The results
showed that SLE1 (least symptoms) versus SLE3 (most symp-
toms) could be distinguished (AUC � 0.80), corresponding to
a specificity and sensitivity of 70% and 80%, respectively
(Fig. 5A). Moreover, SLE1 versus SLE2 could also be sepa-
rated (AUC � 0.73), whereas SLE2 versus SLE3 (AUC � 0.58)
appeared to be more similar. Notably, these comparisons
were all based on unfiltered data. When only the differentially
expressed analytes were used, SLE1 versus SLE2 and SLE2
versus SLE3 could also be classified, displaying AUC values
of 0.79 and 0.81, respectively. The relationship between the
three clinical phenotypes is further highlighted in Fig. 5B,
where a principle component analysis, based on the 13 most
significantly differentially expressed analytes is shown. Again,
the data outlined that the three cohorts could be classified
according to disease severity (phenotype), indicating that se-
rological profiles had been delineated that could be used for
phenotype classification. In addition, the array data was also
found to display a better classification than single or com-
bined conventional clinical parameters, including, ANA, anti-
DNA, SLEDAI-2k, C1q, C3, C4, and CRP, in a majority of the
cases (cfs. Fig. 5 and Table III).

In more detail, 23 significantly differentially expressed ana-
lytes were observed for SLE1 versus SLE2 (Fig. 5C). Apart
from five up-regulated analytes (e.g. IL-4 and TNF-�), the
markers were down-regulated (e.g. IL-10 and IL-12) in SLE1.
Although only seven differentially expressed (down-regulated)
analytes (e.g. IFN-�, IL-6, IL-10, and IL-13) were detected for
SLE2 versus SLE3, a total of 32 analytes were detected for
SLE1 versus SLE3. In the latter case, all but two analytes (IL-3
and IL-1�), were found to be down-regulated in SLE1. Nota-
bly, the Th1 cytokines IL-12, IFN-�, and IL-2 increased as the
disease progressed from SLE1 through SLE2 to SLE3,
whereas central Th2 cytokines either decreased (IL-4) or
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FIG. 2. Expression profiling of serum proteomes from clinical
subsets of SSc, dcSSc, and lcSSc, using a 135-recombinant-
antibody microarray. A, Classification of dcSSc and lcSSc versus
healthy controls based on all 135 antibodies, using a SVM-based
leave-one-out cross validation test, expressed in terms of AUC val-
ues. AUC values obtained when using only significantly differentially
expressed analytes are given within brackets. B, Significantly differ-
entially expressed analytes are shown in a heat map. Seven differen-
tially expressed analytes, recognized by seven antibodies were iden-
tified for dcSSc versus controls; five analytes, recognized by five
antibodies for lcSSc versus controls; whereas none were observed for
dcSSc versus lcSSc. Green, down-regulated; red, up-regulated; and
black, equal levels. The color represent the fold change of a particular
marker across all samples within each sample cohort, calculated
using the average signal intensities.
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showed moderate increase (IL-5 and IL-10) (Fig. 5D), indicat-
ing a potentially Th1 skewed immune response as the severity
of SLE progressed. Finally, a set differentially expressed
markers (cytokines) were successfully validated for all three
comparisons using a 10-plexed MSD-based assay (supple-
mental Fig. 4), further highlighting the findings.

Patients Can be Classified According to Disease Activity—
Finally, we investigated whether serological biomarker signa-
tures reflecting SLE disease activity could de-convoluted. To
this end, the SLE samples were grouped into three groups
based solely on their disease activity, as reflected by their
SLEDAI-2K values; low (3–6), mid (9–19) and high (22–34).

The antibody microarray data showed that low versus mid
SLE activity samples could not be distinguish using unfiltered
data (AUC � 0.53), whereas the AUC value was found to
reach 0.82 when only the 12 differentially expressed analytes
were used (Fig. 6A). Except for IL-18, only down-regulated
analytes (e.g. IL-8, IL-10, IL-12, and IFN-�) were observed in
low versus mid SLE activity (Fig. 6B). A set of differentially
expressed markers (cytokines) were validated using an MSD-

