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A B S T R A C T   

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the contagious coro-
navirus disease 2019 (COVID-19) which was first identified in Wuhan, China, in December 2019. Around the 
world, many researchers focused their research on identifying inhibitors against the druggable SARS-CoV-2 
targets. The reported genomic mutations have a direct effect on the receptor-binding domain (RBD), which in-
teracts with host angiotensin-converting enzyme 2 (ACE-2) for viral cell entry. These mutations, some of which 
are variants of concern (VOC), lead to increased morbidity and mortality rates. The newest variants including 
B.1.617.2 (Delta), AY.1 (Delta plus), and C.37 (Lambda) were considered in this study. Thus, an exhaustive 
structure-based virtual screening of a ligand library (in which FDA approved drugs are also present) using the 
drug-likeness screening, molecular docking, ADMET profiling was performed followed by molecular dynamics 
(MD) simulation, and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculation to identify 
compounds or drugs can be repurposed for inhibiting the wild type, Delta, Delta plus and Lambda variants of 
RBD of the spike protein. Based on the virtual screening steps, two FDA approved drugs, Atovaquone (atv) and 
Praziquantel (prz), were selected and repurposed as the best candidates of SARS-CoV-2 RBD inhibitors. Molec-
ular docking results display that both atv and prz contribute in different interaction with binding site residues 
(Gln493, Asn501 and Gly502 in the hydrogen bond formation, Phe490 and Tyr505 in the π- π stacking and 
Tyr449, Ser494, and Phe497 in the vdW interactions) in the wild type, Delta, Delta plus and Lambda variants of 
RBD of the spike protein. MD simulations revealed that among the eight studied complexes, the wild type-atv and 
Delta-prz complexes have the most structural stability over the simulation time. Furthermore, MM-PBSA 
calculation showed that in the atv containing complexes, highest binding affinity is related to the wild type- 
atv complex and in the prz containing complexes, it is related to the Delta-prz complex. The validation of 
docking results was done by comparing with experimental data (heparin in complex with wild type and Delta 
variants). Also, comparison of the obtained results with the result of simulation of the k22 with the studied 
proteins showed that atv and prz are suitable inhibitors for these proteins, especially wild type t and Delta 
variant, respectively. Thus, we found that atv and prz are the best candidate for inhibition of wild type and Delta 
variant of the spike protein. Also, atv can be an appropriate inhibitor for the Lambda variant. Obtained in silico 
results may help the development of new anti-COVID-19 drugs.   

1. Introduction 

The human population of the 21st century was attacked by a large- 
scale epidemic of highly pathogenic viruses such as a severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). In December 2019, 
the first case has been manifested in Wuhan, Hubei province, China, and 
since then, it has spread across the world with fever, dry cough, dysp-
noea, diarrhea, and typical sore throat symptoms [1]. As of the last 
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update on 25 February 2022, a total of 432,176,247 confirmed cases 
have been reported worldwide, with 5,949,044 cases having lost their 
lives [2]. Since it had highly interpersonal transmission, the World 
Health Organization (WHO) proclaimed the COVID-19 as a public health 
emergency of international concern (PHEIC) on January 30, 2020, and a 
pandemic on March 11, 2020 [3]. 

In the past two decades, Coronaviruses were common pathogens 
highly infectious for humans like the severe acute respiratory syndrome 
(SARS-CoV) in 2002 and the Middle East respiratory syndrome (MERS- 
CoV) in 2012. SARS-CoV-2 has been identified with 79.5% sequence 
similarity and etiological factors to SARS-CoV [4,5]. However, 
SARS-CoV-2 is more infectious than the other two coronaviruses. They 
are the members of the subfamily Coronavirinae in the family of Coro-
naviridae of the order Nidovirales viruses and contain a positive-sense 
single-stranded RNA(+ssRNA) (~30 kb in size), which includes 23 pu-
tative open reading frames (ORFs) [4–6]. ORFs encode at least four main 
structural proteins; Spike (S), Envelope (E), Membrane (M), and 
Nucleocapsid (N) proteins, along with 16 non-structural proteins, and 
some ORFs also encode an additional hemagglutinin-esterase (HE) 
protein [5,7]. A large number of spike glycoprotein that forms trimers on 
the surface of the virion, belongs to class-I viral fusion proteins and 
cleaved into the S1 and S2 subunits at the boundary between them via a 
furin-like cleavage site. Hence the fusion cell membrane and the viral 
genome’s entry into the host cell facilitated [8]. The S1 subunit consists 
of an N-terminal domain (NTD) and a C-terminal domain (CTD), 
whereas the S2 subunit includes a fusion peptide (FP), heptad repeats 
(HR1 and HR2), and transmembrane helix (TM), and this subunit is 
responsible for the cellular membrane fusion [9]. The receptor-binding 
domain (RBD) is located on the S1 subunit. It contains a core and a main 
functional receptor-binding motif (RBM) which specifically interacts 
with the host angiotensin-converting enzyme 2 (ACE2) receptor, medi-
ating viral cell entry [10]. Recent studies have indicated that RBD 
contains essential amino acid residues (Phe486, Asn487, Ala475, 
Glu484, Leu455, Gln493, Tyr453, Ser494, Tyr449, Gln498, Gly496, 
Gly446, Asn501, Tyr505, Lys417, Phe456, Tyr489, Tyr473, Pro462, 
Tyr475, Tyr442, Gly488, Thr486, Thr500, Gln474, Gly476, Gly502, and 
Gln486) which interact with the interfacial residues of ACE2 (Gln24, 
Ile21, Met82, Tyr83, Ala80, Leu79, Phe28, Phe72, Thr27, Asp30, Asp38, 
Glu35, Lys353, Phe32, Lys31, Leu45, Asp353, Tyr4, His34, Tyr41, and 
phe79) [11–13]. ACE2 receptors are present on the epithelial cell tissues 
of the lungs, heart, kidneys, intestine, and bladder of the host organism. 
ACE2 was highly expressed on lung epithelial cells exactly, in the 
alveolar space [14]. In addition to the ACE2 receptor, the S protein is 
activated via protease activators like transmembrane serine 2 
(TMPRSS2), and lysosomal proteases near the junction cell entry [15, 
16]. 

