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Mononuclear phagocytes originate in the bone marrow, where dividing promonocytes
form monocytes. The monocytes leave the bone marrow and are transported via the
circulation to the tissues, in which they become macrophages. This pathway is followed
by the mononuclear phagocytes in the normal steady state (1, 2) as well as in acute and
chronic inflammations (1, 3-10), although in some forms of chronic inflammation local
proliferation may occur in the tissues (11, 12).

The promonocyte is the most immature cell of the mononuclear phagocyte system to
have been fully characterized so far (2, 13, 14), but it is unlikely that this cell is the direct
descendant of the stem cell. The available evidence suggests that at least one other type
of cell occurs between the stem cell and the promonocyte (2, 15). It is not yet known
whether this precursor of the promonocyte is also a mononuclear phagocyte. Some
authors think that the mononuclear phagocytes in the bone marrow derive from imma-
ture granulocytes at some stage (16-18), but direct proof is lacking. This problem led us to
investigate the origin of the bone marrow promonocytes.

Since promonocytes constitute only about 0.25% of the nucleated bone marrow cells
(13), promonocyte precursors can be expected to occur in low numbers and therefore
cytological preparations will not be very informative. The available methods for the study
of the bone marrow monocyte and promonocyte (2, 13), which are based on the common
property of mononuclear phagocytes to adhere to glass (19, 20), have not led to the
identification of any type of cell preceding the promonocyte.

Another way to study immature bone marrow cells is the recently described technique
by which in the presence of a colony-stimulating factor mononuclear phagocyte and
granulocyte colonies are grown in vitro (21-23). This kind of culture, in which each colony
develops from a single immature bone marrow cell (18, 21, 24-26), would be suitable for
the investigation of the immature proliferating mononuclear phagocytes, but study of the -
characteristics of the cells in these colonies is hampered by the agar or methyl cellulose
used as support for the cells.

For the present study, therefore, this method was modified such that leuko-
cyte colonies develop in a liquid medium on a glass surface. The cells adhering to
the glass surface (e.g., mononuclear phagocytes) are then directly accessible for
observation and characterization.

The aim of the present study was to identify and characterize the promonocyte
precursor in the mononuclear phagocyte colony. The findings concerning the
morphology, cytochemistry, functional characteristics, and proliferative capac-
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ity of the immature and mature cells of the mononuclear phagocyte colonies are
described and compared with those of the cells of the granulocyte colonies
occurring in these cultures.

Materials and Methods

Animals. The study was done in specific pathogen-free male Swiss mice (Central Institute for
the Breeding of Laboratory Animals TNO, Bilthoven, The Netherlands) weighing between 25 and
30 g.

Bone Marrow Cell Cultures. The femur was isolated and removed intact from the hind limb.
After the bone was cleared of adherent muscle, it was cut at both ends in the region of the
metaphysis. The bone marrow was expressed by flushing the shaft from the proximal side with 1
ml culture medium. The bone marrow of three mice was collected in a Falcon tube (Falcon
Plastics, Div. of BioQuest, Cockeysville, Md.) and dispersed by repeated gentle aspiration in a
pipette. The nucleated bone marrow cells were counted in a hemocytometer. About 5 x 10*
nucleated bone marrow. cells, suspended in 2 ml Dulbecco’s modified Eagle’s medium (Grand
Island Biological Co., Grand Island, N. Y.) containing 20% horse serum (Flow Laboratories,
Ayrshire, Scotland) and 20% conditioned medium, were incubated in Leighton tubes provided with
a flying cover slip (10 X 35 mm) and held at 37°C in a water-saturated atmosphere of 10% CO, in
air. The conditioned medium was prepared by incubating embryonic mouse fibroblasts with
Waymouth medium (MB 752/1; GIBCO) containing 5% newborn calf serum (GIBCO). The
preparation of this conditioned medium has been described in detail elsewhere.! Batches of condi-
tioned medium of about the same strength (mean effective dose at a dilution of 1:70) were used
in all of the experiments. With this dilution of the conditioned medium the maximal number of
colonies is formed in the bone marrow cultures. Unless stated otherwise, the cultures were
terminated after 4 days of incubation by gentle removal of the cover slip from the Leighton
tube.

Peritoneal Cell Cultures. The technique for harvesting and culturing peritoneal cells has been
described in detail elsewhere (1). About 1 X 10° peritoneal cells suspended in medium 199 (GIBCO)
containing 20% newborn calf serum, were incubated in a Leighton tube with a flying cover slip for
24 h at 37°C in a humidified atmosphere of 10% CO, in air. After 2 and 24 h of incubation the cover
slip was washed firmly with medium 199 and removed after the last washing.

Light, Phase-Contrast, and Fluorescence Microscopy. For light microscopy the cover slip was
rapidly air dried, then, unless stated otherwise, fixed in absolute methanol for 10 min, and stained
with Giemsa’s stain for 15 min. Photographs were taken with a Zeiss photomicroscope (Carl Zeiss,
Oberkochen, West Germany).

For phase-contrast microscopy the preparation was fixed in 2% glutaraldehyde in buffered
saline (Hemagglutination buffer; Difco Laboratories, Detroit, Mich.) at pH 7.2 for 30 min at 4°C.
Phase-contrast microscopy of the colonies during incubation in the Leighton tube (unfixed prepara-
tions) was done with an inverted phase-contrast microscope (Carl Zeiss, (27). The colonies were
photographed through the Leighton tube with a Polaroid camera (Polaroid Corporation, Cam-
bridge, Mass). Immunofluorescence was done with a fluorescence microscope (E. Leitz, Wetzler,
West Germany).

Cytochemistry

Peroxinase. Peroxidase activity was determined according to Kaplow (28) using benzidine
dihydrochloride (Fluka, A. G., Buchs, Switzerland) as substrate at pH 6.0. With 0.02% (vol/vol)
hydrogen peroxide, as used in Kaplow’s original method, the granulocytic cells were positive, but
the mononuclear phagocytes of the colonies were usually negative. Peroxidase activity could,
however, be demonstrated in the mononuclear phagocytes by using lower concentrations of
hydrogen peroxide. A concentration of 0.002% (vol/vol) proved to be optimal and was used
throughout this study.

Esterase. Esterase activity was investigated according to Ornstein and Ansley (references 29
and 30 and personal communication) the cover slip being incubated for 25 min at room temperature
with a-naphthyl butyrate (to be called esterase 1) (Sigma Chemical Co., St. Louis, Mo.) at pH

' Goud, Th. J. L. M., C. Schotte, and R. van Furth. Studies on the colony-stimulating activity of
medium conditioned by embryonic mouse fibroblasts. Manuscript submitted for publication.
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6.0 or with N-acetyl pL-alanyl l-naphthylester (to be called esterase 2) (Fox Chemical, Los
Angeles, Calif.) at pH 7.0.

