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Abstract

Purpose Numerous studies have investigated causes of war-
farin dose variability in adults, whereas studies in children
are limited both in numbers and size. Mechanism-based
population modelling provides an opportunity to condense
and propagate prior knowledge from one population to
another. The main objectives with this study were to evalu-
ate the predictive performance of a theoretically bridged
adult warfarin model in children, and to compare accuracy
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in dose prediction relative to published warfarin algorithms
for children.

Method An adult population pharmacokinetic/pharmacody-
namic (PK/PD) model for warfarin, with CYP2C9 and
VKORCI genotype, age and target international normalized
ratio (INR) as dose predictors, was bridged to children using
allometric scaling methods. Its predictive properties were
evaluated in an external data set of children 0-18 years old,
including comparison of dose prediction accuracy with three
pharmacogenetics-based algorithms for children.

Results Overall, the bridged model predicted INR response
well in 64 warfarin-treated Swedish children (median age
4.3 years), but with a tendency to overpredict INR in chil-
dren <2 years old. The bridged model predicted 20 of 49
children (41 %) within + 20 % of actual maintenance dose
(median age 7.2 years). In comparison, the published dosing
algorithms predicted 33—41 % of the children within +20 %
of actual dose. Dose optimization with the bridged model
based on up to three individual INR observations increased
the proportion within £20 % of actual dose to 70 %.
Conclusion A mechanism-based population model devel-
oped on adult data provides a promising first step towards
more individualized warfarin therapy in children.

Keywords PK/PD model - Population analysis - Warfarin -
Dosing - Children

Introduction

Although anticoagulant therapy is not common in children, it is
crucial for specific patient groups, for example children with

congenital or acquired heart diseases [1]. The most commonly
prescribed anticoagulant in both adults and children is warfarin
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[2]. Warfarin therapy is challenging in general, but even more
so in children, partly due to the lack of age-appropriate for-
mulations for accurate and reproducible dosing. Manipulation
of warfarin tablets before administration is common practice
and may lead to inconsistent dosing [3]. In addition, warfarin
has a narrow therapeutic range and a considerable variability in
individual dose requirements. In adult Caucasian patients, over
40 % of the inter-individual variability in dose is explained by
polymorphisms in two genes, VKORCI and CYP2C9 [4].
Several pharmacogenetics-guided dosing algorithms have been
developed for adults [4-8], and some are currently being tested
in clinical trials [9—11]. Only a few small studies have investi-
gated the influence of clinical and genetic factors on warfarin
dose in children [12—14]. In the studies by Moreau et al. (n=_84)
[13] and Biss et al. (n=120) [14], clinical and genetic factors
explained 70 % of the dose variability, but less than 30 % in the
study by Nowak-Gottl et al. (n=34) [12].

For many medicinal products, dosing recommendations
for children are based on extrapolation of results from
adults. When scaling adult doses to children, linear predic-
tions of dose based on body weight are commonly used, so
also for warfarin [1, 12]. However, it is becoming more
widely recognized that the relationship between adult and
paediatric doses is often non-linear. Due to a larger liver
and/or kidneys in relation to body size, small children often
require higher doses per kilo bodyweight than older children
and adults to achieve the same target concentration [15].
This has also been observed with warfarin, where a higher
weight-normalized dose was required in the youngest age-
groups to maintain the same target international normalized
ratio (INR) [14, 16, 17].

A growing amount of data supports that the pharmacoki-
netics of drugs in children >2 years can be reasonably well
extrapolated from adults by using an allometric adjustment
for body size [15, 18]. In the youngest age group (< 2 years),
it is also necessary to take into account the impact of
maturation of the organs and/or enzymes involved in elim-
ination of the drug under study. Hence, when predicting the
pharmacokinetics of drugs in children 0-18 years old, it is
important to acknowledge the influence of both body size
and age. Whether this will be sufficient for accurate dose
predictions will also depend on if the pharmacodynamics in
children can be assumed to be the same as in adults.

