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ABSTRACT
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones
secreted from the intestine on ingestion of various nutrients to stimulate insulin secretion from pancreatic b-cells glucose-depen-
dently. GIP and GLP-1 undergo degradation by dipeptidyl peptidase-4 (DPP-4), and rapidly lose their biological activities. The actions
of GIP and GLP-1 are mediated by their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which are
expressed in pancreatic b-cells, as well as in various tissues and organs. A series of investigations using mice lacking GIPR and/or
GLP-1R, as well as mice lacking DPP-4, showed involvement of GIP and GLP-1 in divergent biological activities, some of which
could have implications for preventing diabetes-related microvascular complications (e.g., retinopathy, nephropathy and neuropathy)
and macrovascular complications (e.g., coronary artery disease, peripheral artery disease and cerebrovascular disease), as well as
diabetes-related comorbidity (e.g., obesity, non-alcoholic fatty liver disease, bone fracture and cognitive dysfunction). Furthermore,
recent studies using incretin-based drugs, such as GLP-1 receptor agonists, which stably activate GLP-1R signaling, and DPP-4 inhibi-
tors, which enhance both GLP-1R and GIPR signaling, showed that GLP-1 and GIP exert effects possibly linked to prevention or
treatment of diabetes-related complications and comorbidities independently of hyperglycemia. We review recent findings on the
extrapancreatic effects of GIP and GLP-1 on the heart, brain, kidney, eye and nerves, as well as in the liver, fat and several organs
from the perspective of diabetes-related complications and comorbidities. (J Diabetes Invest, doi: 10.1111/jdi.12065, 2013)
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INTRODUCTION
The history of incretins dates back as early as the year 1904,
when Moore, who was inspired by the discovery of secretin by
Bayliss and Starling1, hypothesized that gut extracts contain a
hormone that regulates the endocrine pancreas. Based on his
hypothesis, Moore showed that administration of gut extracts
reduced urine sugars in diabetic patients, presumably through
stimulation of the endocrine pancreas2. In 1929, La Barre puri-
fied the glucose-lowering element from gut extracts, and named
it incretin3. To date, gastric inhibitory polypeptide (GIP) and
glucagon-like peptide-1 (GLP-1) are recognized as the two pri-
mary incretin hormones secreted from the gut after ingestion
of glucose or various nutrients to stimulate insulin secretion
from pancreatic b-cells glucose-dependently4–7. GIP and GLP-1
undergo rapid inactivation catalyzed by dipeptidyl peptidase-4
(DPP-4), and their biological activity is drastically reduced. GIP
and GLP-1 exert their effects by binding to their specific recep-
tors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-
1R), which belong to the G-protein coupled receptor family.

Receptor binding activates and increases the level of intracellu-
lar cyclic adenosine monophosphate in pancreatic b-cells,
thereby stimulating insulin secretion glucose-dependently.
Genetic ablation of GIPR and GLP-1R separately or simulta-
neously in mice showed their critical roles in the entero-insular
axis, and confirmed that GIP and GLP-1 act as incretins8–10. In
addition to their insulinotropic actions, a series of investigations
using mice lacking GIPR and/or GLP-1R, as well as mice lack-
ing DPP-4, showed the involvement of GIP and GLP-1 in vari-
ous biological effects (Figure 1), some of which could have
implications for preventing or treating diabetic complications
independently of hyperglycemia.
Incretin-based drugs are now being used to achieve better gly-

cemic control in patients with type 2 diabetes worldwide11–14.
To date, two incretin-based drugs are clinically available:
(i) GLP-1 receptor agonists (GLP-1RA) that increase resistance
to DPP-4 degradation to enable strong and steady activation of
GLP-1R; and (ii) DPP-4 inhibitors (DPP-4i) that inhibit DPP-4-
dependent inactivation of GIP and GLP-1, thereby enhancing
their various biological actions. A series of clinical trials of GLP-
1RA and DPP-4i showed that they significantly lower glycated
hemoglobin without serious hypoglycemia and bodyweight
gain15–18. It was noticed that incretin-based drugs are more effec-
tive in Asians, likely a result of amelioration of defective early
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phase insulin secretion, which is a characteristic feature of type 2
diabetes in Asians4,19. Recent meta-analyses of DPP-4i therapy
support this notion20,21. Large prospective clinical trials are ongo-
ing to ascertain the effects of incretin-based drugs on diabetes-
related complications of patients with type 2 diabetes, but the
results are not yet available (Table 1). Thus, our knowledge
today is still largely restricted to results obtained from experi-
mental animals and cultured cells.
Diabetes-related vascular complications are the major causes

of morbidity and mortality in patients with diabetes. Microvas-
cular complications include retinopathy, nephropathy and neu-
ropathy, which are the leading causes of blindness, renal failure
and nerve injuries associated with foot ulcers and amputations,
respectively. Macrovascular complications involve atherosclero-
sis-related diseases, such as coronary artery disease (CAD),
peripheral artery disease (PAD), cerebrovascular disease (CVD)
and possible cognitive dysfunction. Classical clinical trials, such
as the Diabetic Control and Complications Trial (DCCT) and
the United Kingdom Prospective Diabetes Study (UKPDS),

clearly showed that intensive antidiabetic treatment can amelio-
rate hyperglycemia and reduce the progression of microvascular
complications22,23; the follow up of DCCT and UKPDS also
showed that such intensive treatment can suppress the inci-
dence of macrovascular complications24,25. These findings show
that hyperglycemia is a critical cause of diabetes-related vascular
complications, and provide a basis to search for strategies to
obtain better glycemic control. In addition, various studies have
clarified mechanisms underlying the pathogenesis of diabetic
vascular complications including: (i) the polyol pathway; (ii) the
protein kinase C (PKC) pathway; (iii) oxidative stress; (iv)
advanced glycation end-products (AGEs) pathway; and (v) the
hexosamine pathway26. All of these findings are suggestive for
the development of agents to prevent diabetes-related vascular
complications independently of glycemic conditions.
In the present review, we highlight recent findings on the

extrapancreatic effects of GIP and GLP-1 in various tissues and
organs that might be relevant to the prevention and manage-
ment of diabetes-related complications.
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Figure 1 | Extrapancreatic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and implications for
diabetes-related complications and comorbidities. GIP and GLP-1 exert various intra- and extrapancreatic actions suggested from animal studies,
some of which might be beneficial for prevention and treatment of diabetes-related complications and comorbidities shown independently of
glycemic control. Note that beneficial and adverse effects of GIP and GLP-1 listed largely await confirmation in patients with diabetes.
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DIABETES-RELATED MACROVASCULAR
COMPLICATIONS
Several studies showing the effects of GLP-1 and GIP on
macrovascular function have recently been published. We
summarize the effects of GLP-1 and GIP that might be of
significance for treatment of macrovascular complications, such
as CAD, PAD and CVD, in patients with diabetes.

Effects on Atherosclerosis
Atherosclerosis constitutes the underlying pathological lesion in
the clinical entities CAD, CVD and PAD. The inflammatory
responses induced by adhesion of monocytes to the vascular wall
have been known to play important roles in the early stages of
the development of atherosclerosis. GLP-1 was shown to signifi-
cantly inhibit macrophage infiltration and atherosclerosis devel-
opment in normal and diabetic apolipoprotein E-deficient mice
(Figure 2)27–29, whereas a recent study using the long-acting
GLP-1RA taspoglutide failed to reproduce attenuation of

atherosclerosis by GLP-1R activation30. Exendin-4 signifi-
cantly inhibited monocyte adhesion to the vascular endothelial
cells by reducing production of intercellular adhesion molecule
(ICAM)-129. Liraglutide also attenuated the expressions of
vascular adhesion molecules (VAM) and ICAM-1 in human vas-
cular endothelial cells, thereby suppressing development of ath-
erosclerosis31,32. In patients with diabetes, it has been shown that
exenatide suppressed markers for inflammation, high sensitive
C-reactive protein and monocyte chemo-attractant protein-1
(MCP-1), oxidative stress, and prostaglandin F2a33, and that ex-
enatide improved induced endothelial dysfunction34,35.
Although GLP-1R expression in mouse macrophages is still

controversial30, it has been shown that exendin-4 somehow
inhibits lipopolysaccharide (LPS)-induced production of the
inflammatory cytokine tumor necrosis factor (TNF)-a and
MCP-1 from isolated mouse macrophages29. Exendin-4
suppressed the nuclear translocation of p65, a component of
nuclear factor (NF)-jB, and this effect was reversed by both

Table 1 | Cardiovascular outcomes trials with selected incretin-based drugs.