Under these conditions incubation with a-naphthyl butyrate gives a distinct diffuse cyto-
plasmic staining of the mononuclear phagocytes; some lymphocytes may show a few inconspicuous
granules; and the polymorphonuclear leukocytes are negative (29, 30). Incubation with N-acetyl
pL-alanyl 1-naphthylester gives a granular staining of the polymorphonuclear leukocytes; mono-
nuclear phagocytes are negative (31).

Acip PHOSPHATASE. Acid phosphatase activity was assayed according to Barka and Anderson
(32) with sodium naphthol AS-BI phosphate (Sigma Chemical Co.) as substrate at pH 5.0, but in
unfixed preparations.

B-GLUCURONIDASE. B-glucuronidase activity was investigated according to Hayashi et al. (33)
with the modifications of Lorbacher et al. (34), using naphthol AS-BI B-p-glucuronic acid (Sigma
Chemical Co.) as substrate at pH 5.0.

The presence of lysozyme in colony cells was demonstrated by the immunofluorescence method
according to Glynn and Parkman (35), the fixed cells (fixation in 5% acetic acid in 98% ethanol for
20 min at —20°C) being incubated with rabbit antilysozyme serum (dilution 1:16) for 30 min at
room temperature. After washing of the cells with phosphate-buffered saline (pH 7.8), the binding
of antilysozyme to the cells was visualized by incubation with fluorescein isothiocyanate-conju-
gated goat antirabbit globulin (dilution 1:20) (Nordic Diagnostics, Tilburg, The Netherlands) for
30 min at room temperature, followed by washing with phosphate-buffered saline.

Antilysozyme serum was prepared in rabbits by repeated intramuscular immunization with rat
lysozyme (kindly supplied by E. F. Ossermann, Columbia College of Physicians and Surgeons,
New York) together with Freund’s complete adjuvant (Difco Laboratories). This lysozyme prepara-
tion was free of mouse serum proteins, as determined by immunoelectrophoresis with goat
antimouse plasma protein serum (Nordic Diagnostics). The prepared rabbit antilysozyme serum
contained no antibodies against mouse serum proteins, and showed one precipitation line with
lysozyme as antigen in the immunoelectrophoretic pattern. Furthermore, the specificity of the
antilysozyme serum was demonstrated by immunofluorescence: mouse peritoneal macrophages,
which contain and synthesize lysozyme (35-37), showed a diffuse positive staining, and embryonic
mouse fibroblasts, which do not synthesize lysozyme (27), were negative.

In the control preparations of the cytochemical-staining reactions the substrate was omitted
from the incubation fluid; for the immunofluorescence controls the incubation was performed with
normal rabbit serum instead of rabbit antilysozyme serum. All controls were negative.

Function Studies

PHacocyrosts. Phagocytosis was investigated by replacing the medium with 1 ml of Dulbec-
co’s modified Eagle’s medium containing 10% newborn calf serum and 1 X 10° or 1 x 107
Staphylococcus albus (13). The cover slip was incubated for 1 h at 37°C and then washed thoroughly
with Dulbecco’s modified Eagle’s medium. Phagocytosis was also studied using 5 x 10® latex
particles (0.81 um; Difco Laboratories) suspended in 1 ml Dulbecco’s modified Eagle’s medium
containing 10% newborn calf serum, incubated for 1 h at 37°C, and then washed vigorously with
Dulbecco’s modified Eagle’s medium. The phagocytosis of antibody-coated red cells is described
below.

PiNocyrosis. Pinocytosis was studied by substituting the medium with 1 ml culture medium
containing 10, 25, or 100 ug dextran sulphate (mol wt 500,000; Pharmacia Fine Chemicals, Inc.,
Uppsala, Sweden). After another 24 h of incubation at 37°C, the cover slip was washed vigorously
with Dulbecco’s modified Eagle’s medium, fixed in absolute methanol for 10 min, and stained for 8
min with 2.5% (vol/vol) Giemsa stain in water, which stains the endocytized dextran sulphate
metachromatically (38).

Receptors at the Cell Surface

1g¢ RECEPTORS. The presence of IgG receptors was studied with IgG-coated sheep red blood
cells according to Uhr (39) with the modifications of Gordon and Cohn (40).

Equal volumes of 2% (vol/vol) sheep red cells and 10% (vol/vol) inactivated mouse antisheep red
cell serum (prepared by repeated intravenous immunization of mice with sheep red cells; hemag-
glutination titer of the antiserum: 1:1,500) in medium 199 were added and then incubated for 30
min at 37°C, after which the coated red cells were washed twice with medium 199.

Rosette formation was studied by removing the medium from the cover slip, which was then
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washed three times with medium 199 to remove traces of serum. After incubation for 15 min at
room temperature in 1 ml medium 199 containing 0.2% (vol/vol) IgG-coated red cells, the cover slip
was firmly washed eight times with medium 199. Phagocytosis was studied by two-step incuba-
tion: first the cover slip was incubated as described for rosette formation and then again in
medium 199 containing 10% inactivated fetal bovine serum (Flow Laboratories) for 1 h at 37°C,
followed by washing with medium 199.

igM RECEPTORS. The presence of IgM receptors was studied with IgM-coated sheep red blood
cells. Equal volumes of 2% (vol/vol) sheep red cells and 10% (vol/vol) rabbit antisheep red cell IgM
(Cordis Laboratories, Miami, Fla.) in medium 199 were added, incubated for 15 min at 37°C, and
then washed twice with medium 199. Rosette formation was studied by removing the medium from
the cover slip, which was then washed three times with medium 199 and incubated with 0.25%
(vol/vol) IgM-coated red cells in 1 ml of medium 199 for 1 h at 37°C after which the cover slip was
firmly washed with medium 199.

CoMPLEMENT RECEPTORS. The presence of complement (C) receptors was studied with sheep
red blood cells coated with IgM and C. After coating of the red cells with IgM, as described above,
equal volumes of 2.5% (vol/vol) coated red cells in medium 199 and fresh noninactivated mouse
serum as source of C were added, incubated for 10 min at 37°C, and then washed twice with
medium 199.

Rosette formation was studied according to the procedure described for IgM receptors, except
that double-coated red cells were used and incubation was performed at 4°C. The procedure used
to study phagocytosis was the same as that for rosette formation; the incubation was performed at
37°C.

[*H1Thymidine Labeling. To study DNA synthesis, the culture medium was replaced by
medium containing 0.1 uCi/ml [*H]thymidine (sp act 6.7 Ci/mmol, New England Nuclear, Boston,
Mass.). Autoradiography was performed with Ilford Nuclear Research Emulsion K 5 in gel form
(Ilford Ltd., Essex, England) (1); the exposure time was 10 days. Cells containing less than three
grains over the nucleus were considered negative.

Cell Counts. In this study a group of four or more cells was considered a colony. To determine
the characteristics of the component cells at least 200 cells of each cell type were examined per
time point in preparations deriving from at least two experiments.

Results

Structure of the Colonies. The liquid cultures of bone marrow cells show two
kinds of colonies, one consisting of granulocytic cells and the other of mononu-
clear phagocytes. The distinction between the cells of these two kinds of colonies
is discussed below.