Pharmacometric models developed on adult data are increas-
ingly being used to predict dosing in children [19, 20]. We have
developed a pharmacokinetic/pharmacodynamic (PK/PD)-
based population model for warfarin that describes the relation-
ship between dose and INR response in adults [21, 22]. This
model takes into account variation in pharmacokinetics due to
age and CYP2C9 genotype and variation in pharmacodynamics
due to VKORC1 genotype. However, the existing model does
not include a size measure such as weight, which is necessary
when considering allometric scaling of an adult model for
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children. Modest revisions of the existing model were therefore
necessary to enable bridging to children.

The main objectives of the present study were (1) to refor-
mulate an existing adult model for warfarin to enable bridging
to children, (2) to evaluate how well a theoretically scaled adult
PK/PD-based warfarin model predicts the dose-INR relation-
ship in a cohort of warfarin-treated children, and (3) to compare
the accuracy of maintenance dose prediction between this new
warfarin model and three published pharmacogenetics-based
dosing algorithms for children [12—-14].

Methods
Pharmacometric bridging of adult model to children

This work is built on a mechanism-based adult population
model for warfarin that is founded on pharmacokinetic (PK)
and pharmacodynamic (PD) principles. Figure 1 provides a
schematic picture of the model, and for a more detailed
description the reader is referred to Online Resource 1, or to
the original publication [22]. On a population level, the model
is a PK/PD-model, but when applied on an individual level,
the lack of PK observations changes the scope of the model to
a more empiric kinetic-pharmacodynamic (KPD) model. A
detailed description of the model revisions that were under-
taken to allow pharmacometric bridging to children is provid-
ed in Online Resource 1. In brief, the model revisions included
re-estimation of model parameters after addition of allometric
weight scaling on the PK parameters clearance (CL) and
volume of distribution (V), and addition of a maturation
function for the ontogeny of metabolising enzymes in the
youngest age group (Eq. 1-3).
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Fig. 1 Schematic picture of the PK/PD-based population model for
warfarin
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CL; and V; represent the typical parameter values in an
individual with the body weight BW;, and CLg and V
represent the typical parameter values in an individual with
the body weight BWj.

BWN\""  /0.821"AGE;
CL = CL, - [ == N (el B o | 3
: (BWS> (0.01+AGE,»+ ) ®)

AGE,; is the postnatal age expressed in years of an indi-
vidual with the body weight BW;. The maturation function
gives the fraction of the adult CL for a given age, where
100 % of the adult value is typically reached at 6 months.

The revised model is from now on referred to as the
bridged KPD model.

Paediatric validation data set
Study subjects

Children were recruited from four tertiary care centres in
Sweden: The Queen Silvia Children’s Hospital, Sahlgrenska
University Hospital in Gothenburg; Children's Heart Center,
Skéne University Hospital in Lund; Uppsala University
Children’s Hospital in Uppsala and Astrid Lindgren
Children’s Hospital in Stockholm. The study was approved
by the Regional Ethical Review Board, Uppsala University,
Uppsala, Sweden. Patients who were currently receiving or
previously had received warfarin while below the age of
18 years were eligible. Written informed consent was
obtained from each patient aged 18 years or over and from
parents/guardians of children < 18 years in accordance with
the Declaration of Helsinki. All children aged 7 years or
older also provided written or verbal assent.

Collected treatment data

Information on warfarin doses and INRs were collected retro-
spectively from hospital records. Details on type of warfarin
formulation (marketed Waran® 2.5 mg tablets from Nycomed
or extemporaneously prepared 0.3 mg or 0.5 mg capsules) and
INR method (Owren-based if monitored at hospitals and
Quick-based if using a self-monitoring device) were recorded.
Treatment histories were also collected prospectively until end
of therapy or study closure (December 31, 2011). Treatment
indication, target INR, date of birth, height and weight were
extracted from patient charts. Both height and weight were
treated as continuous variables, and this was achieved by
linear interpolation between observations. Information on eth-
nicity (Caucasian, Asian, African or other/mix as alternatives),
diet (formula-fed vs. non-formula-fed) and mode of warfarin
administration [formulation administered intact (whole or di-
vided) or after manipulation e.g. crushed and/or dissolved in
food or liquids] was self-reported by parents/patients in a

questionnaire, together with information on the approximate
time of dosing and INR sampling.