Like other viruses, the SARS-CoV-2 also has mutational changes in 
the genomic sequence and thus structural and functional changes in the 
proteins. These proteins are the essential drug targets and play the 
leading role in the development of pathogenic resistance. Mutations 
make viruses more adaptive to cell receptors, which, in turn, increases 
mortality rates in humans [17]. Deadly mutations have been docu-
mented as the Variants of Concern (VOC) including; The Alpha variant 
B.1.1.7 originating in the UK and associated with the N501Y RBD mu-
tation, Beta variant B.1.351 was first coined in South Africa with the 
K417 N, E484K, and N501Y mutations in RBD, Gamma variant P.1 is one 
of Brazil’s detected variants with the E484K, K417T, and N501Y RBD 
mutations, Delta variant B.1.617.2 was first seen on October 2020 in 
India, and at last Omicron variant B.1.1.529 with vast number of mu-
tations. Meanwhile, WHO designated several Variants of Interest (VOI) 
like Lambda variant C.37 (originating in Peru), and Mu variant B.1.621 
(originating in Colombia) currently [18,19]. The Lambda variant, first 
seen in August 2020, however, was identified by the WHO in June 2021. 
It has multiple mutations and a new deletion (G75V, T76I, L452Q, 
F490S, D614G, T859 N, and Δ246-252(in the S protein. Between these 
substitutes, the L452Q and F490S are present in the spike RBD [19,20]. 

The Delta variant has three sub-lineages (B.1.617.1, B.1.617.2, and 
B.1.617.3) with T19R, G142D, Δ156–157, R158G, L452R, T478K, 
D614G, P681R, and D950 N spike mutations. The critical RBD sub-
stitutions are Leu at position 452 and Thr at position 478, being replaced 
by Arg and Lys, respectively. E484Q substitution is present in B.1.617.1 
and B.1.617.3 but not in B.1.617.2. Another variant AY.1 (Delta plus), 
has emerged with an additional RBD mutation Lys at position 417, being 
replaced by Asn, which is also present in the Beta variant [20,21]. In 
Fig. 1, the RBD mutations in B.1.617.2, AY.1, and C.37 could be 
observed. 

From the first days of the pandemic, several options for COVID-19 
therapy were considered. These include vaccines, monoclonal anti-
bodies, oligonucleotide-based therapies, peptides. 

Interferon therapies, and small molecules [22]. Many studies have 
reported the computational screening through molecular docking and 
structural dynamics techniques of natural molecules for various 
SARS-CoV-2 targets, such as nonstructural protein 1, 15, 16, RNA-de-
pendent RNA polymerase, and Spike protein [23–27]. However, most of 
the studies are based on in-silico repurposing techniques, from already 
approved substances such as anti-malarial, anticancer, antiviral, 
anti-inflammatory, etc. Since repurposing identification of drugs is an 
economical approach, and saves a lot of time [22,28–30]. For instance, a 
recent docking study exposed that the drugs Cytarabin, Raltitrexed, 
Tenofovir, Cidofovir, Fludarabine, and Lamivudine are possible in-
hibitors for the spike protein [30]. In other computational research 
studies, it was found that Atazanavir, Indinavir, Saquinavir, Lopinavir, 
Ritonavir, Ciluprevir, Glecaprevir, Viomycin, Bacampicillin, Remdesi-
vir, and Hydroxychloroquine can serve as inhibitors of the main protease 
[31,32]. Since up to now no definite anti COVID-19 treatment has been 
developed, pharmacological researches are still ongoing. 

The present study focuses on the exhaustive structure-based virtual 
screening method. We mean the word “exhaustive” in this paper, the 
comprehensiveness of the steps applied in our study. Because in this 
study, molecular docking, ADMET profiling and molecular dynamics 
simulation sub methods were used for doing virtual screening [33]. 
Through the physical and chemical principles of 553 various compounds 
was tried to obtain the best inhibitors against the wild-type and mutated 
RBD of the spike glycoprotein of SARS-CoV-2. The RBD of the B.1.617.2 
(Delta), AY.1 (Delta Plus), and C.37 (Lambda) variants were modeled as 
a receptor, and their interaction with ACE2 was noticed. Since different 
SARS-CoV-2 strains have different mutation patterns, it is important to 
understand their mutation impacts and infection changes accordingly. 
This work uses bioinformatics methods like drug-likeness prediction, 
molecular docking, ADMET profiling (Absorption, Distribution, Meta-
bolism, Excretion, and Toxicity), molecular dynamic (MD) simulations, 
and MM-PBSA (Molecular Mechanics-Poisson Boltzmann Surface Area). 
Five virtual screening steps were accomplished by selecting the appro-
priate compounds in Fig. 2. 

2. Materials and methods 

2.1. Library preparation 

A library containing 553 antiviral compounds derived from a 
collection of 700 molecules was selected for exploring novel antiviral 
agents against wild-type and mutated receptors. This database was 
expanded after our selection. In our structurally diverse collection, some 
compounds have been approved by the FDA, others target HCV protease, 
HIV protease, Integrase, Reverse Transcriptase, etc. (Available at 
https://www.selleckchem.com/screening/antiviral-compound-library. 
html). The SMILES and SDF format of the library were used in the 
following steps. 

2.2. Drug-likeness screening 

The first step of virtual screening used the SMILES format of the 
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library as the inputs of SwissADME (http://www.swissadme.ch) [34] 
and Molsoft L.L.C online analysis servers (https://molsoft.com/mprop/ 
). All of the 553 compounds were optimized based on Lipinski’s rule of 
five [35] and bioavailability score [36] in SwissADME analysis server 
and drug-likeness model score in Molsoft L.L.C. online tool. As per 
drug-likeness screening, molecular weight (MW), number of hydrogen 
bond acceptors (NHBA), number of hydrogen bond donors (NHBD), 
octanol-water partition coefficient (MolLogP), water solubility Log 
(MolLogS), molecular polar surface area (MolPSA) which is defined as 
the sum of surfaces of oxygens, nitrogens and attached hydrogens, mo-
lecular volume (MolVol), and drug-likeness model score were 
investigated. 