The structure of the granulocyte colonies is characterized by the close proxim-
ity of the cells, some of which lie on top of other cells (Fig. 2). In the mononuclear
phagocyte colonies, on the contrary, the cells form a monolayer on the glass
surface and show more separation; the round cells are located more centrally,
and the elongated cells swarm toward the periphery (Fig. 1). Only in the later
stages of incubation (after day 4) is some crowding of cells seen in the center of
these colonies. The ratio of granulocyte to mononuclear phagocyte colonies is of
the order of 1 to 2.

The colonies on the cover slip are well separated, provided that no more than 5
x 10* bone marrow cells are plated per Leighton tube. All colonies are composed
exclusively of either mononuclear phagocytes or granulocytic cells. Mixed colo-
nies consisting of both types of cells were never observed. The mononuclear
phagocyte colonies occasionally showed a few granulocytes, but these cells had
probably been introduced during the procedure used for the termination of
incubation, since comparison of the micrographs of the same colonies in the
Leighton tube taken just before termination and in the Giemsa-stained prepara-
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tion, showed that these granulocytic cells were not present in the mononuclear
phagocyte colonies before termination of the incubation.

Glass Adherence of the Cells of Mononuclear Phagocyte Colonies. Since the
liquid culture does not contain agar or methyl cellulose as support for the cells,
the question of whether the cells of the mononuclear phagocyte colonies remain
stuck to the glass surface during incubation and during the termination of the
culture had to be settled.

To this end, the growth of individual colonies was followed with the inverted
phase-contrast microscope from the early time points up to the end of incuba-
tion. Observations were done at short (15 min) and long intervals (12 h), and
some colonies were followed continuously during a period of a few hours. It was
found that the mononuclear phagocytes do not leave the colony, even during
divisions. Fusion of colonies was never observed, and the medium above the
cover slip proved to be almost entirely devoid of cells.

To determine whether cells are lost from the colonies during the procedures
applied at the termination of incubation (removal of the cover slip, air drying,
and fixation) mononuclear phagocyte colonies were photographed on the cover
slip in the Leighton tube just before termination and later in the Giemsa-stained
preparation. Comparison of these photographs showed that the original struc-
ture of the mononuclear phagocyte colonies was preserved throughout. Cell
counts of five colonies, done on these micrographs, showed that virtually no cells
are lost from the mononuclear phagocyte colonies, and some colonies even
showed a cell increase (Table I). Comparison of individual cells of a colony in the
Giemsa-stained preparation and in the phase-contrast micrograph made it
possible to localize the sites of cell increment (because of the large number of
cells and crowding in the center this could not be done reliably for colonies 2 and
4). These new cells, which occurred in pairs, were small and had a loose nuclear
chromatin structure, these features being characteristic for recent division
(referred to in Table I as cells in postmitosis phase). These divisions had appar-
ently occurred between the last observation in the phase-contrast microscope
and the fixation of the preparation, an interval lasting on the average for 15-45
min. This finding once again demonstrates that dividing cells do not leave the
mononuclear phagocyte colony, even during the disturbance accompanying
termination of the incubation. Since all of the mononuclear phagocytes in the
colonies remain stuck to the glass surface during incubation and the termina-
tion procedure, it may be concluded that the mononuclear phagocyte colonies in
the fixed and stained preparations reliably represent the colonies as they have
developed in the Leighton tube.

Morphology of the Cells of Mononuclear Phagocyte and Granulocyte Colo-

FiG. 1. Mononuclear phagocyte colony on the 4th day of incubation. Note the loose, single-
layered colony structure. Some crowding of cells is seen in the center. Giemsa stain. x 250.
Fic. 2. Granulocyte colony (broken in two parts or two colonies) on the 4th day of
incubation. Note the tight structure of the colony. Most of the cells have a doughnut-shaped
nucleus. Giemsa stain. x 400.

Fic. 3. Part of a mononuclear phagocyte colony showing monoblasts (1) and promonocytes
(}). Giemsa stain. x 1,250.

Fic. 4. Part of a mononuclear phagocyte colony showing macrophages. Giemsa stain.
x 1,250.



1186 IDENTIFICATION OF THE MONOBLAST

nies. When the cells of the mononuclear phagocyte colonies are characterized
according to morphological criteria (cell size and shape, nuclear-to-cytoplasmic
ratio, basophilia of the cytoplasm, and the number of granules and pinocytic
vesicles), three types of cells can be distinguished: the macrophage and the
promonocyte, already identified and characterized (13, 41), and a third, more
immature cell type, which was not recognized before and will be called the
monoblast (Figs. 3 and 4, and Table II). All three of these cell types occur in the
majority of the 4-day old colonies.

The macrophage, which is the largest cell in these colonies, is well stretched
and markedly elongated on the glass surface, usually showing two and some-
times three or four pseudopods (Fig. 4). The nuclear-to-cytoplasmic ratio is lower
than 1. The light grayish-blue cytoplasm contains numerous small vesicles, and
in the phase-contrast microscope a number of dense granules are seen, mainly
situated around the nucleus. There are a number of mitochondria, especially in
the pseudopods.

TaBLE I
Number of Cells in Mononuclear Phagocyte Colonies before and after Termination of the
Culture*
No. of cells counted After termination
Colony per colo_ny l_)efore No. of cells counted No. of cells in Corrected no. of cells
termination I N
per colony postmitosis phasef per colony$§
1 89 91 10 86
2 192 199
3 88 89 2 88
4 119 114
5 54 54 0 54

* Incubation terminated on day 4; counts made before termination in phase-contrast micrographs,
after termination in Giemsa-stained preparations.

1 Cells with characteristics indicating recent division which had apparently occurred in the
interval between the phase-contrast micrograph and the fixation of the cells.

§ No. of cells per colony in Giemsa-stained preparations minus half the no. of cells in postmitosis
phase.

TaBrLE 11
Morphological Characteristics of Cells of Mononuclear Phagocyte Colonies

Cell Nucleus Cytoplasm
Nuclear- Granules
Size* Shape Surface Shape to-cyto- Bas- and
ruffling? plasmic ophiliaf .
. vesiclest
ratio
um
Monoblasts 10 x 12 Round (+) Round or in- >1 ++ (+)
dented
Promonocytes 13 x 34 Slightly + Round or in- 1 + +
stretched dented
Macrophages 17 % 69 Extremely ++ Oval or in- <1 (+) ++
elongated dented

* Means of smallest and largest diameters of the cell.
t Increasing degree indicated in the sequence (+), +, and ++.
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The promonocyte is a more immature, smaller cell and shows less stretching;
this cell usually has only one pseudopod (Fig. 3). The nuclear-to-cytoplasmic
ratio is about 1. Some vesicles are present in the basophilic cytoplasm, and
phase-contrast microscopy shows a few dense granules situated mainly around
the nucleus.