Genotyping

All children were genotyped for single nucleotide polymor-
phisms (SNPs) in genes shown to be associated with war-
farin dose in adults: I) CYP2C9—the gene coding for the
enzyme involved in the metabolism of S-warfarin, and II)
VKORC1—the gene coding for the target enzyme of warfa-
rin. Details about the genotyping are provided in Online
Resource 2.

Association of genetic variables with warfarin dose

The quantitative effect of CYP2C9 and VKORC1 genotype on
warfarin maintenance dose in children was assumed to be the
same as previously estimated for adults [22]. In short, this
means that polymorphisms in CYP2C9 and VKORCI
each explain up to a 4.2-fold (CYP2C9 *3/*3 vs. *1/*1) and
2.1-fold (VKORC1 A/A vs. G/G) difference in warfarin main-
tenance dose.

Evaluation of model performance

Visual predictive checks (VPCs) were used to evaluate the
predictive performance of the bridged KPD model on both the
adult data set and the paediatric data set. The principle of a
VPC is to graphically assess whether simulations from a
model are able to reproduce both the central trend (the median
curve) and the variability (outer percentiles) in the observed
data when plotted against an independent variable, in this
case, time. A prediction corrected VPC (pc-VPC) is a modi-
fication of the standard VPC that is suitable for evaluation of
data collected in studies with an adaptive design [23], as is the
case with warfarin. The pc-VPCs were constructed based on
500 simulated replicates of the original data set design.
Results were presented as nonparametric 95 % confidence
intervals for the median and outer percentiles. 2.5™ and
97.5" percentiles were used for the adult data set, whereas
5™ and 95" percentiles were used for the sparser paediatric
data set. A model is considered to have good predictive
properties if the lines representing the trend in the observed
data (median and lower and upper percentiles) mainly fall
inside the corresponding model based confidence intervals.

Comparison of dose prediction accuracy

The paediatric validation data set was also used to compare
the accuracy in maintenance dose prediction between four
different pharmacogenetic algorithms for warfarin dosing in
children. Algorithms included were the bridged KPD model
and three pharmacogenetics-based dose algorithms derived
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from regression analysis of paediatric data [12—14]. An
empiric 0.2 mg/kg/day dose was also included as a non-
pharmacogenetic reference regimen, although this repre-
sents a recommended starting dose rather than a mainte-
nance dose [1].

The three published dose algorithms can all be used for a
priori dose predictions, i.e. to predict the maintenance dose
based on baseline values of the covariates. The bridged KPD
model can provide such predictions as well. However, an
advantage of the KPD model is that it can also be used for a
posteriori predictions, i.e. individual dose revisions based on
previous INR observations.

Children included in the comparison needed to fulfil the
following criteria: 1) have complete genetic and clinical data
for all dose algorithms, and 2) have a period of stable
warfarin therapy according to the following criteria: (a) at
least three consecutive INR measurements within target
range over a minimum period of four weeks, and b) no
change in dose during this time period.

Each model was used for a priori prediction of the daily
maintenance dose. Table 1 provides an overview of individual
predictors and the equations for published dose algorithms.

All dose predictions with these algorithms were performed in
Microsoft Excel, Version 12.3.2. Dose predictions with the
bridged KPD model were performed in NONMEM, Version
7.2.0 [24], using the covariates specified in Table 1 and
adopting the approach described by Jonsson and Karlsson
[25]. This includes (i) defining a target steady-state response
(in our case set to the midpoint of the target range, e.g. for a
target range of 2.5-3.5, the target INR was set to 3.0); and (ii)
predicting the dose required to achieve the target response,
conditioned on the population (mean) parameter estimates.