2.3. Receptor preparation and mutation 

The 3D crystal structure of the SARS-CoV-2 spike receptor-binding 
domain bound with ACE2 (PDB ID 6M0J) was attained from the RCSB 

Protein Data Bank website (https://www.rcsb.org/). Since the resolu-
tion of this structure is 2.45 Å with x-ray diffraction method detection, it 
is an appropriate choice. 6M0J contains two macromolecule chains. 
Angiotensin-converting enzyme 2 shows chain A with 603 sequence 
length, and chain B is the S1 subunit of spike protein and has 229 
sequence length. For pre-processing stage, first of all, chain A removed 
from a PDB file, and then based on AutoDock Vina documentation, 
release 1.2.0, native small molecules, redundant water molecules, and 
non-standard residues were deleted from the S1 subunit (chain B), 
however polar hydrogen atoms and Gasteiger charges [37] were added 
using UCSF Chimera 1.15 software [38]. Those residues of the RBD 
being in the interacting site of RBD-ACE2 were considered as active site 
and molecular docking grid box. NAG groups in the pdb file are located 
far from this interacting site, especially RBD residues. Thus, NAG groups 
were not considered. Another reason was that our goal was to repurpose 
drugs or compounds and not co-crystal molecules in pdb file. 

The dual point mutations of the Delta and Lambda variants and 

Fig. 1. The receptor-binding domain (RBD) mutations of SARS-CoV-2 in B.1.617.2 (Delta), AY.1 (Delta plus), and C.37 (Lambda) variants.  

Fig. 2. A schematic flow chart of virtual screening’s steps.  
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multiple point mutations of the Delta plus variant were produced on 
prepared proteins by changing the amino acids to the mutated one using 
UCSF Chimera 1.15 software. During each mutation by UCSF Chimera, 
the best rotamer with the most probability was selected. Also, after the 
mutation, two consecutive steps of energy minimization were performed 
using the steepest descent and conjugate gradient algorithms to remove 
bad contacts and clashes. Finally, four receptors (wild-type, Delta, Delta 
plus, and Lambda) were obtained. These four RBDs (wild-type and 
mutants) were entered into the next steps for computational molecular 
docking and molecular dynamic simulations. 

2.4. Molecular docking and validation 

In the second step of virtual screening, 242 selected compounds from 
the previous level, were be docked to receptors (wild-type, Delta, Delta 
plus, and Lambda). PyRx is open-source software [39] for multiple 
docking, which was used in this study. PyRx uses the AutoDock Vina 
algorithm [40] to evaluate the binding affinities with molecular dock-
ing. Four receptors with PDB format and 242 ligands with SDF format 
were used as an input for PyRx, and changing the formats in PDBQT 
were done through Open Babel. Before running, all of the ligands stay on 
the lowest energy level with 200 total minimization steps and UFF force 
field [41]. The interacting site of RBD-ACE2 was analyzed with UCSF 
Chimera 1.15 software and the grid box enclosed in this section. This 
grid box of 24-40-20 points with a grid spacing value of 1 Å was con-
structed and centered on the X = − 38.619, Y = 32.524, Z = 6.258 co-
ordination. Then the protocol was run at exhaustiveness value of 8 and 
set on the favorable binding free energy pose from the top eight poses 
were retained for all compounds. 

The docking validation was inspired by the Azza Hanif Harisna et al. 
study [42], which used decoy ligands similar to nelfinavir as a validator 
of the docking parameters. The decoy substances were gained from the 
DUD-E online server (http://dude.docking.org/) [43] and the docking 
parameters and process were just like the previously mentioned proto-
col. Also, to validate the in silico study (molecular docking and MD 
simulation), we found experimental data for the heparin in complexed 
with the wild type and Delta variants [44]. To this aim, the molecular 
docking as well as MD simulation of the wild type-heparin and 
delta-heparin complexes were performed. Only binding free energy re-
sults of wild type-heparin and delta-heparin complexes were reported in 
this study. 

2.5. ADMET profiling 

For 53 top compounds which showed the lowest dock score, ΔG <
− 7 kcal/mol or equal, using graph-based signature pkCSM online web 
server (http://biosig.unimelb.edu.au/pkcsm/) [45]. Since between 
these 53 molecules, 9 FDA approved drugs including: Imatinib, Bicte-
gravir, Dolutegravir, Raltegravir, Atovaquone, Cabotegravir, Cicleso-
nide, Aprepitant, and Praziquantel are available, ADME and toxicity 
analysis is not required. However, entire compounds were analyzed. 
SMILES format of the ligands uploaded to predict lipophilicity (LogP), 
surface area and five main different pharmacokinetic properties such as 
absorption, distribution, metabolism, excretion, and toxicity (ADMET). 
Absorption property includes caco-2 permeability, water-solubility, in-
testinal absorption (human), skin permeability, P-glycoprotein sub-
strate, P-glycoprotein I and II inhibitors; distribution: steady-state 
volume of distribution (VDss), fraction unbound (human), blood-brain 
barrier (BBB) permeability, central nervous system (CNS) perme-
ability; metabolism: CYP2D6 and CYP3A4 substrates, CYP1A2, 
CYP2C19, CYP2C9, CYP2D6, and CYP3A4 inhibitors; excretion: total 
clearance, and renal OCT2 substrate; toxicity: AMES toxicity, maximum 
human tolerated dose, hERG I and II inhibitors, oral rat acute toxicity 
(LD50), oral rat chronic toxicity (LOAEL), hepatotoxicity, skin sensiti-
zation, T. pyriformis, and minnow toxicity. 