Trial name
(ClinicalTrials.gov ID)

Agent Description

CAROLINA (NCT01243424) Linagliptin Comparator: Glimepiride (superiority if non-inferiority met)
Period: October 2010–September 2018
Time to first occurrence of major CV events (Approximately 6,000 high risk type 2 diabetes;
>5 years), multinational

EXAMINE (NCT00968708) Alogliptin Comparator: Placebo (non-inferiority design)
Period: September 2009–December 2013
Time to first occurrence of primary major adverse cardiac events (Approximately 5,400 type 2
diabetes with ACS; 5 years), multinational

SAVOR-TIMI53 (NCT01107886) Saxagliptin Comparator: Placebo (superiority design)
Period: May 2010–April 2013
To evaluate the effect on major CV events (Approximately 16,500 high-CV-risk type 2 diabetes;
4 years), multinational

TECOS (NCT00790205) Sitagliptin Comparator: Placebo (non-inferiority design)
Period: December 2008–December 2014
Time to first occurrence of composite CV outcome (>14,000 type 2 diabetes; >4 years), multinational

ELIXA (NCT01147250) Lixisenatide Comparator: Placebo (superiority design)
Period: June 2010–May 2013
To evaluate the effect of lixisenatide on CV morbidity and mortality (Apporximately 6,000 type 2
diabetes with ACS; until occurrence of Apporximately 840 primary events), multinational

EXSCEL (NCT01144338) Exenatide
Once weekly

Comparator: Placebo (superiority design)
Period: June 2010–March 2017
To evaluate the effect of exenatide once weekly on major CV events (>9,000 type 2 diabetes;
>5 years), multinational

LEADER (NCT01179048) Liraglutide Comparator: Placebo (superiority design)
Period: August 2010–January 2016
To evaluate the effect on CV outcomes (Apporximately 9,000 high-CV-risk type 2 diabetes; 5 years),
multinational

REWIND (NCT01394952) Dulaglutide Comparator: Placebo (superiority design)
Period: July 2011–April 2019
Time to first occurrence of major CV events (Approximately 9,600 type 2 diabetes with established
CV risk; approximately 6.5 years), multinational

ACS, acute coronary syndrome; CV, cardiovascular.
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MDL-12330A, a cyclic adenosine monophosphate (cAMP)
inhibitor, and PKI14-22, a protein kinase A (PKA)-specific
inhibitor. Therefore, it was suggested that these actions of
exendin-4 are likely to be mediated through a GLP-1R/PKA
pathway in mouse macrophages29. It also has been shown that
GLP-1 activates human macrophages through signal transduc-
ers and activator of transcription (STAT3) activation36.
In addition to its effects on macrophages, it has been shown

that GLP-1 exerts direct effects on vascular endothelial cells
(Figure 2). GLP-1R activation directly activated endothelial
nitric oxide synthase (eNOS) in human umbilical vein
endothelial cells (HUVECs)37 and the aortic endothelium31.
GLP-1 increased production of nitric oxide (NO), resulting in
an increase of the microvascular blood flow in the blood38. It
was reported that NO production was mediated by the
poly(adenosine diphosphate-ribose) polymerase pathway39.
GLP-1 also promoted proliferation and differentiation of endo-
thelial progenitor cells by upregulating vascular endothelial
growth factor (VEGF) expression40. Incubation of human coro-
nary artery endothelial cells (HCAECs) with exendin-4 resulted
in a dose-dependent increase in DNA synthesis and an
increased cell number associated with enhanced eNOS and
v-akt murine thymoma viral oncogene homolog 1 (Akt1) acti-
vation that were abolished by a GLP-1R antagonist41; Exendin-
4 directly improves endothelial dysfunction in isolated aortas42.
Liraglutide also inhibited the NF-jB pathway and suppressed
apoptosis of HUVECs43. There is a report that GLP-1 also

inhibited AGE-induced apoptosis in HUVECs44. Taken
together, it appears that GLP-1 can exert anti-atherogenic
effects through various mechanisms.
GIP was also shown to significantly inhibit macrophage infil-

tration and atherosclerosis development in normal and diabetic
apolipoprotein E-deficient mice27,28. It was recently found that
GIP inhibits AGEs-enhanced production of reactive oxygen
species (ROS), and expression of VAM-1 and PAI-1 through
the GIPR/Epac pathway45. These findings show that GLP-1
and GIP can exert anti-atherosclerosis effects, and might have
implications in preventing macrovascular complications.
Consistent with the anti-atherosclerotic effects of GLP-1 and

GIP, DPP-4i des-fluor-sitagliptin was also shown to inhibit
the production of inflammatory cytokines, such as TNF-a,
interleukin (IL)-6, IL-1b and MCP-1, as well as that of VACM-1
and ICAM-1, and to increase endothelial NO production and
suppress the NF-jB pathway in experimental animals46.
Furthermore, they showed that DPP-4 inhibition increases cir-
culating endothelial precursor cells (EPCs), which exert vaso-
protective effects46. Similar observations were made with
various DPP-4i including sitagliptin47, alogliptin47,48 and vildag-
liptin49,50. Such anti-atherosclerotic effects were also observed in
type 2 diabetic patients treated with sitagliptin51–53.

Effect on Cardiac Function
Studies in experimental animals have shown beneficial roles of
GLP-1 or GLP-1RA in CAD (Figure 2). In pigs, exendin-4
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Figure 2 | Glucagon-like peptide-1 (GLP-1) prevents macrovascular complications through multiple mechanisms. GLP-1 prevents macrovascular
complications, such as coronary artery disease, cerebrovascular disease and peripheral artery disease, through direct actions on the brain, heart and
vascular endothelial cells. GLP-1 also indirectly exerts beneficial effects through regulation of lipid metabolism, blood pressure and inflammation.
NO, nitric oxide; ROS, reactive oxygen species.
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administration significantly reduced infarct size and improved
wall motion54. In mice, liraglutide administration showed simi-
lar cardioprotective effects with activation of cardioprotective
genes55. In rabbits, administration of GLP-1 fused to human
transferrin significantly reduced infarct size and improved the
wall motion and ejection fraction after myocardial ischemia/
reperfusion injury56. Like GLP-1RA, native GLP-1 also showed
a cardioprotective function in rats with myocardial ischemia/
reperfusion injury, partly by suppressing activation of peripheral
neutrophil57. Another study on dogs with myocardial ischemia
suggested that GLP-1 exerted a cardioprotective role by aug-
menting glucose uptake58. This is consistent with a recent study
showing that the long-acting GLP-1RA albiglutide enhanced
myocardial glucose uptake and promoted a shift toward a more
energetically favorable substrate metabolism by increasing both
glucose and lactate oxidation, thereby reducing infarct size and
improving cardiac function59. Despite recent debates on GLP-
1R expression in mouse hearts, the earlier study showed that
GLP-1R activation increases cAMP production and suppresses
caspase-3 activation in cardiomyocytes, thereby preventing
apoptosis of cardiomyocytes55. Another study showed that
GLP-1R activation increases cAMP and phosphorylation of Akt
and extracellular signal-regulated kinase (ERK), regulators of
growth and glucose metabolism in cardiomyocytes60. Impor-
tantly, it was shown that although GLP-1 increased cAMP
levels in cardiomyocytes, the increased cAMP did not correlate
with the intracellular calcium concentration and subsequent
cardiomyocyte contractility61. It is interesting to note that
GLP-1 was previously shown to expert cardioprotective
effects mediated through both GLP-1R-dependent and
GLP-1R-independent mechanisms62. It was suggested that
GLP-1R-independent cardioprotective actions of GLP-1 are
mediated by GLP-1(9-36)amide, the primary GLP-1 metabolite
in vivo, because GLP-1(9-36)amide exerts cardioprotective
actions in GLP-1R-deficient mice60. However, the molecular
mechanisms underlying the GLP-1R-independent cardioprotec-
tive actions of GLP-1(9-36)amide are largely unknown. Little is
known of the effects of GIP on the heart.
In a clinical study, it was reported that GLP-1 significantly