For a posteriori dose predictions, the procedure was done
in two steps. In the first step, each child’s treatment history,
including up to three INR-observations from the period just
prior to the stable treatment period, was used to derive
individual parameter estimates. In the second step, the main-
tenance dose for each child was estimated as described
under (i) and (ii) above, but now conditioned on the indi-
vidual parameter estimates.

The output from each algorithm was converted to a
predicted daily dose in mg, and compared with the actual
average daily maintenance dose. Accuracy was assessed by
calculating the difference between predicted and actual dose,

Table 1 Individual predictors included in the different pharmacogenetics-based warfarin dose algorithms for children

Individual Predictors A priori dose algorithms

A posteriori dose algorithm

Nowak-Géttl et al.>¢ Biss et al.>®

Moreau et al.%f

Bridged KPD model Bridged KPD model

Genetic factors

CYP2C9 genotype X X
VKORCI genotype X X
Demographics

Age (years) X

Weight (kg) X

Height (cm) X

Treatment related

Baseline INR

Target INR

Indication X
Treatment history

Previous Doses

INR observations

X X
X X
X X
X X
X X
X X
xe
Xe

* \Dose (mg/kg)=0.49-0.013*Age(years) —0.08 (if VKORCI A/A)+0.01 (if VKORCI A/G) —0.02 (if not CYP2C9 wild-type)

® Dose (mg)=-0.009+0.0011*Height(cm)+0.357*VKORC] (0 for A/A, 1 for A/G, 2 for G/G) -0.478*M (M=number of CYP2C9*3 alleles)—
0.277*N (N=number of CYP2C9*2 alleles)+0.186*Indication (0 for Fontan procedure, 1 for all other indications)

¢ Dose (mg/week)=—10.77+0.28*Height(cm)—5.44*VKORCI1 (0 for G/G, 1 for A/G, 2 for A/A)+7.83 (if target INR 2.5)+11.52 (if target INR

3.3)-3.29*N (N=number of CYP2C9 *2 or *3 variant alleles)

¢ Algorithm derived on data from children with a target INR range of 2.0-3.0
¢ Algorithm derived on data from children with a target INR range of 2.0-3.0 or 2.5-3.5
' Algorithm derived on data from children with a target INR of 2.2 (1.5-3.3), 2.5 (1.8-3.2) or 3.3 (2.5-4.0)

& Previous doses and 1-3 INR observations from the period prior to the stable treatment period were used for the a posteriori prediction of

maintenance dose.
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with results expressed as the percentage prediction error [(pre-
dicted dose-observed dose)/observed dose*100]. Bias (mean
prediction error) and imprecision (root mean square error) was
calculated for each method. Clinical accuracy was assessed by
calculating the proportion of patients in which the pre-
dicted dose was 1) within 20 % of the actual dose (ideal
dose prediction); 2) at least 20 % below the actual dose
(underprediction); or 3) at least 20 % above the actual dose
(overprediction) [6].

Results
Revision of the adult KPD model

The revised adult KPD model described the adult data well
(Fig. 2) and provided a statistically better fit to the current
adult data set than the published model (drop in the objective
function value of 16.2 with only one additional parameter).
Changes in population parameter estimates included a 10 %
increase in ECsg-values and a 1-3 % drop in unexplained
inter-individual variability (a full comparison of the parameter
estimates of the published and bridged KPD model is provid-
ed in Table 2, Online Resource 1).