The monoblast is a round, not stretched cell, which is a little smaller than the
promonocyte (Fig. 3). Its surface is slightly ruffled. The nucleus is round or
slightly indented, has a fine dense chromatin structure, and is surrounded by a
small rim of strongly basophilic cytoplasm sometimes showing a few vesicles. In
the phase-contrast microscope only a few granules are seen. All these features
indicate that the monoblast is a more immature cell type than the promonocyte
(Table II).

The three types of mononuclear phagocytes can be distinguished throughout
the incubation period, but the percentages of the different cell types in the colony
change with time (Table III). In the first few days of incubation the mononuclear
phagocyte colonies consist almost solely of monoblasts, although at this stage
promonocytes and macrophages are already seen in some colonies; later on, the
percentages of promonocytes and macrophages increase; and in the last part of
the incubation period almost all of the cells in the mononuclear phagocyte
colonies are macrophages.

In the granulocyte colonies different types of cells can be distinguished,
including the immature myeloblasts, promyelocytes, and myelocytes, and more
mature cells, namely stabs and neutrophil polymorphonuclears (Fig. 5). Eosino-
philic and basophilic granulocytes were not seen. Typical features of the cells in
these colonies are a smooth cell surface and the absence of stretching. The
immature cells (3 X 11 um) have a dark-blue cytoplasm and a round or
doughnut-shaped nucleus. The more mature cells are smaller (7 X 8 um) and
have a lobulated nucleus and a light grayish-blue cytoplasm with tiny vesicles.

Cytochemical Characteristics of the Cells of Mononuclear Phagocyte and
Granulocyte Colonies. The cytochemical studies showed for some enzymes
very distinct differences between the cells of mononuclear phagocyte and granu-
locyte colonies.

Where Kaplow’s (28) method is applied, the mononuclear phagocyte colony
cells are negative for peroxidase and all cells of the granulocyte colonies are
strongly positive. This finding is in contrast to expectation, since the majority of
the bone marrow promonocytes and monocytes are known to be peroxidase
positive (13, 14). Similar negative results were obtained with other cytochemical
methods for demonstrating peroxidase activity (42-44). The same holds for other
durations and methods of fixation (2.5% glutaraldehyde, absolute methanol,
absolute ethanol, and formalin vapor), the omission of fixation, and incubation
at different pH values of the substrate. Furthermore, inhibition of the reaction
by penicillin (45), by the colony-stimulating factor, or by serum could also be
excluded.

However, the use of a much lower concentration (0.002% vol/vol) of hydrogen
peroxide than that recommended by Kaplow made it possible to demonstrate a
weak granular peroxidase activity in about half of the mononuclear phagocyte
colonies. In these positive colonies peroxidase-positive granules are seen in the
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TasrLe III
Distribution Percentages of Cells of Mononuclear Phagocyte Colonies*

Duration of

incubation Monoblasts Promonocytes Macrophages
days % % %
3 52 38 10
8 4 6 90

* Determined in Giemsa-stained preparations.

majority of the monoblasts and promonocytes, but in only a low percentage of
the macrophages (Table IV).

With a-naphthyl butyrate as substrate (esterase 1) almost all mononuclear
phagocytes are esterase positive, the diffuse cytoplasmic staining increasing in
intensity from monoblast to macrophage; the cells of granulocyte colonies are
negative with this substrate. However, when N-acetyl prL-alanyl 1-naphthyles-
ter is used as substrate (esterase 2) all mononuclear phagocytes are negative and
the granulocytic cells show a strong granular staining (Table IV).

Nearly all of the mononuclear phagocytes in colonies are positive for acid
phosphatase, showing a granular, mainly perinuclear, and a diffuse cytoplasmic
staining which is more intense in macrophages than in the immature cells; all of
the cells of the granulocyte colonies contain this enzyme too (Table IV). 8-
glucuronidase activity with a granular mainly perinuclear and a diffuse cyto-
plasmic localization occurs in almost all mononuclear phagocytes, the intensity
in the immature and mature cells of the colony being about the same; all cells of
the granulocyte colonies are also positive (Table IV).

Throughout incubation (i.e., from day 2 until day 8) the percentages of
monoblasts, promonocytes, and macrophages positive for esterase 1 (90-97%),
acid phosphatase (89-99%), and B-glucuronidase (92-100%) remain constant,
indicating that these cytochemical characteristics do not differ in cells of young
and old mononuclear phagocyte colonies (Table IV). Lysozyme appears to be
present in small amounts in monoblasts, promonocytes, and macrophages, the
percentages of positive cells increasing in that sequence. All cells of granulocyte
colonies contain a large amount of lysozyme.

For comparison, the various cytochemical reactions were also performed in
peritoneal macrophages. Of these cells, 100% are positive for esterase 1, none for
esterase 2, 1% for peroxidase, 100% for acid phosphatase, 100% for 8-glucuroni-
dase, and 95% for lysozyme. These results demonstrate the cytochemical similar-
ity of macrophages in colonies and macrophages obtained directly from mice.

Functional Capacities of the Cells of Mononuclear Phagocyte and Granulocyte
Colonies. The mononuclear phagocyte and granulocyte colonies also show a
difference in functional capacities. Although most of the mononuclear phago-
cytes are able to pinocytize, the degree of activity of the immature and mature
mononuclear phagocytes differs widely, the pinocytic index increasing strongly
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in the sequence of monoblast, promonocyte, and macrophage. The amount of
dextran sulphate endocytized by these cells also increases in the same sequence.
When the colony cells are exposed to higher concentrations of dextran sulphate,
the pinocytic activity of the immature mononuclear phagocytes continues to
rise. The cells of granulocyte colonies do not show pinocytosis at any concentra-
tion of dextran sulphate (Table V).

The majority of the mononuclear phagocytes phagocytize S. albus in the

.

6

Fic. 5. Part of a granulocyte colony showing immature and mature cells. Giemsa stain.
X 2,000.

Fic. 6. Part of a mononuclear phagocyte colony showing labeled monoblasts (}) and
promonocytes (}). Giemsa stain, x 1,250.
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TaBLe IV

Cytochemical Characteristics of Cells of Mononuclear Phagocyte and Granulocyte
Colonies*

Mononuclear phagocytes

Granulocytic
cells
Monoblasts Promonocytes Macrophages
% % % %
Peroxidaset 78 68 19 98
Esterase 1 91 90 93 0
Esterase 2 0 0 0 96
Acid phosphatase 89 97 99 94
B-glucuronidase 97 95 100 94
Lysozyme 43 55 78 98

* Percentage of positive cells determined on 4th day of incubation.
} These data pertain only to the mononuclear phagocyte colonies with peroxidase-positive cells; in

50% of the mononuclear phagocyte colonies all cells are negative. All granulocyte colonies are
positive.