improved left ventricle ejection fraction, global wall motion
indices, and regional wall motion indices in patients with acute
myocardial infarction and severe systolic dysfunction63. More
recently, it was reported that GLP-1 infusion protects the heart
from ischemic left ventricle dysfunction induced by dobutamine
stress in CAD patients64. Furthermore, it was shown that exe-
natide reduces reperfusion injury and final infarct size in
patients with ST-segment elevated myocardial infarction65,66.
Studies in experimental animals showed that DPP-4 inhibi-

tion also results in similar cardioprotective effects67–72. It has
been shown that the DPP-4i sitagliptin increased the intracellu-
lar cAMP and PKA activity, and that H-89, a potent selective
PKA inhibitor, completely blocked the effect of sitagliptin in
reducing the size of myocardial infarct, suggesting involvement
of the GLP-1R/cAMP/PKA pathway70. However, a recent study

also suggested that the cardioprotective effects of DPP-4i are
mediated not only by GLP-1, but also by other bioactive pep-
tides, such as stromal-derived factor-1a51,73,74.
It was also suggested that GLP-1R activation might exert ben-

eficial effects in heart failure. In a dog model of pacing-induced
heart failure, GLP-1 increased glucose uptake, thereby increasing
left ventricular function75. In the spontaneously hypertensive
and heart failure-prone rat, GLP-1 infusion improved survival
and preserved left ventricular function with reduced apoptosis
of cardiomyocytes76. In a rat model of chronic heart failure with
permanent occlusion of the left anterior descending artery, infu-
sion of GLP-1 or GLP-1RA enhanced left ventricular function,
reducing left ventricular remodeling and improving survival77.
In humans, infusion of GLP-1 or GLP-1RA in patients with
heart failure improved left ventricular ejection faction78,79. Fur-
thermore, it has been shown that DPP-4i improved left ventric-
ular function in experimental models of heart failure71,80.
Although further studies of the underlying mechanisms are
required, these results together strongly suggest clinical implica-
tions for GLP-1RA in treatment of heart failure.

Effect on Cerebrovascular Function
Neuroprotective effects of GLP-1RA after cerebral ischemia
in non-diabetic and diabetic animals have been described
(Figure 2)81–83. Intravenous injection of exendin-4 after cerebral
ischemia reduced the infarct size and neurological deficits
induced by reperfusion after occlusion of the middle cerebral
artery in a mouse model of acute cerebral infarction81,83. Exen-
din-4 also attenuated the oxidative stress and reduced neuronal
cell death after reperfusion in this focal ischemia model. As
exendin-4 injection has been associated with increased intracel-
lular cAMP levels81, this compound likely exerts its neuropro-
tective effect through a cAMP activation pathway. It therefore
appears that GLP-1RA might be potentially useful in the treat-
ment of cerebral infarction. No study has been carried out on
the neuroprotective effects of GIP after cerebral ischemia,
although it has been shown that GIPR-deficient mice showed
impaired learning, synaptic plasticity and neurogenesis84, and
that GIP and GIPR agonist enhance long-term potentiation
(LTP) and neurogenesis85,86. Consistent with the neuroprotec-
tive effects of GLP-1RA after cerebral ischemia, the DPP-4i
linagliptin was found to reduce ischemic brain damage in
diabetic mice87. In the same study, sulfonylurea glimepiride
lowered glucose levels, but did not show similar neuroprotective
effects, suggesting that the neuroptotective effects are indepen-
dent of glycemic control and presumably mediated by GLP-187.

Effect on Blood Pressure
Hypertension plays a critical role in the development of macro-
vascular complications. Chronic infusion of GLP-1 reduced the
incidence of hypertension, and prevented cardiac hypertrophy
and fibrosis in salt-sensitive Dahl rats88. In this model of
hypertension, GLP-1 also reduced urinary albumin excre-
tion, increased urinary sodium excretion and improved
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histopathological abnormalities, such as glomerulosclerosis and
tubular necrosis (Figure 2)88. In salt-sensitive obese db/db mice
and angiotensin II-infused C57BL/6J mice, exendin-4 prevented
the onset of hypertension and increased the urinary sodium
excretion89. Similarly, infusion of GLP-1RA AC3174 also atten-
uated hypertension and the histopathological changes associated
with the renal dysfunction in the Dahl rats90. Administration of
DPP-4i sitagliptin also reduced blood pressure in spontaneously
hypertensive rats by decreasing expression of Na+/H+ exchanger
isoform 3 in microvilli membranes of the proximal renal
tubule, thereby increasing the urinary sodium excretion and the
urinary volume, and reducing blood pressure91. Furthermore,
GLP-1RA and DPP-4i also ameliorates endothelial dysfunc-
tion92.
Antihypertensive effects of GLP-1 have consistently been

shown in several clinical trials. In the trials to evaluate efficacy
and safety of GLP-1RA liraglutide carried out in type 2 diabetic
patients, liraglutide administration was found to decrease sys-
tolic blood pressure by 2–6 mmHg from baseline in
26 weeks93. In addition, measurement of flow-mediated vasodi-
latation (FMD) of the brachial artery as a measure of endothe-
lial function in patients with type 2 diabetes after 16-week
exenatide treatment showed a significantly higher value of
FMD in the exenatide-treated group compared with that in the
glimepiride-treated group94. This result shows that exenatide
exerts vasodilatory action and might reduce blood pressure.
Increase of urinary sodium excretion and urinary volume are

well-known effects of GLP-1 and GLP-1RA in rodents. In rats,
intracerebroventricular injection of GLP-1 was found to exert
marked natriuretic and diuretic effects mediated by GLP-1R
that were blocked by treatment with GLP-1R antagonist exen-
din(9-39)95. GLP-1 was expressed in porcine proximal tubular
cells isolated from kidneys, and inhibited sodium reabsorp-
tion96. It is therefore likely that the marked diuretic effect of
GLP-1 is mediated by direct regulation of sodium reabsorption
in kidney proximal tubules, as well as through hypothalamic
GLP-1R. Clinically, the effects of GLP-1 infusion on urinary
sodium excretion, urinary output and the glomerular filtration
rate after an intravenous administration of salt load were inves-
tigated in obese men; GLP-1 was found to significantly enhance
the urinary sodium excretion, H+ secretion and glomerular
hyperfiltration in obese men97.
Although no report has shown an association of GIP with

blood pressure, DPP-4i sitagliptin attenuated elevation of blood
pressure in spontaneously hypertensive rats91,92. It also has been
reported that DPP-4i reduces blood pressure98,99, which supports
the notion that GLP-1 regulates blood pressure in humans.

Effect on Dyslipidemia
Dyslipidemia plays a critical role in the development of macro-
vascular complications. It has been shown that GLP-1 amelio-
rates dyslipidemia in experimental animals, as well as in
humans, whereas little is known on the effects of GIP on lipid
metabolisms.