Paediatric patient characteristics

A total of 67 warfarin-treated Swedish children were en-
rolled between November 2010 and December 2011. Three
children were excluded from analyses due to missing treat-
ment histories. Treatment data for the 64 remaining children
varied in length from 3 weeks up to 10 years, and together

Time (days)

Fig. 2 Prediction corrected VPC for the bridged KPD model applied
on data from warfarin-treated adults. The solid line denote the median
of observed data (circles) and dotted lines denote the 2.5™ and 97.5™
percentiles of observed data. Shaded areas represent 95 % confidence
intervals of simulated 95 % prediction intervals and medians

Table 2 Patient characteristics of paediatric patients included in I)
evaluation of predictive performance of bridged KPD model and II)
comparison of warfarin dosing algorithms for children

Data I, Data II,

N=64 N=49
Sex (% male/female) 52/48 53/47
Median Age, years (range) 4.3%0.055-18.9) 7.2 (0.33-16.9)
Median Weight, kg (range) 177(3.4-94) 21.3 (5.2-61.1)

Median Height, cm (range) 1027(54-189.2)

CYP2C9 genotype’, N (%)

118 (63.7-185)

*1/¥1 47 (73.4) 34 (69.4)
*1/%2 8 (12.5) 7 (14.3)
*1/%3 7 (10.9) 6(12.2)
*2/%2 1(1.6) 1(2.0)
*2/%3 1(1.6) 1(2.0)
*3/%3 - -
VKORCI genotype, N (%)
G/G 24 (37.5) 19 (38.8)
A/G 31 (48.4) 23 (46.9)
A/A 9 (14.1) 7 (14.3)
Treatment Indication, N (%)
Fontan procedure 20 (31.2) 13 (26.5)
Prosthetic heart valve 23 (35.9) 20 (40.8)
(mitral or aortic)
Dilated cardiomyopathy 8 (12.5) 7 (14.3)
Other 13 (20.3) 9 (18.4)
Target INR, N (%)
2.0-3.0 33 (54.6) 28 (57.1)
2.5-3.5 20 (31.2) 16 (32.7)
Other (lower 8 (12.5) 5(10.2)
range < 2 or upper
range > 3.5)
Missing 34.7) 0

T At time of first dose/INR observation

¥ Genotyping for CYP2C9 variant alleles also included *5, *6 and *11
but none of these were found in the studied population

comprised >45,000 treatment days, and a total of 4,944 INR
observations. Details on patient demographics, treatment
indication and target INR are provided as Data I in
Table 2. The mean age at first data record was 4.3 years,
with a mean body weight of 17 kg. Age and weight ranges
for the entire study period were 0.05-18.9 years and 3.4—
94 kg, respectively. Self-reported information on ethnicity
included 53 Caucasian, six Asian, two African and three
with other or mixed ethnicity. The distribution of VKORC1
and CYP2C9 genotypes are provided in Table 2. Allele
frequencies were as expected and no deviation from the
Hardy-Weinberg equilibrium was observed. No patient car-
ried the CYP2C9 *5, *6 or *11 variant alleles. A wide range
of doses was administered in the study, ranging from
0.125 mg to 12.5 mg, or 0.022 mg/kg to 0.345 mg/kg.
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Most doses were administered as the marketed 2.5 mg tab-
let, but approximately 1 % used an extemporaneous capsule
formulation. INR was mainly measured with Owren-based
methods, with less than 13 % measured with a Quick-based
self-monitoring system.

Evaluation of the bridged KPD model in children

Figure 3 shows pc-VPCs for evaluation of predictive per-
formance of the bridged KPD model in the 64 warfarin-
treated children. Overall, the model performed well in pre-
dicting the INR response in children 0—18 years old. When
stratified into three age groups (< 2 years, > 2 and < § years,
and > 8 years), there was a trend that the model overpre-
dicted the INR response in the youngest age group.

Comparison of dose prediction accuracy

Forty-nine of 64 children fulfilled criteria for stable warfarin
therapy. Data from the first stable treatment period (when
several periods were available) were used to compare dose
prediction accuracy between the different dose algorithms.
Patient characteristics for this subset are included as Data II
in Table 2. The median observed daily maintenance dose in
this subset was 2.95 mg or 0.131 mg/kg, ranging from
0.56 mg to 9.11 mg or 0.036 mg/kg to 0.291 mg/kg.