based assay (supplemental Fig. 5A). In contrast, mid versus
high SLE activity could be differentiated with very high confi-
dence based on nonfiltered data, as reflected by an AUC of
0.93, corresponding to a specificity and sensitivity of 91% and
100%, respectively (Fig. 6A). Among the eight differentially
expressed analytes, five were up-regulated (e.g. C1q, C4,
IL-8, and IL-12) and three down-regulated (IL-1-ra, IL-18, and
TNF-�) in mid versus high SLE activity (Fig. 6B). A set of
differentially expressed analytes (cytokines) were successfully
validated using a MSD-based assay (supplemental Fig. 5B).
Moreover, low versus high SLE activity could be moderately
differentiated (AUC � 0.70) with a specificity of 82% and
sensitivity of 67%, showing a panel of 10 differentially ex-
pressed analytes, including five up-regulated complement
proteins (C1q, C3, C4, C5 and Factor B) and five down-
regulated analytes (e.g. CD40, IL-6, and IFN-�) (Figs. 6A and
6B). A set of differentially expressed markers (cytokines) were
again validated using a MSD assay (supplemental Fig. 5C).
Focusing on the complement proteins, the trends showed
that the levels of complement proteins decreased as the
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FIG. 3. Expression profiling of phenotypic subsets of SLE reflecting increased disease severity, including SLE1 (least symptoms),
SLE2, and SLE3 (most severe symptoms), using a 135-recombinant-antibody microarray. The samples were classified using a leave-
one-out cross validation approach with a SVM, and illustrated as ROC curves. The patients are ordered by decreasing decision value as
assigned by the SVM classifier (middle panel). Differentially expressed analytes are shown in heat maps: green, down-regulated; red,
up-regulated; and black, equal levels. The color represent the fold change of a particular marker across all samples within each sample cohort,
calculated using the average signal intensities. A, Classification of SLE1 (red) versus controls (blue). B, Classification of SLE2 (red) versus
controls (blue). C, Classification of SLE3 (red) versus controls (blue). The top 25 highest ranked, i.e. significantly differentially expressed (p
values), analytes are shown. D, Fifteen significantly differentially expressed analytes, recognized by 17 antibodies, were identified for SLE1
versus controls; 29 analytes, recognized by 36 antibodies for SLE2 versus controls; and 44 analytes recognized by 72 antibodies for SLE3
versus controls.
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activity of the disease increased, as reflected by C1q, C3, C4,
and C5 (Figs. 6C and 6D). In addition, the pattern of differen-
tially expressed C1q, C3, and C4 was successfully validated
using electroimmuno-, turbidometric-, and/or nephelometric-
based assays. Hence, the data indicated that the first gener-
ation of multiplexed serum profiles reflecting SLE disease
activity could be identified. Of note, the array data was also
found to display a better classification than single or com-
bined conventional clinical parameters, including, ANA, anti-
DNA, SLEDAI-2k, C1q, C3, C4, and CRP, in a majority of the
cases (cfs. Fig. 6 and Table III).

In order to eliminate any influence of the disease severity
on the observed serum profiles (Fig. 5), we re-ran the anal-
ysis above focusing on the SLE3 samples only (Fig. 7). The
SLE3 samples were then divided into two groups, based on
their SLEDAI-2K values; low (mean 13, range 10–16) and
high (mean 24, range 17–32). The data showed that the

SLE3 samples could be correctly classified according to
disease activity, as reflected by an AUC value of 1.00,
corresponding to a 100% specificity and 100% sensitivity
(Fig. 7). The 20 significantly differentially expressed analytes
are shown as a heatmap. Except for IL-4 and IL-1�, a
pattern of mainly up-regulated analytes (e.g. CD40, IL-2,
and IL-10) was observed as the disease activity increased.
Notably, a set of differentially expressed analytes (cyto-
kines) were successfully validated using a 10-plexed MSD-
based assay (supplemental Fig. 6A). Furthermore, the ex-
pression pattern of selected differentially expressed
markers (cytokines) was also validated on an independent,
second patient cohort using an MSD-based assay
(supplemental Fig. 6B). Noteworthy, the array data was also
found to display a better classification than single or com-
bined conventional clinical parameters in all cases (cfs. Fig.
7 and Table III).
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FIG. 4. Expression profiling of phenotypic subsets of SLE reflecting increased disease severity and SSc, using a 135-recombinant-
antibody microarray. The samples were classified using a leave-one-out cross validation approach with a SVM, and illustrated as ROC curves.
The patients are ordered by decreasing decision value as assigned by the SVM classifier (middle panel). Differentially expressed analytes are
shown in heat maps: green, down-regulated; red, up-regulated; and black, equal levels. The color represent the fold change of a particular
marker across all samples within each sample cohort, calculated using the average signal intensities. A, Classification of SLE1 (red) versus SSc
(blue). B, Classification of SLE2 (red) versus SSc (blue). C, Classification of SLE3 (red) versus SSc (blue). The top 25 highest ranked, i.e.
significantly differentially expressed (p values), analytes are shown. D, Three significantly differentially expressed analytes, recognized by three
antibodies, were identified for SLE1 versus SSc; 36 analytes, recognized by 47 antibodies for SLE2 versus SSc; and 49 analytes recognized
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In conclusion, we have shown that protein expression pro-
filing of serum samples could be performed using recombi-
nant antibody microarrays, enabling us to extract several
unique biomarker signatures reflecting SLE and SSc and clin-
ical subsets thereof.