GLP-1 infusion reduced apolipoprotein B-48 production and
triglycerides absorption (Figure 2)100. These effects were repro-
duced in mice and hamsters infused with exendin-4, which
acutely decreased postprandial serum triacylglycerol and apoli-
poprotein B-48 GLP-1R-dependently101. These effects were
observed even if exendin-4 was given 1 h after fat ingestion,
showing that the effects on postprandial lipid metabolism were
not related to delayed gastric emptying101. Secretion of apolipo-
protein B-48 was significantly reduced from hamster primary
enterocytes treated by enendin-4101, suggesting that GLP-1R
activation expressed on enterocytes controls secretion of
chylomicron. GLP-1 controls hepatic lipid metabolism. GLP-
1RA markedly reduced hepatic lipid content by suppressing
genes involved in fatty acid synthesis (e.g., sterol-regulatory ele-
ment binding protein-1c, fatty acid synthase and steroyl CoA
desaturase-1) and enhancing expression genes regulating fatty
acid oxidation (e.g., acyl-coenzyme A oxidase and carnitine pal-
mitoyltransferase 1a)30,102,103. Mechanisms regulating expression
of genes involved in lipid metabolism by GLP-1RA are largely
unknown, inasmuch as the presence of hepatic GLP-1R expres-
sion is still controversial. Nevertheless, both GLP-1 and GLP-
1RA clearly ameliorate dyslipidemia in experimental animals,
suggesting clinical implications in patients with dyslipidemia.
GLP-1 infusion inhibited the postprandial elevation of trigly-

cerides and free fatty acids in healthy human subjects104. A sin-
gle subcutaneous injection of exenatide in patients with newly
diagnosed type 2 diabetes also showed marked reduction in
postprandial triacylglycerol, as well as in apolipoprotein B-48105.
Although these effects of GLP-1 or GLP-1RA on triglycerides
and free fatty acids could be partly a result of delayed gastric
emptying, these results clearly show that GLP-1R activation
ameliorates postprandial lipidemia. It has also been shown that
DPP-4i vildagliptin and sitagliptin suppressed postprandial
elevation of triglycerides and apolipoprotein B-48 in patients
with type 2 diabetes106,107. As DPP-4i shows little effect on
gastric emptying108, the effects of DPP-4i on postprandial
lipidemia might be largely mediated by inhibition of intestinal
lipid absorption. It is noteworthy that DPP-4i ameliorates dysli-
pidemia in patients with type 2 diabetes109, which, although
small, could also contribute to the prevention of macrovascular
complications.

DIABETES-RELATED MICROVASCULAR
COMPLICATIONS
GIPR and GLP-1R are expressed in the peripheral and central
nervous system, the eyes, and the kidney, suggesting the possi-
bility of some effects in these organs. We summarize the effects
of GIP and GLP-1 in those organs that are likely to be of
significance in the treatment of the microvascular complications
(i.e., retinopathy, nephropathy and neuropathy) of diabetes.

Effect on the Peripheral Nervous System
Most recognized diabetes-related neurological complications
involve the peripheral nervous system110. Several studies have
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shown beneficial effects of GLP-1 and GIP on the peripheral
nervous system that might have therapeutic implications for
the treatment of diabetic neuropathy.
GLP-1R has been found to be expressed in the lumbar dorsal

root ganglion neurons (DRG) of C57BL6/J mice111. GLP-1 and
GLP-1RA exendin-4 significantly promoted the neurite out-
growth of DRG neurons (Figure 3). Exendin-4 attenuated the
hypoalgesia, and delayed motor and sensory nerve conduction
velocity in diabetic mice112. In the same study, exendin-4 also
ameliorated the decrease in intra-epidermal nerve fiber densities
in the sole skins of the diabetic mice. These findings suggest
that exendin-4 might ameliorate the severity of diabetic poly-
neuropathy through exerting direct actions on the DRG neu-
rons and their axons. GLP-1R was also found to be expressed
in the sciatic nerve112. GLP-1RA significantly increased the
phosphorylated ERK 1/2 levels in the sciatic nerves of diabetic
rats, showing GLP-1R activity in this diabetic tissue. Exendin-4
exerted no effect on the blood sugar or insulin levels in diabetic
mice, and also had no effect on paw thermal response latencies
in these mice, but attenuated the reductions of motor nerve
conduction velocity and paw intra-epidermal fiber density seen
in diabetic mice. Thus, GLP-1R-mediated ERK-signaling in the
sciatic nerve of diabetic rodents might protect the large-motor
fiber functions and small C fiber structure by a mechanism
independent of glycemic control113. GLP-1R has been found to
be expressed in the skin. Exendin-4 treatment reduced the
increase in the current perception threshold seen in diabetic

rats. The decrease in the size of myelinated fibers or in the
axon/fiber area ratio in the sciatic nerve and loss of the intra-
epidermal nerve fibers in the skin of diabetic rats were also
ameliorated by exendin-4 treatment. Thus, exendin-4 might
prevent the peripheral nerve degeneration seen in diabetic rats,
suggesting that GLP-1RA might be useful in the treatment of
peripheral neuropathy112. Pyridoxine-induced peripheral neu-
ropathy is characterized by sensory nerve conduction deficits
associated with disturbances of the nerve fiber geometry and
axonal atrophy. In an evaluation carried out using behavioral
and morphometric techniques, GLP-1 and GLP-1RA exendin-4
were found to improve pyridoxine-induced sensory peripheral
neuropathy in rats114. Based on these findings, it has been
suggested that GLP-1RA might be useful in the treatment of
diabetic neuropathy.
Expressions of GIP and GIPR were enhanced after sciatic

nerve crush injury in DRG, spinal cord and nerve fragments of
rats, suggesting involvement of GIP/GIPR in axonal regenera-
tion. Indeed, GIPR-deficient mice show impaired axonal regen-
eration115. Thus, GIPR activation might have therapeutic
implications for the treatment of diabetic neuropathy.
Consistent with the beneficial effects of GIP and GLP-1 on

the peripheral nervous system, DPP-4i vildagliptin analog
PKF275-055 partially counteracted the nerve conduction veloc-
ity deficit observed in diabetic rats116. Diabetic rats developed
mechanical hyperalgesia and showed significantly longer ther-
mal response latencies117. PKF275-055 induced recovery of the
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mechanical sensitivity thresholds by approximately 50% and
progressively improved the alterations in the thermal respon-
siveness. DPP-4i is therefore likely to have a potential thera-
peutic effect in the treatment of diabetic neuropathy.
Vildagliptin was found to protect against nerve fiber loss in
diabetic animals117. The decrease in intra-epidermal nerve fiber
density in diabetic rats was significantly inhibited by vildaglip-
tin treatment117. Based on these results, it is suggested that
DPP-4i might prevent peripheral nerve degeneration in
diabetic animals and might be useful in treatment of peri-
pheral neuropathy.

Effect on the Kidney
Diabetic nephropathy is a critical diabetes-related microvascular
complication that is a major cause of renal failure118,119.
Recently, many studies have been carried out to investigate the
effects of GLP-1, GLP-1RA and DPP-4i on kidney dysfunc-
tions, but little is known about the effect of GIP on kidney. We
review the effects of GLP-1, GLP-1RA and DPP-4i on the kid-
ney functions that might be of significance in the treatment of
diabetic nephropathy.
GLP-1R messenger ribonucleic acid (mRNA) was detected in

rat glomeruli and glomerular endothelial cells, as well as in
human monocytes and macrophages120. In diabetic db/db mice,

exendin-4 was found to reduce the urinary albumin excretion
and histological parameters of glomerular injury characterized
by mesangial extracellular matrix expansion and glomeruloscle-
rosis (Figure 4)121. Exendin-4 also significantly reduced the
expression of transforming growth factor (TGF)-b1, deposition
of type-IV collagen, macrophage infiltration and apoptosis in
the glomeruli120. Similarly, it also reduced the glomerular
hypertrophy and mesangial matrix expansion noted in diabetic
rats120. Exendin-4 also reduced the marker levels of macro-
phage infiltration, plasma levels of ICAM-1, deposition of type-
IV collagen, oxidative stress and NF-jB activation in the kidney
tissue120. Furthermore, exendin-4 attenuated the production of
high glucose-stimulated inflammatory cytokines, such as TNF-a
and IL-1b, in human acute monocytic leukemia cell line THP-1
cells and human glomerular endothelial cells120. These effects
were significantly blocked by the GLP-1 antagonist, exendin
(9-39)120. GLP-1RA liraglutide normalized the levels of the
oxidative stress markers, 8-hydroxydeoxyguanosine and mal-
ondialdehyde, and expressions of the nicotinamide adenine
dinucleotide phosphate oxidase components TGF-b and fibro-
nectin in the renal tissues, and also decreased the urinary albu-
min excretion that was significantly increased in diabetic
rats122. Native GLP-1 has been shown to suppress the AGE
receptor and reduce MCP-1 expression in mesangial cells123.