2.6. Molecular dynamics simulation 

The biomolecular software package GROMACS 2016 [46] was 
applied for the molecular dynamics simulations of the protein–ligand 
complexes. To this aim, the leapfrog integrator in a 2 fs time step was 
considered. MD simulation is a useful method for confirming molecular 
docking results and investigating the system dynamics. The gromacs 
topology files for protein and ligands were obtained using the 
AMBER99SB-ILDN [47] force field and GAFF [48] (in the Antechamber 
module of Amber Tools 14 [49]). AM1-BCC charges [50] were assigned 
to the ligand using the antechamber module from the Amber Tools 14. 
Each protein-ligand complex obtained from the best pose of molecular 
docking was placed in the center of a cubic box, with 1 nm distance to 
the edges, filled with a TIP3P model [51] of water molecules. The 
neutralization of the systems was done by the addition of a suitable 
number of sodium and chloride ions. Periodic boundary conditions 
(PBC) [52] in all three directions and the LINCS algorithm [53] for all 
bonds involving hydrogen atoms were considered. For long-range 
electrostatic interactions, Particle Mesh Ewald (PME) [54] was applied 
while for short-range electrostatics and van der Waals interactions, a cut 
off distance of 1.2 nm was used. The prepared systems were energy 
minimized using the steepest descent and conjugate gradient methods 
with position restraining on heavy atoms of protein and ligand and with 
force constant 1000 kJ mol− 1 nm− . Afterward, two short equilibration 
steps (500 ps) in NVT and NPT ensembles were performed to relax the 
minimized systems. Temperature and pressure during the simulation 
were set to 310 K and 1 bar regulated by V-rescale thermostat [55] and 
Parrinello-Rahman barostat [56], respectively. Finally, a 120 ns long 
production run was performed in the NPT ensemble and the trajectory 
snapshots were saved every 15 ps for the analysis. The structural anal-
ysis such as root mean square deviation (RMSD), radius of gyration (Rg), 
root mean square fluctuation (RMSF) and hydrogen bonds were done 
using different GROMCAS modules. The molecular graphics of the 
simulated trajectory were created using Pymol software [57]. In this 
study, eight MD simulations were performed. For simplicity, the com-
plex of the wild-type and mutated (Delta, Delta plus, and Lambda) RBD 
of the spike protein with Atovaquone and Praziquantel compounds were 
named as wt-atv, dlt-atv, pls-atv, lmb-atv, wt-prz, dlt-prz, pls-prz, 
lmb-prz, respectively. We consider a viral spike protein inhibitor, K22 
[58], as a reference molecule and performed molecular docking and MD 
simulation with the wild type, Delta, Delta plus and Lambda variants of 
RBD of the spike protein to compare the results. 

2.7. Binding free energy calculation 

The stability of protein-ligand complexes was investigated by 
calculating the binding free energy using Molecular Mechanics-Poisson- 
Boltzmann Surface Area (MM-PBSA) approach [59]. In this work, to 
compute the binding free energy, g_mmpbsa tool [60] was applied 
which is a widely used method for calculating binding free energy of a 
ligand to the complex [61,62]. ΔGbind of a protein-ligand complex can 
be calculated as follows:  

ΔGbind = ΔEMM + ΔGsolvation                                                     (1)  

ΔEMM = ΔEele + ΔEvdW                                                              (2)  

ΔGsolvation = ΔGpol + ΔGnon-pol                                                         (3)  

ΔGnon-pol = γA + b                                                                          (4) 

ΔEMM represents the molecular mechanical average energy. 
ΔGsolvation is the change of free energy in the solvation process. ΔGpol 
describes the free energy changes of polar solvation calculated by 
Poisson Boltzmann equation, and ΔGnon-pol represents the free energy 
changes of non-polar solvation due to ligand binding to the protein 
calculated via SASA (Solvent Accessible Surface Area). γ represents the 
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coefficient of surface tension of the solvent, A represents SASA and b 
represents the fitting parameter. 

3. Result and discussion 

3.1. Drug-likeness screening 

For the first sorting of 553 compounds, these were screened via 
Lipinski’s rule of five, bioavailability score, and drug-likeness model 
score using online analysis server SwissADME and Molsoft L.L.C. Ac-
cording to the rule of five (RO5), the molecular weight (MW) should be 
less than 500 g/mol, the lipophilicity denoted by MLogP value should be 
lower than 4.15 or equal, the number of Hydrogen bond donors (NH or 
OH) and acceptors (N or O) should be less than 5 and 10 or equal, 
respectively. Compounds with two or more violations of the Lipinski’s 
criteria were removed, and only ligands with yes; 0 violation or yes; 1 
violation, were reported in Supplementary data, Table S1. Another 
separator parameter is Abbott bioavailability score (BS) which was 
category into the three percent of absorption ranges: 0.11, 0.17, 0.55, 
0.56, and 0.85. These categories identify the range of drug absorption in 
human body. 0.11% or 0.17% is the lowest one, 0.55% or 0.56% is the 
average and 0.85% is the highest mode. Probability, medium to the high 
percentage of absorption is more favorable. In Supplementary data, 
Table S1, 0.55 or 0.56 and 0.85% of absorption were considered. To 
predict an overall drug-likeness model score (DLS) should evaluate; 
molecular weight (MW (g/mol)), number of hydrogen bond acceptors 
(NHBA), number of hydrogen bond donors (NHBD), MolLogP, MolLogS 
(Mol/L), MolPSA (A2), MolVol (A3), pKa of the most basic or acidic 
group, the blood-brain barrier (BBB) score, and the number of stereo 
centers. As seen in Fig. 3, based on these parameters, a graph is drawn 
which shows the position of the studied compounds and in Supple-
mentary data, Table S1, the just the most important parameters have 
been reported. The thresholds used to remove weak compounds are as 
follows: no Lipinski’s rule of five with 2 or 3 violations, less than 0.55 
bioavailability score (0.11 or 0.17), and mines or zero drug-likeness 
model score. Based on the drug-likeness analysis, we defined 187 
structures with yes, 0 RO5 violation and 55 structures with yes; 1 
violation. Two hundred and eleven, 22, and 9 compounds showed 
0.55%, 0.56%, and 0.85% bioavailability score, respectively. 62 struc-
tures had 1.00 till 1.99 drug-likeness score and 2 of these with 2.1 and 

2.07 score were stated. Two hundred and forty-two potential structures 
were finalized, tabulated in Supplementary data, Table S1, for further 
protein-ligand interaction study. 

3.2. Molecular docking calculations and validation 

In this step, 242 selected compounds from the previous level were 
prepared to dock against wild-type and mutated (Delta, Delta plus, and 
Lambda) SARS-CoV-2 RBD. The purpose was based on identifying the 
least binding energy between the protein and the ligand that is shown 
with docking score and refers to the most stable binding mode. The 
interfacial residues between SARS-CoV-2 RBD and ACE2 receptor in the 
initial PDB file (6M0J) were selected as docking grid box in the molec-
ular docking of wild-type RBD, Delta RBD, Delta plus RBD, and the 
Lambda RBD with atv and prz molecules. For the screening of 242 po-
tential ligands using the virtual screening tool, PyRx. The molecular 
dockings were performed based on the protocol, mentioned in 2.4 sec-
tion. After docking, 53 top hits were having the lowest binding affinity 
(ΔG ≤ − 7 kcal/mol) were selected for more analysis. Docking score of 
screened compounds are displayed in Supplementary data, Table S2. 
Our docking method was validated using 102 decoy ligands matched 
with Atovaquone and Praziquantel compounds which were obtained 
from the DUD-E server. Decoys are similar compounds to the active li-
gands in physical properties but different chemically [63]. Therefore, 
assumed that they do not bind to the target [64]. This technique is based 
on overcoming false positives and enhance ligand enrichment. The re-
sult’s binding affinity remained between − 10.9 kcal/mol to − 5 kcal/-
mol 18 decoy compounds showed higher binding energy compared to 
the wild-type RBD-atv and RBD-prz complexes. In addition, 51 decoy 
molecules showed no binding with wild-type RBD. This result confirms 

Fig. 3. The position of the studied compounds based on drug-likeness model score.  