TaBLE V

Functional Characteristics of Cells of Mononuclear Phagocyte and Granulocyte
Colonies*

Mononuclear phagocytes

Granulocytic
cells
Monoblasts  Promonocytes Macrophages
Pinocytosis
Dextran sulphate
10 pug/ml 13 50 92 0
25 pg/ml 15 67 99 0
100 ug/ml 21 76 97 0
Phagocytosis
Bacteria
1 x 10%ml 30 63 93 15
1 x 107/ml 26 64 95 36
Latex particles
5 x 10%ml 47 88 100 10

* Percentage of positive cells determined on 4th day of incubation.

presence of serum, the phagocytic index and the number of bacteria ingested
both increasing from monoblast to macrophage. The phagocytic indices of mon-
onuclear phagocytes do not change when higher concentrations of bacteria are
used (Table V). When the phagocytosis test is performed without serum, less
than 1% of the monoblasts and promonocytes and less than 5% of the macro-
phages ingest these particles. Only a small percentage of the granulocytic cells
shows phagocytosis, but the phagocytic index mounts with a higher concentra-
tion of bacteria.

When latex is used, the percentage of cells ingesting these particles is slightly
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higher than for bacteria. Omission of serum in the latex phagocytosis experi-
ments gives roughly similar phagocytic indices (Table V).

Throughout the incubation (day 2-day 8) neither the pinocytic activity of
monoblasts (15-20%), promonocytes (67-71%), and macrophages (95-99%), nor
the phagocytic indices for bacteria of monoblasts (20-30%), promonocytes (61—
75%), and macrophages (92-99%) show any change. For comparison, the func-
tional capacities of peritoneal macrophages were evaluated. The pinocytic activ-
ity of peritoneal macrophages is invariably high (100%) with each of the tested
concentrations of dextran sulphate. The same applies to the phagocytic index of
these cells for bacteria (98%) or latex particles (100%). Thus, the functional
capacities of the macrophages of the colonies are similar to those of macrophages
deriving directly from mice.

Receptors at the Surface of the Cells of Mononuclear Phagocyte and Granulo-
cyte Colonies. The cells of mononuclear phagocyte and granulocyte colonies
also differ with respect to the various receptors present at the cell surface. When
incubated at 20°C in the presence of IgG-coated red cells almost all of the
immature and mature cells of the mononuclear phagocyte colonies form rosettes
comprising a few red cells around the monoblast, more red cells around the
promonocyte, and numerous red cells around the macrophage. If after the
rosette formation the cultures are further incubated at 37°C, the red cells are
phagocytized by the mononuclear phagocytes. In the granulocyte colonies only a
few of the cells form rosettes with only a few red cells, and phagocytosis of the
red cells does not occur (Table VI). Cells of mononuclear phagocyte and granulo-
cyte colonies incubated with IgM-coated red cells do not form rosettes, and
phagocytosis is absent (Table V).

A receptor for C was demonstrated on the cells of mononuclear phagocyte
colonies by incubation at 4°C with IgM- and C-coated red cells. Both the
percentage of positive cells and the number of red cells surrounding the mononu-
clear phagocytes increase markedly in the sequence of monoblast, promonocyte,
and macrophage. Phagocytosis (tested at 37°C) is seen only in a small percentage
of the cells. The cells of the granulocyte colonies do not form rosettes or ingest C-
coated red cells (Table VI).

To permit comparison, the receptors at the surface of peritoneal macrophages
were investigated. All of these cells (100%) are able to form rosettes and ingest
IgG-coated red cells. With IgM-coated red cells neither rosette formation nor
phagocytosis are seen. Almost all of these cells (89%) form rosettes with C-coated
red cells, but ingestion is seen only in a small percentage (7%). The conclusion
may be drawn that the macrophages of the colonies exhibit the same surface
receptors as the macrophages obtained directly from mice. The cells of the
mononuclear phagocyte colonies do not show rosette formation or phagocytosis
when uncoated red cells or red cells preincubated with normal mouse serum are
used instead of the antiserum.

(*HIThymidine Labeling of the Cells of Mononuclear Phagocyte Colo-
nies. Since the colonies develop by proliferation, as shown by the observation
of individual cells and colonies during incubation, it was necessary to determine
which of the three cell types has the capacity to divide. Therefore, [*'H]thymidine
was added to the cultures for a period of 8 h. Since this period is longer than the
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TaBLE VI
Receptors at the Surface of Cells of Mononuclear Phagocyte and Granulocyte Colonies*

Mononuclear phagocytes

Granulocytic
cells
Monoblasts  Promonocytes Macrophages
% % % %
IgG receptors
Rosette formation 94 99 100 9
Phagocytosis 96 100 100 0
IgM receptors
Rosette formation 0 0 0 0
Complement receptors
Rosette formation 16 39 75 0
Phagocytosis 0 2 6 0

* Percentage of positive cells determined on 4th day of incubation.

sum of the duration of the G2, M, and G1 phases (27), all proliferating cells will
have time to synthesize DNA during the incubation with [*HJthymidine and
thus be labeled in the autoradiographs (Fig. 6).

The results show that the labeling indices of monoblasts and promonocytes
are high, indicating that almost all of these cells divide (Table VII}. The labeling
indices of the macrophages are low, indicating low proliferative activity; how-
ever, most probably the labeled macrophages are derived from divided labeled
promonocytes.

Colony Formation by Promonocytes and Monoblasts. After the preceding
experiments, which showed that both the monoblast and the promonocyte are
proliferating cells, an attempt was made to determine whether these cells give
rise to mononuclear phagocyte colonies.

First, promonocytes obtained directly from the bone marrow were investi-
gated. Use was made of 6-h cultures, which permit selection of promonocytes
and monocytes on the glass surface of the cover slip (13); monoblasts cannot be
recognized among this population of mononuclear phagocytes. A suspension of
about 1 x 10° nucleated bone marrow cells was incubated in a Leighton tube
with a flying cover slip in the presence of conditioned medium. After 2 h of
incubation the cover slip was vigorously washed, reincubated for 4 h, washed
again, and then incubated for a period of 4 days. Only an occasional mononu-
clear phagocyte colony developed from the glass-adherent cells (a mean of 30
colonies per cover slip in three experiments). The nonadherent cells, obtained
after the 2-h and 6-h incubations and replated in fresh Leighton tubes, gave rise
to many granulocyte and mononuclear phagocyte colonies.

Since after 6 h of incubation each cover slip carried 2,000-4,000 promonocytes
(2) and during the next 4 days of incubation only a small number of mononuclear
phagocyte colonies (about 1 per 100 promonocytes) developed, it may be con-
cluded that promonocytes are not capable of forming colonies. Furthermore,
culture of supernates showed that the cells initiating the mononuclear phago-
cyte colonies adhere less firmly to the glass surface than do the promonocytes.
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TasLE VII
Labeling of Cells of Mononuclear Phagocyte Colonies*™

1
Duration of Labeled cells

incubation Monoblasts Promonocytes Macrophages
days % % %
4 92 88 22

* Incubated for 8 h at 37°C in medium containing 0.1 #Ci/ml [*H]thymidine.