DISCUSSION

Based on the notion that immunoregulation is a particular
phenomenon in SLE and SSc, we have in this pilot study
taken on an affinity proteomics approach in order to harness
the diagnostic, prognostic, and classification power of the
immune system to address these conditions. To this end, we
designed our antibody microarray to target predominantly
some of the key regulatory serum molecules. With this limited

range of specificities (n � 60), we showed that affinity pro-
teomics could still be used to extract disease-associated
serum portraits for SSc and in particular SLE reflecting dis-
ease, disease severity, disease activity, and phenotypic sub-
sets. In the case of SLE, selected differentially expressed
markers were validated using orthogonal assays and a sec-
ond, independent patient cohort. Although the data needs to
be further validated in follow-up studies, targeting larger, in-
dependent cohorts of patient samples before it could be
transferred into clinical practice (29), the results clearly out-
lined the biomarker signatures.

SSc is a multisystem fibrotic disorder often described with
a Th2 skewed, anti-inflammatory immune response, although
the Th1/Th2 balance in SSc is still a matter of controversy (4,

FIG. 5. Expression profiling of phe-
notypic subsets of SLE reflecting in-
creased disease severity, using a 135-
recombinant-antibody microarray. A,
Classification of SLE1, SLE2 and SLE3
based on all 135 antibodies, using a
SVM-based leave-one-out cross valida-
tion test, expressed in terms of AUC val-
ues. AUC values obtained when using
only significantly differentially expressed
analytes are given within brackets. B,
PCA analysis of SLE1 (green), SLE2 (yel-
low), and SLE3 (red) based on the top 13
significantly differentially antibodies us-
ing Qlucore. C, Significantly differentially
expressed analytes are shown in a heat
map. Twenty-three differentially ex-
pressed analytes, recognized by 28 an-
tibodies, were identified for SLE1 versus
SLE2; seven analytes, recognized by
eight antibodies for SLE2 versus SLE3;
and 32 analytes recognized by 47 anti-
bodies for SLE1 versus SLE3. Green,
down-regulated; red, up-regulated; and
black, equal levels. The color represent
the fold change of a particular marker
across all samples within each sample
cohort, calculated using the average sig-
nal intensities. D, Microarray signal in-
tensities observed for key Th1 (IL-2, IL-
12, and IFN-�) and Th2 (IL-4, and IL-10)
cytokines shown as boxplots. The me-
dian values are indicated (thick line) and
the hinges represent the 25th percentile
and the 75th percentile, respectively.

Molecular & Cellular Proteomics 10.5 10.1074/mcp.M110.005033–9



48). Considering the fibrotic pathology of SSc, it would be
natural to expect increased levels of IL-4 (Th2 cytokine) and
decreased expression of IFN-� (48). In accordance, we found
IL-4 to be up-regulated and IFN-� to be down-regulated in
SSc versus controls. Although this feature was prominent also
for the clinical subset dcSSc, only IL-4 was up-regulated in
lcSSc. To some extent this might reflect the fact that dcSSc is
considered to be dominated by rapidly progressive fibrosis of
the skin, lungs, and other internal organs, whereas lcSSc is
dominated by vascular manifestations, and skin and organ
fibrosis is generally limited and slow to progress (4).

We found very few serological markers to be differentially
expressed in SSc versus healthy controls, indicating on small
differences in this particular data set. As far as we know, the
association of mucin-1 and MCP-4 with SSc is a novel finding.
In previous studies, serological biomarkers, exemplified by
auto-antibodies, not targeted here, have been found to be an
important marker of SSc (8). Other circulating serum biomark-
ers that have recently been indicated to be central and/or
potentially differentially expressed in SSc include e.g. TGF-�,
IL-1�, IL-4, IL-6, IL-10, and IL-13 (7, 8, 49–51). Apart from
IL-4, we were unable to replicate these previous reports. The
reason for these discrepancies could include significant bio-
logical heterogeneity of SSc (3, 20, 49), the size of the patient
cohorts, and/or inherent difficulties in reproducing exploratory
findings generated at different sites using different proteomic
approaches (29, 52–54). This clearly implicated the impor-
tance of launching large, multicenter studies using parallel
complementary technologies for deciphering complex, heter-
ogeneous diseases (8, 29, 52–54).