Table 1 
The molecular docking, MD simulation result and in vitro data.  

Protein Ligand Docking 
results: 

Experimental 
data: 

MD simulation 
results (MM-PBSA):   

Binding energy 
(kcal/mol) 

Binding affinity 
(M) [44] 

ΔGbinding (kcal/mol) 

wt heparin -6.7 1.1 × 10 -7 -21.55 
dlt heparin -6.5 4.1 × 10 -7 -17.39  
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the docking and protocol efficiency. Moreover, as can be seen in Table 1, 
the trends observed in the molecular docking results (binding energy), 
the molecular dynamics simulation results (ΔGbinding calculated by the 
MM-PBSA method) and the experimental data (binding affinity) for 
heparin in complex with wild type and Delta variants of RBD of the spike 
protein are the same. These studies confirm and validate the in silico 
method used. 

3.3. ADMET profiling 

ADMET studies are essential to assess the safety and efficacy of 

promising compounds and their action in the body. Here we proposed a 
graph-based signature pkCSM online web server for 53 top hit com-
pounds obtained from the previous section. Lipophilicity (LogP), and 
surface area were predicted along with five main different pharmaco-
kinetic properties classes. As shown in Supplementary data, Table S3, 
each property is mentioned with a specific color. Absorption is evaluated 
with water solubility (log mol/L), caco-2 permeability (log Papp in 10-6 
cm/s), and human intestinal absorption (% absorbed). The water solu-
bility (LogS) indicates the solubility of a molecule in water at 25 ◦C. The 
caco-2 is an in vitro model of the human intestinal mucosa to predict the 
range of drug absorption. Distribution is evaluated with human fraction 

Fig. 4. The best docking pose and orientation of atv in the binding site of a) wild-type RBD and mutated RBD of spike: b) Delta, c) Delta plus, and d) Lambda variants. 
2D diagram intermolecular interactions in e) wt-atv, f) dlt-atv, g) pls-atv, and h) lmb-atv complexes. 
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unbound (Fu), blood-brain barrier (BBB (log BB)) permeability, and 
central nervous system (CNS (log PS)) permeability. Since a drug more 
links to serum proteins, that is having less efficiently for traverse cellular 
membranes or diffuse. The ability of a drug to cross into the brain is an 
important parameter and measured as LogBB and LogPS to help improve 
the efficacy of drugs. Metabolism is evaluated with CYP2D6 substrate 
and inhibitor. The cytochrome P450′ isoforms are the important 
detoxification enzymes mainly found in the liver. They can oxidize xe-
nobiotics to facilitate excretion. Therefore, it is important to assess the 
compound’s ability to substrate or inhibit the cytochrome P450. 
Extinction is evaluated with total clearance (log ml/min/kg). Total 
clearance is measured as a combination of hepatic (liver metabolism 

with biliary clearance) and renal excretion. It is directly related to the 
bioavailability range. Toxicity is evaluated with AMES toxicity and 
hepatotoxicity. The AMES test indicates that mutagenic compounds and 
their action as a carcinogen. A compound was classed as hepatotoxic if 
there is at least one pathological or physiological liver complication 
which impairs normal liver function. ADMET results are expounded 
based on the marginal value compared with resultant value as high caco- 
2 permeability predicted value > 0.90, human intestinal absorption less 
than 30% is considered poorly absorbed, BBB permeability logBB >0.3 
considered readily crosses BBB whereas logBB <1 are poorly distributed. 
CNS permeability interpreted through logPS > − 2 penetrate CNS while 
logPS < − 3 unable to penetrate [33]. For the given compounds, the 

Fig. 5. The best docking pose and orientation of prz in the binding site of a) wild-type RBD and mutated RBD of spike: b) Delta, c) Delta plus, and d) Lambda variants. 
2D diagram intermolecular interactions in e) wt-prz, f) dlt-prz, g) pls-prz, and h) lmb-prz complexes. 
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predicted properties are mentioned in Supplementary data, Table S3. In 
ten hit compounds (Oleanonic acid, Betulonic acid, OSS_128167, 
Vidofludimus, Atovaquone, Eriodictyol, Megestrol, Ciclesonide, Prazi-
quantel and, Naringenin), no metabolism and/or toxicity limitations 
were observed. Between those, Oleanonic acid, Betulonic acid, Atova-
quone, Megestrol, Ciclesonide, Praziquantel, and Naringenin have the 
high caco-2 permeability value; besides they have an applicable intes-
tinal absorption percentage. Based on LogBB and LogPS thresholds, we 
achieved two potential candidates (Atovaquone, and Praziquantel) for 
future analysis. 

3.4. Protein-ligand interaction details 

The best docking pose and orientation of atv and prz, the two final 
compounds obtained from the virtual screening, in the binding site of 
the wild-type and mutated (Delta, Delta plus, and Lambda) RBD of the 
spike protein were evaluated (Figs. 4 and 5). As observed in Fig. 4a, b, 
4c, 4d and Fig. 5a, b, 5c, 5d, in all complexes, atv and prz molecules are 
positioned in such a way that they occupy well the cavities in the 
binding site. Also, the 2D diagrams of docked complexes were plotted to 
investigate the key residues in protein-ligand interactions using 