Next, the monoblast, the earliest and most immature cell recognized in the
mononuclear phagocyte colony, was investigated. Cells of well-established colo-
nies, immersed in Dulbecco’s modified Eagle’s medium, were detached from the
cover slip by vigorous shaking of the Leighton tube. This was done after 4 days
of incubation, because at that time all colony-forming cells are stimulated and
have given rise to a progeny of at least four cells. The resulting cell suspension,
studied in cytocentrifuge preparations, consists of many granulocytic cells and a
number of immature mononuclear phagocytes (monoblasts and promonocytes).

When such cell suspensions are reincubated in the presence of conditioned
medium in fresh Leighton tubes, numerous granulocyte and mononuclear phago-
cyte colonies develop. These secondary cultures did not show mixed colonies
either. Since the preceding experiments showed that promonocytes do not form
colonies in vitro, the most plausible conclusion seems to be that monoblasts
initiated the mononuclear phagocyte colonies in the secondary cultures.

Discussion

The liquid culture technique described here is particularly suitable and
reliable for the study of mononuclear phagocytes, because the cells of the
mononuclear phagocyte colonies adhere to the cover slip and are therefore
directly accessible for characterization. Since cells differing in maturity can be
present at the same time in the same colony, this technique also provides a
mean to study the immature cells of the mononuclear phagocyte cell line.

Of the three types of cells distinguished in the mononuclear phagocyte colo-
nies, two have already been identified and characterized, namely the macro-
phage and the promonocyte; the third, a more immature type of cell, is here
called the monoblast. Macrophages, promonocytes, and a more immature type of
cell were also observed in an electron-microscopic study of mononuclear phago-
cyte colonies, in which occasional monocytes were also seen.? These three types
of cells can be recognized throughout the incubation period, each exhibiting a
typical and consistent set of properties, which justifies the distinction of three
types of mononuclear phagocyte.

The macrophage is the most mature cell with a relatively low [*Hlthymidine-

* Fedorko, M. E., and R. van Furth. 1975. Ultrastructure of mouse mononuclear phagocytes in
bone marrow colonies grown in vitro. Manuscript submitted for publication.
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labeling index (22-33%). Most probably the macrophages do not synthesize DNA
and labeled macrophages are cells originating from promonocytes which are
labeled and have divided during the 8 h incubation with [3H]thymidine. This cell
is extremely elongated on the glass surface and its functional capacities are
highly developed. In all of these respects and in their cytochemical characteris-
tics the macrophages formed in mononuclear phagocyte colonies are similar to
the macrophages isolated directly from animals (1, 35, 36, 41, 46-49).

The promonocyte is a less mature cell with a high labeling index after
incubation with [3H]thymidine (82-88%), indicating that almost all of these cells
divide. The promonocyte shows less stretching than the macrophage. Its cyto-
chemical characteristics and functional capacities are intermediate between
those of the macrophage and the monoblast. Almost all of the characteristics of
the promonocytes originating in mononuclear phagocyte colonies are similar to
those seen in direct bone marrow preparations and 6-h cultures (2, 13, 14, and
our unpublished observations). The difference in the intensity of peroxidase
staining between promonocytes in colonies and in vivo might be based on scanty
formation of the enzyme in vitro or continuous degranulation in the culture due
to fusion of pinosomes with primary lysosomes, which would lead to fewer per-
oxidase-positive granules per cell. It is not yet explained why 50% of the colonies
lack any demonstrable peroxidase activity. In an electron microscope study also,
only a few peroxidase-positive granules were found in the promonocytes; some
cells were entirely negative.?

The monoblast is the most immature cell seen in the mononuclear phagocyte
colony. Its high labeling index with [(H]thymidine (92-96%) indicates active
proliferation. This round cell, which is smaller than the promonocyte, has
nuclear chromatin with a fine dense structure. The almost round nucleus is
surrounded by a small rim of strongly basophilic cytoplasm. Although the cell
surface already shows the slight ruffling typical for mononuclear phagocytes, no
pseudopods are present. The monoblast contains all of the enzymes (e.g. ester-
ase, peroxidase, and lysozyme) shown to occur in the promonocyte and macro-
phage of the colony. C receptors are present in a small percentage of the
monoblasts and IgG-receptors in almost all of them, but the number of receptor
sites per cell is lower than in the other two cell types. The functional capacities
of the monoblasts are also less developed than those of the promonocytes and
macrophages. Although almost all monoblasts phagocytize antibody-coated red
cells, only a small percentage phagocytizes bacteria or latex particles. Pinocyto-
sis is also only seen in a small number of these cells, but the pinocytic index
increases with increasing concentrations of dextran sulphate, which is known to
stimulate pinocytosis (46).

The characteristics described above indicate a cell sequence monoblast-pro-
monocyte-macrophage with signs of increasing maturity in this order. The
distribution percentages of the three cell types during incubation are also
indicative: in the first few days mononuclear phagocyte colonies consist almost
entirely of monoblasts; later, promonocytes and macrophages appear; and still
later, macrophages are the predominant cell type of the colonies, which shows
that the monoblast is a younger cell type than the promonocyte (see Table III).
This cell sequence is confirmed by the change in the cellular composition of
individual colonies studied by phase-contrast microscopy: initially, the mononu-
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clear phagocyte colony consists solely of monoblasts; promonocytes always
appear later in the development of the colony (27). On this basis it may be
concluded that the monoblast is the precursor of the promonocyte.

With respect to the question of which cell initiates the mononuclear phagocyte
colony, there are three possibilities: either of the two dividing cells of the colony
(the promonocyte and the monoblast) or a cell still more immature than the
monoblast. It has been demonstrated that promonocytes selected in 6-h cultures
do not give rise to colonies. Furthermore, transfer experiments with cells
obtained from 4-day old cultures provided indications for the origin of mononu-
clear phagocyte colonies from monoblasts. The third possibility cannot be ex-
cluded but seems unlikely, since a cell type more immature than the mono-
blast—conceivably its precursor—has not been recognized at any stage of the
developing mononuclear phagocyte colony. The supposition of its existence
would imply a precursor of the monoblast that initiates the colony, does not
multiply itself, but gives rise directly to monoblasts, which then proliferate for a
number of cell generations (27). On the basis of these considerations, although
definite proof is still lacking, we tend to conclude that the monoblast initiates
the mononuclear phagocyte colony.

Cline and Sumner have described a blast cell preceding the promonocyte (50).
This blast appears to be quite a different type of cell from the monoblast
described here, since it is strongly peroxidase positive, lacks IgG receptors at the
cell surface, and is unable to phagocytize, properties which our studies show to
be characteristic for the cells of granulocyte colonies. However, these authors
aspirated the cells from a suspension culture, which means that the kind of
colony to which these blasts originally belonged is unknown. This uncertainty is
avoided by the present technique, which provides a means to study the mono-
blast in the intact colony made up of immature and mature cells.