** **
*

†

30

20

C
re

at
in

in
e 

cl
ea

ra
nc

e
(m

L 
m

in
–1

 [k
g 

BW
]–1

)

10

0
ND ND+EX DM DM+EX

*

3000

3500
(a) (b)

(c) (d) (e) (f)

U
rin

ar
y 

al
bu

m
in

 e
xc

re
tio

n
 (µ

g/
da

y)

2500

2000

1500

1000

500

0
0

ND ND+EX DM DM+EX

4 weeks 8 weeks

Figure 4 | Glucagon-like peptide-1 prevents kidney lesions in streptozotocin-induced diabetic rats. (a) Changes in 24-h urinary albumin excretion.
Urinary albumin excretion increased gradually over 8 weeks in the diabetic group. Exendin-4 resulted in a significantly lower level of urinary
albumin excretion at 8 weeks than in the untreated diabetes group. *P < 0.05; **P < 0.01 versus non-diabetic and non-diabetic + exendin-4
groups. Blue circles, non-diabetic group (ND); light blue circles, non-diabetic + exendin-4 (ND+EX); red squares, streptozotocin-induced diabetes
group (DM); yellow squares, diabetes + exendin-4 group (DM+EX). (b) Creatinine clearance. Hyperfiltration in DM was significantly decreased by
DM+EX at 8 weeks. *P < 0.05 versus ND+EX; **P < 0.01 versus ND; †P < 0.05 versus DM. Periodic acid–methenamine-silver (PAM) staining in (c)
glomeruli of ND, (d) ND+EX, (e) DM and (f) DM+EX (magnification: 9200). Mesangial matrix index, calculated by the PAM-positive area in the tuft
area, was significantly increased in DM, whereas mesangial matrix expansion was significantly reduced in DM+EX. Reproduced from Kodera et al.120,
with permission from Diabetologia © 2011.

ª 2013 Asian Association for the Study of Diabetes and Wiley Publishing Asia Pty Ltd Journal of Diabetes Investigation Volume 4 Issue 2 March 2013 115

Extrapancreatic incretin actions



Furthermore, recent studies suggested involvement of PKA and
PKCb activation in the renoprotective effects of GLP-1124,125.
Consistent with the renoprotective effects of GLP-1, DPP-4i
vildagliptin significantly reduced proteinuria, albuminuria and
the urinary albumin/creatinine ratio in diabetic rats126. Vildag-
liptin also improved the creatinine clearance, and inhibited the
histological changes of interstitial expansion, glomerulosclerosis
and thickening of the glomerular basement membrane in a
dose-dependent manner in diabetic rats. These renoprotective
effects of vildagliptin were related to a reduction in the produc-
tion of the inflammatory TGF-b1. Vildagliptin also exerted
renoprotective effects in rats with renal ischemia-reperfusion
injury127. Sitagliptin ameliorated renal lesions in the diabetic
rats, including glomerular, tubulointerstitial and vascular lesions,
accompanied by reduced lipid peroxidation128.
Taking these results together, it is likely that GLP-1RA and

DPP-4i might have potential renoprotective effects in patients
with diabetic nephropathy. Indeed, it has been recently shown
that exenatide reduced urinary TGF-b1 and type-IV collagen
excretion in patients with type 2 diabetes129, and that sitagliptin
reduced albuminuria in patients with type 2 diabetes130.
However, it remains to be seen if the renoprotective effects
in patients depend on amelioration of glycemic control or if
GLP-1 can exert direct effects on the kidney.

Effect on the Eye
Diabetic retinopathy is one of critical diabetes-related microvas-
cular complications that occurs in approximately 60% of
patients with duration of diabetes more than 20 years, and is
one of the major causes of blindness131. Some studies regarding
the effects of GLP-1RA and DPP-4i on the retina have been
available for several years132–135. In contrast, the effects of GIP
on the retina are scarcely known, although it has been shown
that GIP and GIPR are expressed in the rat retina136,137. We
summarize the effects of GLP-1, GLP-1RA and DPP-4i on the
retina that have potential clinical significance in the treatment
of retinopathy.
Both the mRNA and protein expressions of GLP-1R have

been detected in the inner layer of the retina in rats132. In dia-
betic rats, subcutaneous injection of exendin-4 prevented the
loss of the b-wave amplitude and oscillatory potentials in the
retina132. The retinal thickness, which depends on the duration
of diabetes, is reduced, and the cell counts of both the outer
and inner nuclear layers are also reduced in diabetic rats; how-
ever, subcutaneous administration of exendin-4 prevented the
loss of the retinal cells and maintained the normal retinal
thickness. In addition, intravitreal injection of exendin-4, inde-
pendent of its pancreatic effect, also prevented both the loss of
the b-wave amplitude and the oscillatory potentials observed
in diabetes, and also the cell loss in the outer and inner
nuclear layers in the retina133. The excessive retinal glutamate
was significantly reduced by exendin-4 treatment in diabetic
rats. Rapid removal or inactivation of glutamate is required to
maintain the normal functions of the retina through the pre-

vention of glutamate-induced injury of the neurons. Consistent
with such changes, retinal GLP-1R and glutamate aspartate
transporter expressions were also reduced in the diabetic ret-
ina, but were upregulated in the exendin-4-treated rats133. The
effect of exendin-4 in improving glucose-induced retinal gan-
glion cell impairment has also been investigated. Exendin-4
protected retinal ganglion cells by affecting expression in pro-
apoptotic Bax and anti-apoptotic Bcl-2, and the protective
effects of exenatide were inhibited by GLP-1R antagonist,
exendin(9-39)134. Taking these results together, GLP-1R
activation might well protect retinal functions in diabetic
retinopathy.
In diabetic rats, DPP-4i sitagliptin reduced the intracellular

accumulation of tight junction proteins, such as occludin and
claudin-5, in the blood retinal barrier observed in diabetes135.
Sitagliptin also decreased the nitrosative stress, inflammatory
IL-1b production and cell death by apoptosis in diabetic
retinas135. Sitagliptin recovered the number of circulating
CD34+ cells to the control level in diabetic rats and increased
the adhesion ability of endothelial progenitor cells to the
retinal vessels135. These results suggest that DPP-4i might
exert beneficial effects on the integrity of the blood–
retinal barrier in diabetic rat retinas through prevention of
nitrosative stress, inflammatory responses and apoptosis of
the retinal cells, although it needs to be tested whether these
beneficial effects are mediated by GLP-1.

DIABETES-RELATED COMORBIDITIES
GIP and GLP-1 might exert biological effects in various organs,
such as the brain, bone, fat and liver, the normal functions of
which have been affected by diabetes. We summarize the effects
of GIP and GLP-1 in the organs that are likely to be of signifi-
cance in the treatment of diabetes.