Diagnosing SLE and SSc is challenging, which could result
in patients suffering unexplained symptoms and untreated
disease (1–3, 6, 8, 20). The situation is further complicated by
patients suffering from overlap syndromes in which the auto-
immune disease could start out as SLE and then transforms
into SSc, and vice versa (55, 56). In this proof-of-concept
study, distinct features and candidate serum signatures dif-

ferentiating SLE and SSc were delineated. Notably, we
showed that the magnitude of the observed differences co-
incided with the severity of SLE. Although only three analytes
were found to be differentially expressed in SLE1 (least symp-
toms) versus SSc, the up-regulation of TNF-� and to some
extent, the decreased levels of complement proteins in SLE1
agreed well with previous reports (4, 6, 8, 12, 15, 20). As the
severity of SLE increased, several other analytes that were
anticipated to be over expressed in SLE (6, 12) were also
detected, e.g. IL-2, IL-12, and IFN-�. However, some analytes
anticipated to be more associated with SSc than SLE (3, 4, 6,
12, 20), were also found to be up-regulated in SLE versus
SSc, e.g. IL-4, IL-5, IL-10, and TGF-�, indicating that the view
of describing SLE versus SSc simply as an inflammatory
phenotype versus a fibrotic phenotype needs to be refined. In
general, our data indicated a much more vigorous and
broader (systemic) immune response in SLE than in SSc.

Focusing on SLE, the absence of serological biomarkers for
diagnosis is significant (6). Panel(s) of auto-antibodies, eryth-
rocyte-bound complement protein product C4d, complement
receptor 1, and platelet-bound-C4d have been proposed, but
their potential remains to be validated (6). Notably, we found
40 differentially expressed, nonredundant, circulating serum
biomarkers, reflecting the disease, again indicating the potential
of our approach. This list of variables was composed of novel
markers, as well as some markers that had previously been
reported to be associated with SLE, such as IL-4, IL-6, IL-10,
IL-12, IFN-�, C3 and C4 (6, 12, 57, 58), further supporting our
observations. It should, however, be noted that these known
variables had not previously been reported in the context of a
candidate signature for SLE diagnosis, but mainly as single or a
few combined markers potentially reflecting disease activity (6,
12, 57, 58). Further studies will be required to validate our
candidate signature(s) and to extract and interpret the disease
biology reflected by these serological predictors.

Subsequently, these findings were extended, and we report
here a candidate serum-based signature for classifying SLE

TABLE III
The discriminatory power of clinical laboratory parameters for classification and prognosis of SLE evaluated as single predictors or in

combination by using a leave-one-out cross-validation SVM procedure as for the antibody array data

Clinical Laboratory
Parameter

ROC AUC value

SLE1
versus
SLE2

SLE1
versus
SLE3

SLE2
versus
SLE3

SLE lowa

versus
SLE mid

SLE lowa

versus
SLE high

SLE mida

versus
SLE high

SLE3 lowb

versus
SLE3 high

Anti-DNA antibodies 0.61 0.50 0.50 0.50 0.50 0.54 0.50
Anti-nuclear antibodies 0.50 0.81 0.69 0.50 0.50 0.61 0.68
Complement protein C1q 0.59 0.69 0.58 0.50 0.74 0.70 0.50
Complement protein C3 0.62 0.65 0.55 0.50 0.65 0.50 0.50
Complement protein C4 0.59 0.81 0.75 0.50 0.74 0.70 0.50
C-reactive protein (CRP) 0.50 0.50 0.50 0.50 0.50 0.50 0.50
SLEDAI-2K 0.50 0.83 0.68 n.a.d n.a.d n.a.d n.a.d

All combinedc 0.50 0.52 0.50 0.50 0.65 0.50 0.50
a SLE patients groupd on SLEDAI-2K.
b SLE3 patients grouped based on SLEDAI-2K.
c excluding CRP.
d n.a. � not applicable, as the sample groups were á priori divided based on SLEDAI-2K.
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according to disease severity (15). When we compared the
serum portraits of the phenotypic subsets with those of
the controls, the data showed, as could be expected, that the
number of differentially expressed analytes and the discrimi-
natory power of the candidate signature increased with the
severity of SLE. As for example, our results implied that SLE3,
lupus nephritis, versus controls could be differentiated with a
sensitivity and specificity of 100% and 93%, respectively.
Previous attempts to pin-point lupus nephritis has mainly

relied on single or a few markers, although attempts have
been made to identify multiplex signatures using e.g. mass
spectrometry based approaches, but so far with limited suc-
cess (6, 10, 11, 59). Further, our data implied a somewhat
skewed Th2 response in SLE1, as IL-4, IL-6, and IL-10 were
found to be up-regulated, although a mixture of Th1 and Th2
cytokines were up-regulated in SLE2 and SLE3, indicating a
complex pattern of cytokine expression. This could, at least to
some extent, reflect the complex and intricate disease pro-
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cesses known to take place as the disease progresses, as
mirrored by its unpredictable course and heterogeneous pres-
entation (1–3, 7).