Besides the mononuclear phagocyte colonies also colonies of granulocytic cells
are formed in these liquid cultures. A characteristic feature of these colonies is
the tight structure. In addition to the typical morphology of the granulocytic
cells, they are strongly positive for peroxidase and positive for esterase with N-
acetyl pL-alanyl a-naphthylester as substrate. However, they are unable to
pinocytize dextran sulphate and only a minority phagocytizes bacteria, latex
particles, or antibody-coated red cells. IgG and C receptors could not be demon-
strated at the surface of granulocytic cells, which are known to have a variable
reactivity to antibody-coated red cells (51). On the basis of these criteria it is
easy to distinguish between granulocyte and mononuclear phagocyte colonies.
Mixed colonies consisting of both mononuclear phagocytes and granulocytic cells
were never observed, nor colonies with transitional cell forms showing character-
istics of both cell lines as described by Metcalf (52). This means that in the liquid
culture system the colony-forming cell is already committed to form either
granulocytic cells or mononuclear phagocytes. No evidence was found indicating
the existence of a common progenitor of granulocytes and mononuclear phago-
cytes, which some authors suggest to be the myeloblast or the (pro)myelocyte
(16-18). In their studies, however, both kinds of cell were distinguished mainly
on the basis of morphological criteria.

From the results of the present study the conclusion may be drawn that the
most immature cells of the mononuclear phagocyte and granulocyte cell lines
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thus far identified, namely the monoblast and the myeloblast, have quite
different characteristics. No evidence was found that mononuclear phagocytes
derive at any stage from granulocytic cells.

Summary

A liquid culture technique for growing mononuclear phagocyte colonies on
a glass surface is described. This useful and reliable technique made it possible
to study immature mononuclear phagocytes.

In the mononuclear phagocyte colonies the cells grow separate from each
other in a single layer. Three types of cells are recognized in these colonies,
namely nondividing macrophages, and proliferating promonocytes and mono-
blasts. The macrophage and the promonocyte exhibit the typical characteristics
previously demonstrated by the other methods, whereas the monoblast could
only be fully characterized with the present liquid culture method. This prolifer-
ating cell (labeling index with [*H]lthymidine, 92-96%) is almost round (diame-
ters, 10 X 12 um), has only a small rim of strongly basophilic cytoplasm, almost
devoid of granules, and shows a certain degree of ruffling of the cell surface. The
monoblast is positive for esterase with a-naphthyl butyrate as substrate (91%),
for peroxidase (78% in the peroxidase-positive colonies), and lysozyme (43%).
The monoblast is able to pinocytize dextran sulphate (15-20%) and to phagocy-
tize opsonized bacteria (20-30%), latex particles (47%), and IgG-coated red cells
(96%). 1gG receptors (94%) and complement receptors (16%) are present at the
cell surface. In these respects the monoblast has the typical characteristics of the
mononuclear phagocytes, but its properties show it to be a more immature cell
type than the promonocyte. On the basis of these criteria and the sequence of
appearance of the different cell types during incubation and during the develop-
ment of the individual mononuclear phagocyte colony, monoblasts being present
before promonocytes appear in the colony, it is concluded that the monoblast is
the precursor of the promonocyte.

In these cultures granulocyte colonies are also formed, consisting of myelo-
blasts, (pro)myelocytes, stabs, and polymorphonuclear neutrophils. Besides the
typically tight structure of this kind of colony, the granulocytic cells themselves
are quite distinct from the mononuclear phagocytes by their morphology, cyto-
chemical characteristics (e.g. all negative for esterase with a-naphthyl butyr-
ate, but 96% positive with N-acetyl pr-alanyl 1-naphthylester), functional char-
acteristics (pinocytic index 13-21%; phagocytic index; for opsonized bacteria 15—
36%, for latex particles 10%, and for IgG-coated red cells 0%), and their very
small number of IgG receptors and lack of complement receptors. On the basis of
these criteria, these granulocytic cells are easily distinguished from the imma-
ture cells of the mononuclear phagocyte colonies.

The present study confirms the conclusion that the mononuclear phagocytes
are a separate cell line, quite distinct from the granulocytic series, since even
the most immature cells so far identified—the monoblast and the myeloblast—
have quite different characteristics.

Received for publication 26 June 1975.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

THEO J. L. M. GOUD, CORINE SCHOTTE, AND RALPH van FURTH 1197

References

. Van Furth, R., and Z. A. Cohn. 1968. The origin and kinetics of mononuclear

phagocytes. J. Exp. Med. 128:415.

. Van Furth, R., and M. M. C. Diesselhoff-den Dulk. 1970. The kinetics of promono-

cytes and monocytes in the bone marrow. J. Exp. Med. 132:813.

. Ebert, R. H., and H. W. Florey. 1939. Extravascular development of monocytes

observed in vivo. Br. J. Exp. Pathol. 20:342.

. Balner, H. 1963. Identification of peritoneal macrophages in mouse radiation chi-

meras. Transplantation (Baltimore). 1:217.

. Volkman, A., and J. L. Gowans. 1965. The production of macrophages in the rat. Br.

J. Exp. Pathol. 46:50.

. Volkman, A., and J. L. Gowans, 1965b. The origin of macrophages from bone marrow

in the rat. Br. J. Exp. Pathol. 46:62.

. Volkman, A. 1966. The origin and turnover of mononuclear cells in peritoneal

exudates in rats. J. Exp. Med. 124:241.

. Spector, W. G., M. N. I. Walters, and D. A. Willoughby. 1965. The origin of the

mononuclear cells in inflammatory exudates induced by fibrinogen. J. Pathol. Bacte-
riol. 90:181.

. Spector, W. G., and E. Coote. 1965. Differentially labelled blood cells in the reaction

to paraffin oil. JJ. Pathol. Bacteriol. 90:589.

Van Furth, R., M. M. C. Diesselhoff-den Dulk, and H. Mattie. 1973. Quantitative
study on the production and kinetics of mononuclear phagocytes during an acute
inflammatory reaction. J. Exp. Med. 138:1314.

Spector, W. G., and G. B. Ryan. 1970. The mononuclear phagocyte in inflammation.
In Mononuclear Phagocytes. R. van Furth, editor. Blackwell Scientific Publications
Ltd., Oxford, England. 219.

North, R. J. 1969. The mitotic potential of fixed phagocytes in the liver as revealed
during the development of cellular immunity. . Exp. Med. 130:315.

Van Furth, R., J. G. Hirsch, and M. E. Fedorko. 1970. Morphology and peroxidase
cytochemistry of mouse promonocytes, monocytes, and macrophages. J. Exp. Med.
132:794.

Nichols, B. A., and D. F. Bainton. 1975. Ultrastructure and cytochemistry of mononu-
clear phagocytes. In Mononuclear Phagocytes in Immunity, Infection, and Pathol-
ogy. R. van Furth, editor. Blackwell Scientific Publications Ltd., Oxford, England.
17.

Meuret, G. 1972. Monozytopoese und Kinetik der Blutmonozyten beim Menschen.
Blut. 24:3317.