Effects on Adipose Tissues
Obesity and overweight are closely associated with the inci-
dence of diabetes138–141 and glycemic control in diabetic
patients142. In addition, obesity has been linked to chronic
inflammation that leads to vascular complications143,144. It has
been shown that GIP plays physiological roles in nutrient
uptake directly into adipose tissues, thereby linking overnutri-
tion to obesity (Figure 5)145. In contrast, although GLP-1RA is
known to reduce bodyweight and body fat146, GLP-1 seems to
have no direct effect on adipocytes. We summarize the effects
of GLP-1 and GIP on the adipose tissues and obesity that
might have potential clinical significance in the control of body-
weight.
Regarding effects of GIP on adipocytes, an initial clue came

in the early 1980s from an experiment showing that GIP, in
the presence of insulin, induces fatty acid incorporation into rat
epididymal fat pads147. Later, GIPR was shown to be expressed
in adipose tissues148, and genetic disruption of GIPR further
shows the critical role of GIP in fat accumulation149. Although
mice chronically fed on high-fat diets show an increase in
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bodyweight as well as visceral and subcutaneous fat mass, such
bodyweight gain and fat accumulation was not observed in
GIPR-deficient mice fed the same high-fat diet149. GIPR-defi-
cient mice on high-fat diets showed higher energy expenditure
with a reduction of oxygen consumption and respiratory
quotient during the light phase, the latter indicating that fat is
utilized as the preferred energy substrate149. In addition, GIPR-
deficient mice show increased adiponection secretion, which
promotes fat oxidation in muscle and increases the respiratory
quotient150,151. Genetic ablation of GIPR in diabetic ob/ob mice
prevents obesity by increasing energy expenditure, and
improves insulin sensitivity and glucose tolerance without
seriously affecting insulin secretion145,149. These observations
were reproduced in high-fat fed mice and obese ob/ob mice
treated with a GIPR antagonist, (Pro3)GIP152–154, and in mice
lacking GIP-secreting K cells155, establishing the critical role of
GIP in fat accumulation. Transgenic rescue of GIPR in
GIPR-deficient mice suggested that GIP, in collaboration with

insulin, facilitates fat accumulation156. Although a recent report
that GIP-overexpressing mice resulted in reduced diet-induced
obesity while they showed enhanced b-cell function and
improved glucose tolerance157 appeared to be inconsistent with
these lines of evidence, it was speculated that overexpression of
hypothalamic GIP decreased energy intake, resulting in reduced
adiposity.
GIP increases the activity of lipoprotein lipase (LPL), an

enzyme bound to the cell surface of adipocytes that hydrolyzes
lipoprotein-associated triglycerides to produce free fatty acids
available for local uptake. It was shown that activation of GIPR
in 3T3-L1 cells and rat epididymal fats results in enhanced
resistin secretion through a pathway involving p38 mitogen-
activated protein kinases (MAPK) and Jun amino-terminal
kinase (JNK)158. GIP activates phosphoinositide 3-kinase and
Akt1 through secreted resistin, thereby suppressing adenosine
monophosphate-activated protein kinase (AMPK) and increas-
ing LPL activity in adipocytes158,159. It has been also shown that
GIP reduces expression and activity of 11b-hydroxysteroid
dehydrogenase type 1, and inhibits the release of free fatty acids
in 3T3-L1 cells and healthy humans160, providing another
mechanism underlying GIP-dependent fat accumulation in
adipose tissues. Furthermore, it has been shown that GIP acti-
vates expression of GIPR through upregulation of peroxisome
proliferator-activated receptor (PPAR)-c161, suggesting feed-for-
ward action of GIP signaling in adipose tissues. In addition, a
recent study has shown that GIP potentiates adipocyte insulin
sensitivity of adipocytes through the activation of cAMP/PKA/
cAMP response element binding protein signaling module and
p110 phosphoinositol-3 kinase, suggesting a feed-forward inter-
action of GIP with insulin signaling. Furthermore, it has been
shown that GIP also enhances glucocorticoid secretion GIPR-
dependently, thereby promoting adipocity162. It is of note that
GIP might directly enhance secretion of inflammatory cytokines
(e.g., IL-6, TNF-a and MCP-1)163, which could worsen vascular
complications.
GLP-1 does not show any role in fat accumulation. Although

GLP-1R is expressed in adipocytes164, activation of GLP-1R
does not increase LPL activity in adipocytes158,159. Recently, it
has been shown that GLP-1 directly activates adipogenesis
through activation of PKC, ERK and Akt1, which leads to
altered proliferation, apoptosis and differentiation165. However,
the physiological relevance of this finding is unknown and
needs to be determined in future.

Effects on Food Intake and Gastric Emptying
It has been shown that GLP-1RA reduces bodyweight likely by
inhibiting food intake and slowing gastric emptying146,166,167.
We summarize the effects of GLP-1 and GIP on food intake
and gastric emptying that might have effects on overweight.
GLP-1 has been shown to be expressed in the arcuate

nucleus and other hypothalamic regions involved in the regula-
tion of food intake168. Subcutaneous and intracerebroventricular
GLP-1 injections were shown to significantly inhibit food intake
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and bodyweight in non-diabetic rats, and this inhibitory effect
on the food intake was blocked by GLP-1R antagonist exendin
(9-39)169. Intraperitoneal injection of GLP-1RA liraglutide and
exendin-4 also reduced food intake in non-diabetic rats170. In
addition, subcutaneous injections of liraglutide significantly
reduced the food intake and bodyweight in diabetic ob/ob and
db/db mice171, as well as in obese candy-fed rats172, obese
mini-pigs173 and obese rats carrying hypothalamic lesions174. It
was also shown that GLP-1 or GLP-1RA liraglutide infusion
reduced food intake and reduced gastric emptying in healthy
volunteers175, patients with type 1 diabetes176 and patients with
type 2 diabetes177,178.
The doses of exendin-4 required for significant reduction of

food intake were higher in subdiaphragmatically vagotomized
rats than in non-vagotomized rats179. This result suggests that
the reduction of the food intake noted after administration of
exendin-4 might be mediated by activation of the GLP-1
expressed on the vagal afferents, as well as by direct activation
of GLP-1R in the central nervous system. In contrast, direct
injection of exendin(9-39) into the nucleus tractus solitarius in
rats significantly increased the food intake180. Blockage of hind-
brain GLP-1R by exendin(9-39) inhibited the suppression of
the food intake induced by gastric distention, but did not affect
the suppression of the food intake induced by intraduodenal
nutrient infusion. These results suggest that nucleus tractus soli-
tarius activation by GLP-1 might also contribute to the control
of food intake through the satiating effects of gastric distension.
A recent study showed that GLP-1R activation in the nucleus
tractus solitarius neurons increased PKA activity concomitant
with an increase in phosphorylation of p44/42-MAPK and a
decrease in phosphorylation of AMPK181. The combined
increase in PKA and p44/42-MAPK activity, together with
decreased AMPK activity, is hypothesized to increase cAMP-
response element binding protein-mediated nuclear transcrip-
tion and protein synthesis, resulting in reduced food intake181.
Furthermore, it has been reported recently that GLP-1 neurons
in the nucleus tractus solitaries also projects directly to the ven-
tral tegmental area and nucleus accumbens, the site in which
GLP-1 is thought to regulate food intake182. Regarding gastric
emptying, intracisternal GLP-1 injection induced delayed gastric
emptying, an effect that was partially antagonized by celiac gan-
glion-ectomy, but not by atropine or NOS inhibitor, L-NG-nit-
roarginine methyl ester (L-NAME)183. Corticotropin-releasing
hormone antagonist, astressin, also partially antagonized the
GLP-1-induced delay of gastric emptying183. These observations
show that central corticotropin releasing hormone and periph-
eral sympathetic pathways might mediate the delay of gastric
emptying induced by centrally administered GLP-1. It is clini-
cally of interest that chronic infusion of GLP-1 or the relatively
long-acting GLP-1RA, liraglutide, but not the short acting
GLP-1RA, exenatide, loses its effects on gastric emptying
rapidly as a result of tachyphylaxis in patients with diabetes
and in rats184,185. Although GLP-1 reduces the food intake and
delays gastric emptying in experimental animals and humans,

GIP does not have such effects in humans, but rather facilitates
gastric emptying175,186. It is noteworthy that although DPP-4i
sitagliptin has no effects on gastric emptying, the GIP response
negatively correlates with gastric emptying and the GLP-1
response positively correlates with gastric emptying108. A recent
report showed that exogenous GIP inhibits intestinal motil-
ity through a somatostatin-mediated pathway rather than
through a GLP-1-mediated pathway, thereby inhibiting glucose
absorption187.