Results on bias, imprecision and percentage of children with
the maintenance dose underestimated (prediction <80 % of
actual dose), ideal (prediction + 20 % of actual dose) or over-
estimated (prediction >120 % of actual dose) are presented in
Table 3. Bias ranged from —0.26 mg to 1.94 mg, and impreci-
sion from 0.90 mg to 2.19 mg. The percentage of children with
an ideal dose prediction was 33 % with an empiric 0.2 mg/kg
dose, 35 % with the algorithm by Nowak-Gottl et al. [12],
33 % with Moreau et al. [13], and 41 % with Biss et al. [14] and
the bridged KPD model. When information on previous doses

0 7 14

and up to three INRs was used for a posteriori dose prediction
with the bridged KPD model, the percentage of children with
an ideal dose prediction increased to 70 %.

Prediction errors for individual children and dose algo-
rithms are shown in Fig. 4. Individual prediction errors ranged
from a 400 % overprediction with the fixed 2 mg/kg dose
regimen, to a 75 % underprediction with the algorithm by
Moreau et al. [13]. For one of the children, the dose was
overpredicted, with more than 150 % with all models except
the algorithm by Nowak-Gattl et al. [12]. If this child is
disregarded, the bridged KPD model showed the most narrow
prediction error interval for a priori doses, ranging from —65 %
to 59 %. Same type of plots but for children <2 years old
(n=11) or stratified on number of variant alleles, are presented
as Figs. 3 and 4, Online Resource 1. Overall, the bridged KPD
model and the algorithm by Biss et al. [14] showed the most
narrow ranges of predictions errors.

Additional results, including details about individual pre-
dictors for all children included in the dose comparison, are
provided in Fig. 5 and Table 3, Online Resource 1.

Discussion

In the present paper, a novel method for the prediction of
warfarin dose in children is presented and compared with
three published pharmacogenetics-based algorithms for
maintenance dose prediction. The new method is based
on a pharmacometric model that describes the complete
time course of INR response to warfarin treatment. The
model was derived from adult patient data and bridged to
children based on commonly used allometric principles
and a published maturation function for CYP2C9. In
other words, no data or information from warfarin-
treated children was used to develop the model for dose
prediction in children.

0 7 14

I No strafification

2 <Ace <8 [vears) Ade >= 8 (vears)

AQ§J<= 2 {veérsl

Time (days)

Fig. 3 Prediction corrected VPCs for the bridged KPD model applied
on data from warfarin-treated children. The panel to the left represent
data from all children (n=64) and the three panels to the right are after
stratification of data into three age groups; < 2 years, > 2 and <8 years
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and > 8 years. Solid lines denote the medians of observed data (circles)
and dotted lines denote the 5™ and 95" percentiles of observed data.
Shaded areas represent 95 % confidence intervals of simulated 90 %
prediction intervals and medians
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Table 3 Percentage of children with predicted maintenance doses underestimated (prediction <80 % of actual dose), ideal (prediction + 20 % of
actual dose) or overestimated (prediction >120 % of actual dose), and bias and imprecision for the different dose prediction models

Dose Underestimated ~ Dose Ideal — Dose Overestimated — Bias (Mean Imprecision (Root
Prediction Error)  Mean Square Error)