Fig. 6. Root mean square deviations (RMSD) of Cα atoms of the wild type, delta, delta plus and lambda variants of RBD of spike in complex with the a) atv, b) prz and 
c) k22. 
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Discovery Studio Visualizer [65]. 
In the wt-atv complex, two conventional hydrogen bonds (h-bonds), 

one carbon h-bond, four van der Waals interactions and three π- π 
stacking interactions were observed. In the dlt-atv complex, there are 
one conventional h-bond, five van der Waals interactions and two π- π 
stacking interactions. In the pls-atv complex, one carbon h-bond, six van 
der Waals interactions and one π- π stacking interaction were seen. In the 
wt-atv complex, one conventional h-bond, four van der Waals in-
teractions and two π- π stacking interactions were observed. Residues 
involved in the intermolecular interaction include Gly502, Asn501 and 
Gly496 (h-bonds), Gly496 and Tyr505 (π- π stacking interactions) and 
Arg403, Gly447, Asn448, Tyr453, Gln493, Ser494, Tyr495, Gly496, 
Phe497, Gln498, Asn501. It was further observed that prz showed one 
conventional h-bond, one carbon h-bond, seven van der Waals in-
teractions and one π- π stacking interaction in wt-prz complex, one 
conventional h-bond, four van der Waals interactions and one π- π 
stacking interaction in dlt-prz complex, four van der Waals interactions 
and one π- π stacking interaction in pls-prz complex and one carbon h- 
bond, four van der Waals interactions and one π- π stacking interaction 
in lmp-prz complex. Residues involved in these intermolecular in-
teractions are as follow: Gln493 and Gly496 (h-bonds), Tyr449 and 
Tyr505 (π- π stacking interactions) and Arg403, Arg452, Glu484, 
Leu492, Gln493, Ser494, Tyr495, Gly496, Phe497, Asn501. 

3.5. MD simulation analysis 

3.5.1. Root mean square deviations (RMSD) 
Root mean square deviations (RMSD) of Cα atoms of all simulated 

systems were calculated with respect to the reference structure to 
investigate the conformational changes and structure stability. In 
Fig. 6a, it is clear that the RMSD of all the complexes with atv equili-
brated before 20 ns and remained stable until the end of the simulation 
time. All simulated trajectories show very low fluctuations and therefore 
stable trajectories. Also, RMSD curves and average values display that 
pls-atv (0.165 nm) and dlt-atv (0.208 nm) complexes have higher RMSD 
values than the wt-atv (0.146 nm) and the lmb-atv (0.155 nm) com-
plexes, indicating more stability of wt-atv and lmb-atv complexes. 
Fig. 6b shows the time evolution of RMSD for the wild type, Delta, Delta 
plus and Lambda variants of RBD of the spike protein in complex with 
the prz. RMSD of all complexes show low fluctuation other than the lmb- 
prz complex. Among the simulated complexes, dlt-prz with the average 
RMSD 0.134 nm has the most structural stability. The wt-prz, pls-prz and 
lmb-prz complexes with average values 0.142, 0.157 and 0.183 nm are 
in the next order, respectively. 

Also, Fig. 6c shows the time evolution of RMSD for the wild type, 
Delta, Delta plus and Lambda variants of RBD of the spike protein in 
complex with the k22, a viral spike protein inhibitor, as a reference 
molecule. This figure illustrates that RMSD of all complexes show low 
fluctuation other than the lmb-k22 complex. Moreover, all the com-
plexes with k22 equilibrated before 10 ns and remained stable until the 
end of the simulation time. Furthermore, the RMSD of binding site 
residues and ligands heavy atoms were calculated (Table 2) to validate 
the stability of simulation. From the average RMSD values for the Cα 
atoms of proteins, binding site residues and ligands heavy atoms, it can 
be understood that the binding site residues have more stability than 
other residues which is related to the participation of these residues in 
interaction with ligands (atv, prz and k22). The same state (less RMSD 
values) can be seen for the RMSD of the ligand heavy atoms participa-
tion in the interaction with binding site residues. 

3.5.2. Radius of gyration (Rg) 
The calculation of the radius of gyration (Rg) was done to assess the 

RBD of the spike overall compactness (Fig. 7). Time evolution of Rg 
curves in Fig. 7a and b displays that the fluctuation in Rg values is almost 
negligible in the complex of RBD of the spike protein with both atv and 
prz molecules. Moreover, the Rg values for all complexes were in the 

range of 1.80–1.90 nm. This depicts that protein was stable throughout 
the 120 ns simulation. Based on the average value of Rg in Table 2, it can 
be concluded that atv resulted in the more compactness in wild type of 
RBD of the spike protein relative to others, whereas prz has the more 
effect on the compactness of Delta variant of RBD of the spike. Also, 
Fig. 7c shows the slightly higher stability of proteins in complex with 
k22 relative to atv and prz. 

3.5.3. Root mean square fluctuation (RMSF) 
The residual flexibility over the simulation time was explored by 

calculating the root mean square fluctuation (RMSF) of Cα atoms of all 
simulated systems. Per residue RMSFs were depicted in Fig. 8. RMSF 
curves for all complexes with atv, prz and k22 indicate similar binding 
patterns. Based on this analysis, the least flexibility is related to those 
residues taking part in the interaction with atv and prz molecules, while 
the rest of the residues have higher mobility. These data are in good 
agreement with analysis discussed in Figs. 4, 5 and 10. Residues with 
lower RMSF values are mostly in three regions; for complexes with atv 
molecule: 1) residues 447–449, 2) residues 494–496 and residues 
501–505; for complexes with prz molecule: 1) residues 449–451, 2) 
residues 493–497 and residues 501–505 and for complexes with k22 
molecule: 1) residues 449–450, 2) residues 493–494, 497 and residues 
501, 503. As shown, there is a little difference between regions in Fig. 8a 
and b. 

3.5.4. Hydrogen bond analysis 
Due to the critical role of the hydrogen bonds in the stability of 

protein-ligands complexes and to have detailed information about 
intermolecular interactions between the wild type, Delta, Delta plus and 
Lambda variants of RBD of the spike protein and atv, prz and k22 
molecules, the time evolution h-bonds was evaluated and depicted in 
Fig. 9. The average number of h-bonds during the MD simulation for 
each complex summarized in Table 2. H-bond analysis shows that 
among the studied complexes, wt-atv, lmb-atv, dlt-prz and wt-prz 
complexes (with average number: 0.886, 0.857, 0.395 and 0.348) 
have the greatest number of h-bonds. As can be seen in Fig. 9, in wt-atv 
and lmb-atv complexes, two h-bonds are present during the most of the 
simulation time, whereas in pls-atv and dlt-atv complexes, one h-bond 
exists in some simulation frames. In case of complexes with prz, the time 
frames in which there are h-bonds are scattered. This scattering in the 
lmb-prz and pls-prz complexes is more obvious than the dlt-prz and wt- 
prz complexes. In case of complexes with k22, the average number of h- 
bonds is 0.605, 0.695, 0.514 and 1.183 for wt-k22, lmb-k22, dlt-k22 and 
wt-k22 complexes, respectively, indicating the importance of these 
bonds in the stability of these complexes. In some cases, the average 

Table 2 
The average value of structural parameters for all the complexes during 120-ns 
MD simulation.  