Effect on the Liver
Diabetes is closely associated with non-alcoholic fatty liver
disease (NAFLD), the prevalence of which is 10–30% depend-
ing on geographical region. NAFLD is caused by impaired
hepatic lipid homeostasis that is usually maintained through a
balance between the influx or production of fatty acids and
their use for oxidation or secretion as very low-density lipopro-
tein triglycerides188–190. Approximately 10–25% of individuals
with NAFLD progress to non-alcoholic steatohepatitis (NASH),
a silent disease with few or no symptoms, and eventually devel-
ops liver cirrhosis and hepatocellular carcinoma. Several clinical
trials showed that agents, such as pioglitazone, vitamin E, urso-
deoxycholic acid and L-carnitine, exert beneficial effects against
NAFLD. However, reducing bodyweight by appropriate diet
and exercise therapies is still considered superior to any phar-
macological therapies today. It has been shown that GLP-1R
activation results in amelioration of hepatic lipid accumula-
tion102,103,191–193. In contrast, GIP has been associated with fat
accumulation in the liver of high-fat fed animals, but GIPR
expression in the liver is controversial149,152,154,194. We summa-
rize the effects of GLP-1 and GIP on the liver that might have
potential clinical significance in the treatment of NASH and
NAFLD.
Although GLP-1R expression in the mouse liver or hepato-

cytes is controversial, exendin-4 reversed high-fat induced
hepatic lipid accumulation and inflammation in hepatocytes
and C57BL/6J mice191. Exendin-4 also reversed hepatic steato-
sis in ob/ob mice102. In the same study, GLP-1-treated mouse
hepatocytes resulted in a significant increase in cAMP produc-
tion along with reduced expression of stearoyl-CoA desaturase
(SCD)-1 and genes associated with fatty acid synthesis, and
increased expression of genes involved in fatty acid oxidiza-
tion102. It was also shown that incubation of rat hepatocytes
with exendin-4 increased expression of PPAR-a along with
their downstream genes, acyl-coenzyme A oxidase and carni-
tine palmitoyltransferase 1A, thereby reducing intracellular fatty
acids192. Similarly, it was shown that another GLP-1RA liraglu-
tide significantly ameliorates lipid accumulation by increasing
expression of genes related to fatty acid transport and beta-oxi-
dation in mice on high-fat and high-fructose diets103. In addi-
tion to improvement of lipid metabolisms, exendin-4 has been
shown to improve hepatic insulin sensitivity. Administration of
exendin-4 increased expression of Sirt1 along with AMPK in
livers of high-fat fed C57BL/6J mice, as well as in cultured
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hepatic cell lines, HepG2 and Huh7 cells, suggesting involve-
ment of GLP-1 signaling not only in lipid metabolism, but also
in glucose metabolism in the liver. Another study showed that
incubation of rat hepatocytes with exendin-4 increased expres-
sion of PPAR-c, which exerted its insulin-sensitizing action by
reducing JNK phosphorylation, and increased phosphorylation
of Akt1 and AMPK192. Similarly, it was shown that exendin-4
increased the phosphorylation of Akt1 and PKC-f in HepG2
and Huh7 cells195. A recent study also showed that exendin-4
activates glucokinase and increases hepatic glycogen contents
in streptozotocin (STZ)-treated C57BL/6J mice independently
of insulin196. Collectively, GLP-1RA is supposed to ameliorate
insulin sensitivity and regulate glucose metabolism in the liver.
Another effect of GLP-1RA in the liver includes protection
against hepatocellular injuries. It was shown that exendin-4
exerts a protective role in the steatoic liver by inhibiting cell
death through upregulation of genes associated with autophagy,
thereby reducing endoplasmic reticulum (ER) stress-related
apoptosis in human hepatocytes treated with fatty acids, as well
as in mice fed a high-fat diet193. Furthermore, exendin-4
administration in STZ-treated diabetic mice showed that exen-
din-4 suppresses hepatocyte injury by decreasing proliferation
of hepatocytes197, which might have implications in treat-
ment of NAFLD. Indeed, it was shown that exenatide treat-
ment ameliorates hepatic biomarkers in patients with type 2
diabetes treated for at least 3 years198. Whether the liver or
hepatocytes in humans express GLP-1R needs to be addressed
cautiously, as it is possible that effects of GLP-1 in the liver
are partly mediated through the nervous system, as evidenced
in mice.
In contrast to GLP-1, GIP was associated with fat accumula-

tion in the livers of high-fat fed animals, but GIPR expression
in the liver is still controversial. It was shown that GIP anta-
gonist (Pro3)GIP not only reduces bodyweight, but also ame-
liorates fat accumulation in the livers of high-fat fed mice152,154

and ob/ob mice153. These findings were further established by
recent a investigation in high-fat fed mice showing that active
immunization against (Pro3)GIP resulted in GIP antibody pro-
duction and significant reduction of liver triglyceride along
with reduction in blood glucose levels194. These lines of evi-
dence suggest that GIP antagonism might be beneficial as treat-
ment for NASH and NAFLD. However, this was challenged by
a recent report that GIP-overexpressing mice resulted in
reduced diet-induced obesity and amelioration of liver steatosis,
whereas they showed enhanced b-cell function and improved
glucose tolerance157. Although this finding by McIntosh
et al.157 was unexpected from the results on GIPR-deficient
mice that also showed reduced diet-induced obesity, they spec-
ulated that overexpression of hypothalamic GIP decreased
energy intake, resulting in reduced adiposity157. Further studies
are required to develop GIP-related therapies for obesity and
NAFLD.
Effects of DPP-4 inhibition have been investigated in mice

and humans. DPP-4 inhibition in diet-induced diabetic glucoki-

nase+/- mice suppressed hepatic inflammation and reduced
expression of sterol-regulatory binding protein (SREBP)-1c,
SCD-1 and fatty acid synthase (FAS), and upregulation of
PPAR-a, thereby ameliorating hepatic steatosis199. Similarly,
DPP-4 inhibition improves insulin sensitivity and hepatic stea-
tosis in diet-induced obese C57BL/6 mice with reduced hepatic
expression of SREBP-1c, SCD-1 and FAS200. Furthermore, it
was shown that DPP-4i sitagliptin ameliorates hepatic biomar-
kers in type 2 diabetic patients with NAFLD treated for
4 months201. In addition, sitagliptin was shown to ameliorate
liver enzymes and hepatocyte ballooning in type 2 diabetic
patients with NASH202. Taken together, these results suggest
clinical implications of DPP-4i in treatment for NASH and
NAFLD.

Effect on the Brain
Dementia has been postulated as one of the diabetic comorbidi-
ties203. GIPR and GLP-1R have been found to be expressed in
the hippocampus, which is the brain region most closely
involved in memory formation169,204. GIPR-deficient mice are
impaired in learning, synaptic plasticity and hippocampal neu-
rogenesis84, whereas GIP and GIPR agonist, N-AcGIP, has been
shown to strongly enhance hippocampal long-term potentiation
(LTP)85. GLP-1R-deficient mice were also found to be impaired
in a memory-related behavioral task, and hippocampal LTP
was severely impaired205, whereas exendin-4 administration
improved cognitive function in adult mice206, and enhanced
neurogenesis in the hippocampus of diabetic and non-diabetic
mice207.
Injection of b-amyloid (Ab), which is well-known to accu-

mulate in the brain of Alzheimer’s disease (AD) patients,
impaired LTP; N-AcGIP fully reversed the impairment of LTP
induced by the injection of Ab85. GLP-1 and GLP-1RA also
exert a protective role in a transgenic mouse model of
AD208,209. GLP-1 protected against the cellular apoptosis
induced by Ab210. GLP-1 has the ability to reduce the levels of
Ab in the brain in vivo, and also reduces the levels of the amy-
loid precursor protein in cultured neuronal cells211. Further-
more, GLP-1 and exendin-4 protected cultured hippocampal
neurons against apoptosis induced by Ab and oxidative
insults211. Furthermore, GLP-1R activation allows physiological
tyrosine phosphorylation of IRS (insulin receptor substrate)-1
and stimulation of downstream insulin signaling by inhibition
of Ab oligomer-activated JNK212. A recent study has shown
that exendin-4 restored dopamine and noradrenaline contents,
and reversed neurological dysfunction in a mouse model of
Parkinson’s disease213. The neuroprotective effects of exendin-4
on hyperglycemia- and LPS-induced cognitive dysfunction also
were shown214. Furthermore, GLP-1RA (Val8)GLP-1 prevents
tau hyperphosphorylation, impairment of spatial learning and
ultrastructural cellular damage in STZ-treated rat brains215.
These findings suggest that GIP and GLP-1 might also play

important roles in the control of synaptic plasticity and mem-
ory formation, and that GIP and GLP-1 analogs might well
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inhibit impairment of memory formation in patients with AD,
as well as other cognitive deficits in neurodegenerative disor-
ders.