A priori dose predictions

Fixed dose 0.2 mg/kg 8 % 33 % 59 % 1.94 2.19

Algorithm by Nowak-Géttl et al. [12] 28 % 35% 37 % —0.26 1.05

Algorithm by Moreau et al. [13] 16 % 33 % 51 % 0.32 0.98

Algorithm by Biss et al. [14] 31 % 41 % 28 % —0.03 0.90

Bridged KPD model 35% 41 % 24 % —0.13 0.94

A posteriori dose prediction

Bridged KPD model 14 % 70 % 16 % —0.04 0.57

Overall, the bridged KPD model predicts the INR response
in children well, although there is a tendency that the model
overpredicts the response, or conversely underpredicts the
dose, in the youngest age group (< 2 years). This may be
due to inaccurate prediction of the PK in children, i.c. that the
bridging underestimates the metabolic capacity in this age
group. However, this is likely not due to using post-natal age
instead of post-menstrual age, in which case the differences
between observations and predictions should have gone in the
other directions. Online Resource 1 provides further discus-
sion about the maturation function. The discrepancies could
also be due to PD differences, for example that young children
are less sensitive to warfarin than older children and adults.
Another possibility is that it is caused by practical aspects of
administering warfarin to young children, such as the crushing
of tablets and mixing with food or liquids, which makes

500 4
400 -
300

200

% Prediction Error

100

-100

T T )
Moreau KPD-model KPD-model
apriori  a posteriori

0.2 mg/kg Nowak-Géttl Biss

Fig. 4 Percent prediction error in warfarin maintenance dose in children
0-18 years old. Results are provided as % prediction error in a priori
predicted maintenance dose for one non-pharmacogenetic (empiric
0.2 mg/kg dose) and four pharmacogenetics-based algorithms, and in a
posteriori predicted maintenance dose for the bridged KPD model.
Results from the different models included in the comparison are
connected for each child. Results above zero means that the dose was
overpredicted and results below zero that the dose was underpredicted

accurate and reproducible dosing difficult [2], and which
could overestimate the actual dose delivered. In principle,
predictions could be improved by updating the model and/or
re-estimating the model parameters on data from warfarin-
treated children. However, the currently available data set,
with data from only 64 children between 0.06 and 18 years
old and with only two children with two CYP2C9 variant
alleles, was judged insufficient for doing this in a reliable and
generalizable way for all ages and genotype combinations.
Despite the overprediction of INR noted in the youngest age
group with the bridged KPD model, it predicted daily main-
tenance doses as well or better than published dosing algo-
rithms for children, although with a tendency towards
underpredicting dose requirements.

When comparing the different dosing algorithms, it was
clear that a fixed dose of 0.2 mg/kg would overestimate the
daily maintenance dose in the majority of children. Admittedly,
this comparison is somewhat unfair, since this was intended as
a starting dose rather than a daily maintenance dose recom-
mendation. However, it serves to illustrate the fact that a fixed
dose regimen will not succeed in predicting the dose require-
ment across all patients. The other algorithms, including the
bridged KPD model, with a more individualized approach,
performed better in predicting the daily maintenance dose.
One interesting observation is that the KPD model and the
algorithm by Biss et al. [ 14] appeared to perform better than the
other two, especially in children with at least one variant allele
of CYP2C9 and/or VKORC1. These two methods both take the
number of CYP2C9 and VKORC variant alleles into account,
and also distinguish between the effect of CYP2C9*2 and *3.

A practical limitation with the bridged KPD model is that it
is not easy to use compared to the other algorithms. They all
use a simple equation to predict maintenance dose for a given
child, while the bridged KPD model is based on a set of
differential equations, without a closed form solution. To
address this, work is currently ongoing to convert the
NONMEM-model into a user-friendly tool for a priori and a
posteriori dose predictions in both children and adults.
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An advantage with the bridged KPD model is that it
describes the whole time course of treatment, and can be
used for both a priori and a posteriori dose predictions. In
the example presented, the percentage of children with the
dose ideally predicted (= 20 % of actual dose) increased
from 41 % with a priori prediction to 70 % with a posteriori
revision of warfarin maintenance dose. Besides dose pre-
dictions, the model can also be used for prediction of early
INR response for a given dose regimen, which is not possi-
ble with the other algorithms. This could help to identify
situations where warfarin therapy could be improved with
loading doses and/or delayed dose-adjustments.

In conclusion, the bridged KPD model performed at least
as well for warfarin maintenance dose prediction in children
as algorithms developed on data from children. Since it is
possible to further refine the bridged KPD model with
paediatric data, it is a promising first step towards a more
individualised warfarin therapy in children.
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