A refined view emerged when the molecular fingerprints of
the SLE phenotypic subsets were compared with each other.
Then, the data implied a potentially Th1 skewed immune
response as the severity of SLE progressed, which is more in
line with the common view of a strong inflammatory compo-
nent in SLE (1–3, 7). The impact of being able to classify SLE
into phenotypes reflecting disease severity based on a mini-

mally invasive predictor will be central, because this is vital for
therapy selection (1, 5, 11). Currently, no blood-based tests
exist for such classification, further indicating the potential of
using affinity proteomics for extracting key biological informa-
tion from complex proteomes. Furthermore, the potentially
clinically added value was illustrated by the fact that the
candidate biomarker signatures provided better classification
than single/combined conventional clinical laboratory vari-
ables, e.g. ANA, anti-DNA, SLEDAI-2K, C1q, C3, C4, and
CRP, in a majority of the cases.

Alternating periods of flare and remission is a typical feature
of SLE (1–3). The active phase of the disease often has
serious consequences, like tissue and organ damages, and
means to predict and monitor a flare would be instrumental for
improving patient management (1–3, 11). From a clinical per-
spective, monitoring the activity of renal involvement in SLE is
today mainly dependent on microscopic evaluation of urine,
which has been shown to be associated with large method-
ological shortcomings (10). Other clinical laboratory variables
that have been evaluated are e.g. auto-antibodies, C1q, C3,
and C4, although the performance of these single predictors
for monitoring disease activity has varied (60–62). Despite the
fact that major efforts have been made to reveal SLE-activity
associated markers, ranging from traditional efforts, targeting
single analytes, e.g. CD40L, to proteomic approaches (57, 58,
60, 63–65), the need for additional information and a refined
scenario is significant (6). Here, we have outlined candidate
serological biomarker signatures for staging SLE patients
based on disease activity that provided better staging than
single/combined conventional clinical laboratory variables in a
majority of the cases. This identified list of variables was
composed of novel markers and some markers that had pre-
viously been reported to be indirectly (gene-level) or directly
(protein-level) associated with disease activity, such as C3,
C4, IL-6, IL-8, IL-10, IL-12, and RANTES (6, 57, 58, 66). In
particular interferon-inducible chemokines, of which some
were detected here, such as RANTES, IL-6 and IL-8, have
frequently been indicated as central players to be associ-
ated with disease activity (57, 58, 66, 67). Notably, the first
pre-validated three-plexed signature, based on the serum
levels of IFN-�-inducible 10-kDa protein, monocyte che-
motactic protein 1, and macrophage inflammatory protein
3�, was recently published (58), outlining the potential of
delineating multiplexed serum predictors for staging SLE
disease activity.

In order to eliminate the influence of disease severity on our
ability to reflect disease activity, we focused on lupus nephri-
tis, the most severe form of SLE, and split this group into 2
cohorts based on disease activity; SLE3-high versus SLE3-
low. The data showed that we could differentiate the SLE3
samples based on disease activity with high confidence, and
the array data was found to provide a better differentiation
than single/combined conventional clinical variables in a ma-
jority of cases. Again, a mixture of novel and previously re-
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ported candidate markers (6, 57, 58, 66) were delineated,
further outlining our capability of reflecting disease severity.
As compared with when all SLE samples were used, including
patients with a broad range of disease severity, the candidate
serological biomarker signatures were refined, although sev-
eral variables were retained, including interferon-inducible
chemokines, such as IL-8 and RANTES.

In this pilot study, we have shown that a simple blood
sample harbored significant disease-specific information re-
flecting complex autoimmune connective tissue diseases that
could be extracted and interpreted using affinity proteomics.
The results could provide new perspective on the nature of
SLE, and have outlined several candidate serological bio-
marker signatures reflecting disease, disease severity and
disease activity. The potential of these disease predictors will
be validated in larger prospective studies, where also ex-
tended array layouts targeting an even wider range of pro-
spective markers will be explored, but suggest novel means
for improved clinical management of patients.
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