Simulated 
system 

RMSD (nm)    

Protein 
Cα 

Ligand 
heavy 

Binding 
site 

RMSF 
(nm) 

Rg 
(nm) 

No. of 
H- 
bonds 

atoms Atoms Cα atoms    

wt-atv 0.146 0.052 0.111 0.088 1.830 0.886 
dlt-atv 0.208 0.066 0.149 0.088 1.860 0.043 
pls-atv 0.165 0.098 0.152 0.092 1.850 0.052 
lmb-atv 0.159 0.101 0.146 0.088 1.840 0.857 
wt-prz 0.142 0.054 0.135 0.091 1.840 0.348 
dlt-prz 0.134 0.077 0.130 0.083 1.830 0.395 
pls-prz 0.157 0.110 0.148 0.089 1.840 0.250 
lmb-prz 0.183 0.101 0.177 0.102 1.860 0.173 
wt-k22 0.127 0.067 0.114 0.085 1.840 0.605 
dlt-k22 0.146 0.088 0.140 0.090 1.850 0.695 
pls-k22 0.158 0.086 0.145 0.089 1.840 0.514 
lmb-k22 0.152 0.075 0.122 0.097 1.840 1.183 

* RMSD values were calculated in protein-ligand complexes. 
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number of h-bonds in complexes with atv is greater than that of com-
plexes with k22. 

Moreover, the h-bonds stability was assessed by the percentage of 
their presence during the simulation time. Also, the details of important 
h-bonds were briefed in Table 3. As shown in Table, in the wt-atv 
complex, one h-bond with high occupancy (72.9%) is formed between 
the Gly502 N atom and the O2 atom of atv. Also, in the lmb-atv complex, 
Gly502 N atom contribute in one h-bond with O3 atom of atv with oc-
cupancy 71.5%. In case of dlt-prz and wt-prz complexes, NE2 atom 
Gln493 participates in h-bonds with O1 atom of prz with occupancies 
23.8 and 22.1% respectively. We found that these h-bonds play a main 
role in binding of the atv and prz molecules to the RBD of the spike 

protein. In case of complexes with k22, two h-bonds with high occu-
pancy (75.1% and 65.3%) are formed between the Gly502 N atoms (in 
dlt-k22 complex) and Ser 494 (lmb-k22 complex) OG atoms and the O3 
atom of k22. Also, in the pls-k22 complex, Gly502 N atom contributes in 
one h-bond with O1 atom of k22 with occupancy 33.4%. The lowest 
occupancy of hydrogen bonds was observed between Ser 494 OG atoms 
and the O2 atom of k22 in the wt-k22 complex. 

3.5.5. MM-PBSA binding free energy calculation 
To explain the energetics of the binding of atv and prz molecules to 

the wild type, Delta, Delta plus and Lambda variants of the RBD of the 
spike protein, the binding free energy for each complex calculated using 

Fig. 7. Time dependence of the radius of gyration (Rg) of the wild type, Delta, Delta plus and Lambda variant of RBD of the spike.  
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the g_mmpbsa tool and its results tabulated in Table 4. To increase the 
accuracy of the binding free energy calculations, based on the RMSD 
results (Fig. 6), snapshots related to the last 90 ns of the MD trajectories 
were considered. ΔGbind for studied complexes is as follows: wt-atv: 
− 20.1 ± 2.5 kcal/mol, dlt-atv: − 15.9 ± 2.1 kcal/mol, pls-atv: − 16.9 
± 2.3 kcal/mol, lmb-atv: − 17.6 ± 2.8 kcal/mol, wt-prz: − 17.8 ± 2.6 
kcal/mol, dlt-prz: − 19.5 ± 2.3 kcal/mol, pls-prz: − 12.1 ± 1.6 kcal/mol, 

lmb-prz: − 7.5 ± 1.1 kcal/mol, wt-k22: − 14.9 ± 1.4 kcal/mol, dlt-k22: 
− 21.79 ± 2.2 kcal/mol, pls-k22: − 16.8 ± 1.9 kcal/mol and lmb-k22: 
− 19.7 ± 2.6 kcal/mol. Based on these results, it was found that atv 
has the most binding affinity to the wt and lmb, respectively, whereas 
the most binding affinity of prz is related to the dlt and wt, respectively. 
Also, k22 show the most. 

Binding affinity to the dlt. However, for the other three complexes, 

Fig. 8. The root mean square fluctuation (RMSF) of Cα atoms of the wild type, Delta, Delta plus and Lambda variants of RBD of the spike protein in complex with the 
a) atv, b) prz and c) k22. The residues with the least RMSF values were marked with red rectangular boxes. 
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significant binding free energy is seen. Given that k22 is a viral spike 
protein inhibitor, these findings are not surprising. But the important 
point is the proximity of some ΔGbind values of atv and prz complexes to 
k22 complexes. In all complexes, the van der Waals energy term (ΔEvdw) 
has the major contribution to the binding free energy. Next are the 
electrostatic (ΔEele) and non-polar solvation (ΔGnon-polar), whereas the 
polar solvation (ΔGpolar) term opposes binding. 

Since the g_mmpbsa tool applied to calculate ΔGbinding in this study 
exclude the entropy contribution in the binding free energy, the binding 

free energy difference (ΔΔG) was generally used to assess the relative 
strength of activities in the similar systems with series ligands or 
mutated receptors. In several similar studies, this trend was applied 
[66–70]. 

Also, to gain better insight, per-residue binding free energy decom-
position analysis was performed to get the energy contributions of the 
binding site residues to the total binding free energy (Table 5). As can be 
seen in this table, the residues with the most favorable contributions 
(lower than − 0.4 kcal/mol) to the ΔGbinding, in most of the complexes, 

Fig. 9. Hydrogen bonds analysis. The average number of hydrogen bonds in wt-atv, dlt-atv, pls-atv, lmb-atv, wt-prz, dlt-prz, pls-prz, lmb-prz, wt-k22, dlt-k22, pls- 
k22, lmb-k22, complexes as a function of time. 