Leder, L. D. 1967. The origin of blood monocytes and macrophages. Blut. 16:86.
Warner, N. L., M. A. S. Moore, and D. Metcalf. 1969. A transplantable myelomonocy-
tic leukemia in BALB/c mice: cytology, karyotype and muramidase content. J. Na#l.
Cancer Inst. 43:963.

Metcalf, D. 1971. Transformation of granulocytes to macrophages in bone marrow
colonies in vitro. J. Cell. Physiol. 77:271.

Rabinovitch, M. 1968. Phagocytosis: the engulfment stage. Semin. Hematol. 5:134.
Cohn, Z. A. 1968. The structure and function of monocytes and macrophages. Adv.
Immunol. 9:163.

Bradley, T. R., and D. Metcalf. 1966. The growth of mouse bone marrow cells in vitro.
Aust. J. Exp. Biol. Med. Sci. 44:287.

Pluznik, D. H., and L. Sachs. 1965. The cloning of normal mast cells in tissue culture.
J. Cell. Physiol. 66:319.



1198 IDENTIFICATION OF THE MONOBLAST

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

317.

38.

39.

40.

41.

42.

43.

44,

Worton, R. G., E. A. McCulloch, and J. E. Till. 1969. Physical separation of hemo-
poietic stem cells from cells forming colonies in culture. J. Cell. Physiol. 74:171.
Ichikawa, Y., D. H. Pluznik, and L. Sachs. 1966. In vitro control of the development
of macrophage and granulocyte colonies. Proc. Natl. Acad. Sci. U. S. A. 56:488.
Robinson, W. A., T. R. Bradley, and D. Metcalf. 1967. Effect of whole body irradiation
on colony production by bone marrow cells in vitro. Proc. Soc. Exp. Biol. Med.
125:388.

Senn, J. S., and E. A. McCulloch. 1970. Radiation sensitivity of human bone marrow
cells measured by a cell culture method. Blood. 35:56.

Goud, Th. J. L. M., and R. van Furth. 1975. Proliferative characteristics of mono-
blasts grown in vitro. J. Exp. Med. 142:1200.

Kaplow, L. S. 1965. Simplified myeloperoxidase stain using benzidine dihydrochlo-
ride. Blood. 26:215.

Ornstein, L., and H. Ansley. 1975. Cytochemical differentiation of white blood cells: a
cell-by-cell arbitration of morphological judgments. Am. J. Clin. Pathol. In press.
Ansley, H., and L. Ornstein. 1970. Enzyme histochemistry and differential white cell
counts on the Technicon Hemalog D. Adv. Automated Anal. 1:5.

Ornstein, L., A. Janoff, F. Sweetman, and H. Ansley. 1973. Histochemical demonstra-
tion of an elastase-like human neutrophil esterase. J. Histochem. Cytochem. 21:411.
Barka, T., and P. J. Anderson. 1962. Histochemical methods for acid phosphatase
using hexazonium pararosanilin as coupler. J. Histochem. Cytochem. 10:741.
Hayashi, M., Y. Nakajima, and W. H. Fishman. 1964. The cytologic demonstration of
B-glucuronidase employing naphthol AS-BI glucuronide and hexazonium pararosani-
lin; a preliminary report. J. Histochem. Cytochem. 12:293.

Lorbacher, P., L. T. Yam, and W. J. Mitus. 1967. Cytochemical demonstration of -
glucuronidase activity in blood and bone marrow cells. J. Histochem. Cytochem.
15:680.

Glynn, A. A., and R. Parkman. 1964. Studies with an antibody to rat lysozyme.
Immunology. 7:724.

McClelland, D. B. L., R. F. M. Lai A Fat, and R. van Furth. 1975. Synthesis of
lysozyme in vitro by mouse and human mononuclear phagocytes. In Mononuclear
Phagocytes in Immunity, Infection, and Pathology. R. van Furth, editor. Blackwell
Scientific Publications Ltd., Oxford, England. 475.

Gordon, S. 1975. The secretion of lysozyme and a plasminogen activator by mononu-
clear phagocytes. In Mononuclear Phagocytes in Immunity, Infection, and Pathol-
ogy. R. van Furth, editor. Blackwell Scientific Publication Ltd., Oxford, England.
463.

Gordon, S., and Z. A. Cohn. 1970. Macrophage-melanocyte heterokaryons. 1. Prepara-
tion and properties. J. Exp. Med. 131:981.

Uhr, J. W. 1965. Passive sensitization of lymphocytes and macrophages by antigen-
antibody complexes. Proc. Natl. Acad. Sci. 54:1599.

Gordon, S., and Z. A. Cohn. 1971. Macrophage-melanoma cell heterokaryons. IV.
Unmasking the macrophage-specific membrane receptor. J. Exp. Med. 134:947.
Cohn, Z. A., and B. Benson. 1965. The differentiation of mononuclear phagocytes.
Morphology, cytochemistry, and biochemistry. /. Exp. Med. 121:153.

Graham, R. C., and M. J. Karnovsky. 1966. The early stages of absorption of injected
horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural
cytochemistry by a new technique. J. Histochem. Cytochem. 14:291.

Novikoff, A. B., and S. Goldfischer. 1969. Visualisation of peroxisomes (microbodies)
and mitochondria with diaminobenzidine. J. Histochem. Cytochem. 17:675.
Sheehan, H. L., and G. W. Storey. 1947. An improved method of staining leukocyte
granules with Sudan Black. J. Pathol. Bacteriol. 59:336.



45.

46.

47.

48.

49.

50.

51.

52.

THEO J. L. M. GOUD, CORINE SCHOTTE, AND RALPH van FURTH 1199

Renz, M., A. D. Nicol, and R. A. Harkness. 1969. Drugs as inhibitors of catalase
and peroxidase. In Host Resistance to Commensal Bacteria. I. T. MacPhee, editor.
Churchill Livingstone, Edinburgh, Scotland. 246.

Cohn, Z. A. and E. Parks. 1967. The regulation of pinocytosis in mouse macrophages.
I1. Factors inducing vesicle formation. J. Exp. Med. 125:213.

Ohta, H., O. Kamiya, and H. Nagase. 1971. Blood monocytes and macrophages.
Kinetic study with radio-isotopes and cytochemical methods. Proc. Jpn. Soc. Res.
11:98.

Lay, W. H., and V. Nussenzweig. 1968. Receptors for complement on leukocytes. J.
Exp. Med. 128:991.

Braunsteiner, H., and F. Schmalzl. 1970. Cytochemistry of monocytes and macro-
phages. In Mononuclear Phagocytes R. van Furth, editor. Blackwell. Oxford, Eng-
land. 62.

Cline, M. J., and M. A. Sumner. 1972. Bone marrow macrophage precursors. I. Some
functional characteristics of the early cells of the mouse macrophage series. Blood.
40:62.

Messner, R. P., and J. Jelinek. 1970. Receptors for human yG globulin on human
neutrophils. J. Clin. Invest. 49:2165.

Metcalf, D. 1969. Studies on colony formation in vitro by mouse bone marrow cells. oJ.
Cell. Physiol. 74:323.