Effect on the Bone
Bone fracture, which is directly related to decreased mobility
and compromised quality of life (QOL), is associated with dia-
betes216. It has been reported that GIP promotes bone forma-
tion, whereas GLP-1 inhibits bone resorption (Figure 6)217,218.
Thus, both GIP and GLP-1 could play important roles in the
reduction of the bone fracture risk in diabetic patients.
GIPR has been shown to be present in osteoclasts. GIP

inhibits the osteoclast resorptive activity in organ culture sys-
tems and the resorptive activity of mature osteoclasts219. The
bone formation parameters in GIPR-deficient mice were signifi-
cantly lower than those in wild-type mice, and the number of
osteoclasts was significantly increased in GIPR-deficient mice,
indicative of high-turnover osteoporosis220. In addition, GIP
suppressed the apoptosis of osteoblasts in vitro, suggesting that
GIP stimulates bone formation through inhibition of osteoblast
apoptosis220. Furthermore, GIP transgenic mice showed a sig-
nificant increase in the markers of bone formation and a
decrease in the markers of bone resorption, and also a signifi-
cant increase of the bone mass221,222. From these findings in
GIPR-deficient mice and GIP-transgenic mice, it is suggested
that GIP inhibits bone resorption and stimulates bone forma-
tion, and that excess signaling through the GIPR results in the
gain of bone mass. In addition, the plasma calcium concentra-
tion after meal ingestion in GIPR-deficient mice was increased,
and GIP might play an important role in the stimulation of
calcium deposition in the bone223.

GLP-1R-decifient mice showed cortical osteopenia, bone fra-
gility and an increase in the markers of bone resorption and
osteoclast numbers224. GLP-1R-decifient mice also showed
reduced calcitonin gene expression in the thyroid, whereas
exendin-4 increased calcitonin expression. GLP-1 did not show
any direct effect on the osteoblasts or osteoclasts, although it
appears to have an essential role in endogenous GLP-1R signal-
ing in bone resorption through activation of the calcitonin-
dependent pathway, which in turn, plays an important role in
bone formation224. In the analysis of bone structure in STZ-
induced diabetic rats and fructose-induced insulin resistance
rats, GLP-1 significantly reduced the trabecular separation225,
whereas exendin-4 induced a significant decrease in trabecular
separation, and increase in trabecular thickness and trabecular
spacing. It also has been also shown that GLP-1 and exendin-4
reversed hyprelipidic-related osteopenia226. Exendin-4 normal-
ized the LDL-receptor-related protein 5 (an activator of the
windless type [Wnt] pathway)/Dickkopf-related protein 1 (a
blocker of LDL-receptor-related protein 5) ratio in diabetic rats
and insulin resistant rats227. This finding suggests that exendin-
4 might induce the bone formation in diabetic and insulin
resistant rats through the Wnt signaling pathway227. Consistent
with the effects of GIP and GLP-1 on bone metabolism, DPP-
4i sitagliptin significantly improved vertebral volumetric bone
mineral density and trabecular architecture in female mice228.
Although these lines of evidence suggest an association of

GIP and GLP-1 with bone metabolism in humans, the effects
of GIP and GLP-1 on human bone turnover are largely
unknown. A meta-analysis of 28 clinical trials of treatment with
DPP-4i (i.e., vildagliptin, sitagliptin, saxagliptin, alogliptin, linag-
liptin and dutogliptin for at least 24 weeks) in patients with
type 2 diabetes showed reduced the risk of bone fractures in
patients treated with DPP-4i229. However, 44-week exenatide
treatment did not affect the bone mineral density or serum
markers of bone homeostasis (i.e., serum alkaline phosphatase,
calcium and phosphate), as compared with insulin glargine, in
patients with type 2 diabetes230. As mentioned, GLP-1 action
on the bone is presumably mediated through calcitonin. A ser-
ies of clinical trials on liraglutide showed few changes in serum
calcitonin levels in patients with type 2 diabetes, suggesting that
GLP-1 might not play a role in human bone metabolism.
Regarding GIP, it has been previously reported that postpran-
dial reduction of bone resorption was not mediated by GIP,
but by GLP-2, another intestinal hormone secreted simulta-
neously with GLP-1231. However, they investigated the effects
of subcutaneous single injections of native GIP that should be
rapidly inactivated by DPP-4 before it reached the bones. Thus,
further investigations are definitely required to understand GIP
and GLP-1 actions on bone metabolism in humans.

Effects on Thyroid and Tumorigenesis
Studies in experimental animals, including toxicology studies, did
not show that incretins had an effect on tumorigenesis. However,
it has been recently reported that GLP-1RA liraglutide and exe-
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Figure 6 | Regulation of bone metabolism by glucose-dependent
insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1).
The effects of GIP and GLP-1 on bone metabolism. GIP binds to GIP
receptors expressed on osteoblasts, thereby activating new bone
formation. GIP also acts on osteoclasts, presumably through osteoblasts,
to suppress bone resorption. In contrast, GLP-1 stimulates calcitonin
secretion from the thyroid gland, which then suppresses bone
resorption by osteoclasts. Notably, it has been reported that GLP-1
receptor expression in humans is much lower than in rodents240.
Reproduced from Yabe and Seino217.
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natide were associated with benign and malignant thyroid
tumors in rats and mice232. GLP-1R was found to be expressed
in normal rat thyroid, as well as medullary thyroid carcinoma
cells233. GLP-1 and GLP-1RA stimulate expression and secretion
of calcitonin, a clinical biomarker for C cell diseases, such as
medullary thyroid carcinoma234, in a dose-dependent manner
along with production of cAMP in rodent C cell lines232,233,235

and rodents232,236. However, it was reported that GLP-1R expres-
sion was low in a human C cell line, and that liraglutide
enhances little calcitonin secretion or C cell proliferation in pri-
mates232. Furthermore, clinical trials of GLP-1RA, such as lira-
glutide, did not report elevation of calcitonin237,238. Thus,
although the preclinical studies in rodents show a link between
GLP-1 and thyroid tumors, the relevance of these findings for
humans is still unclear. In addition to the marked differences in
the way that rodent and human C cells respond to GLP-1, spon-
taneous C cell tumors are frequently seen in rats, whereas med-
ullary thyroid cancer in humans is rare. Nevertheless, a recent
study indicates expression of GLP-1R in neoplastic and hyper-
plastic lesions of thyroid C cells239. Thus, long-term observa-
tional studies are required to monitor the effects of sustained
GLP-1R signaling over the long term on the human thyroid.

CONCLUSION
Biological processes regulated by the incretin hormones, GIP
and GLP-1, are much broader than previously expected. Their
insulinotropic actions are applied in the development of incre-
tin-based therapies, DPP-4i and GLP-1RA that exert glucose
lowering effects, thereby suppressing diabetes-related complica-
tions in patients with type 2 diabetes. In addition, it is conceiv-
able that extrapancreatic function of GIP and GLP-1 might be
exploited to prevent onset and progression of diabetes-related
complications independently of glycemic control. A series of
experimental results obtained so far suggest that diabetes-related
microvascular complications (e.g., retinopathy, nephropathy and
neuropathy) and macrovascular complications (e.g., CAD, CVD
and PAD) are directly affected by incretin-based therapies. Fur-
thermore, diabetes-related comorbidities, such as cognitive dys-
function, obesity, fatty liver and bone fracture, might be also
ameliorated by incretin-based therapies. Clinical trials with ade-
quately powered, prospective, controlled relevant end-points will
clarify, in future, the effects of incretin-based drugs on diabetes-
related complications.
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