Fig. 10. A representative snapshot of a) wt-atv and b) dlt-prz complexes. Compounds atv, prz and key residues of the binding site of RBD of the spike protein 
involved in the interaction are shown in sticks representation. The hydrogen bonds and the π-π stacking interaction are marked with black dash lines and black 
square, respectively. 
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are bolded. These residues are located on the active sites (Gly 447, Asn 
448, Tyr 449, Arg 452, Glu 484, Leu 492, Gln 493, Ser 494, Tyr 495, Gly 
496, Phe 497, Gln 498, Asn 501, Gly 502, Tyr 505). According to 
Table 5, the contributions of Tyr 449, Phe 497, Gly 502 and Tyr 505 to 
ΔGbinding values for most of the systems are more than for other residues. 
These findings are in good agreement with RMSF results. Those residues 
having more contribution in ΔGbind, show less fluctuation because they 
participate in the interaction with the atv and prz molecules. 

To investigate the intermolecular interactions in detail in the wt-atv 
and dlt-prz complexes, the most stable complexes based on ΔGbind, the 
representative frames of the wt-atv and dlt-prz complexes were dis-
played in Fig. 10. In the wt-atv complex, the atv is located in the region 
around which there are Gly447, Tyr 449, Gly496, Gln498, Asn501, 
Gly502 and Tyr505 residues (Fig. 10a). Among these residues, Gly502 
contributes in h-bond with atv molecules and Tyr505 takes part in π-π 
stacking interaction. In case of the dlt-prz complex, residues Glu484, 
Phe490, Leu492, Gln493, Ser494 and Tyr449 are around the prz mole-
cule. Gln493 and Tyr449 participate in h-bond and π-π stacking in-
teractions (Fig. 10b). These results show good consistency with 
molecular docking results (Figs. 4 and 5). 

4. Conclusions 

Considering that we are encountering with unpredictably different 
mutations in the SARS-CoV-2 genome, in this study, exhaustive 
structure-based virtual screening (including drug-likeness screening, 
molecular docking and ADMET parameters), MD simulation and MM- 
PBSA were performed to detect potent inhibitors for wild type, Delta, 
Delta plus and Lambda variants of RBD of the spike protein for COVID- 
19 treatment. Two compounds (Atovaquone and Praziquantel) were 
shortlisted based on drug-likeness screening, molecular docking and 
pharmacokinetic properties evaluation. Molecular docking analysis 
showed that there are several interactions such as hydrogen bond, hy-
drophobic and π- π stacking interactions between atv and prz and 
binding site residues (especially Tyr449, Phe490, Gln493, Asn501, 
Gly502, and Tyr505) in the wild type, Delta, Delta plus and Lambda 
variants of RBD of the spike protein. These interactions are more 
observed in the wt-atv, lmb-atv, dlt-prz and wt-prz complexes. The 
validation of docking results was done by comparing with experimental 
data (heparin in complex with wild type and Delta variants). Further-
more, MD simulations analysis showed that among the studied com-
plexes, the wt-atv and dlt-prz complexes have the most structural 
stability during the simulation time. Furthermore, using MM-PBSA 
analysis, we found that in the atv containing complexes, highest bind-
ing affinity is related to the wt-atv complex and in the prz containing 
complexes, it is related to the dlt-prz complex. The lmb-atv and wt-prz 

Table 3 
The hydrogen bonds formed between the wild-type and mutated (Delta, Delta 
plus, and Lambda) RBD of the spike protein and atv and prz molecules.  

Protein Ligand Occupancy (%)* 

wt: GLY502 (N) atv (O2) 72.9  

lmb: GLY502 (N) atv (O3) 71.5  

dlt: GLN493(NE2) prz (O1) 23.8  

wt: GLN493(NE2) prz (O1) 22.1  

dlt: GLY502 (N) k22 (O3) 75.1  

lmb: SER494 (OG) k22 (O3) 65.3  

pls: GLY502 (N) k22 (O1) 33.4  

wt: SER494 (OG) k22 (O2) 25.6 

*Only the hydrogen bonds with occupancy above 20% during the MD were 
included. 

Table 4 
Binding free energy (kcal/mol) of the simulated complexes calculated by the 
MM-GBSA method.  

System ΔEvdw ΔEele ΔGpol ΔGnonpol ΔGbinding ΔΔG* 

wt-atv -28.35 -5.35 16.40 -2.75 -20.05 1.74 
dlt-atv -26.79 -3.75 15.02 -2.75 -15.88 5.91 
pls-atv -23.27 -3.29 11.12 -2.67 -16.92 4.87 
lmb-atv -26.88 -5.93 17.95 -2.73 -17.58 4.21 
wt-prz -27.75 -5.17 17.87 -2.76 -17.81 3.98 
dlt-prz -30.24 -4.14 17.52 -3.38 -19.52 2.27 
pls-prz -21.10 -3.96 13.16 -2.41 -12.16 9.63 
lmb-prz -6.76 -2.82 2.84 -0.73 -7.47 14.32 
wt-k22 -26.81 -0.40 14.82 -2.57 -14.95 6.84 
dlt-k22* -40.28 -1.69 23.57 -3.39 -21.79 0.00 
pls-k22 -22.28 -3.13 10.15 -1.48 -16.75 5.04 
lmb-k22 -36.88 -10.06 31.18 -3.94 -19.69 2.10 

*ΔΔG is defined as the change of binding free energy using dlt-k22 as a 
reference. 

Table 5 
Energy contribution of the key residues to the binding free energy.   

atv prz 

Residues wt dlt pls lmb wt dlt pls lmb 

Gly 447 -0.572 -0.089 0.004 0.245 -0.118 0.002 -0.007 -0.003 
Asn 448 -0.287 -0.058 0.202 -0.320 -0.140 0.003 -0.005 -0.014 
Tyr 449 -0.759 -0.103 -0.017 -0.355 -0.742 -0.678 -0.349 -0.047 
Arg 452 -0.001 -0.149 -0.010 0.019 -0.002 -0.451 -0.692 0.002 
Glu 484 -0.111 0.140 -0.008 -0.120 -0.132 -0.888 -0.118 0.019 
Leu 492 -0.011 -0.019 0.002 -0.003 -0.411 -0.403 -0.447 -0.015 
Gln 493 -0.005 -0.480 -0.010 -0.834 0.361 -1.751 -0.310 -0.213 
Ser 494 -0.118 0.326 -0.711 -0.512 -0.397 -0.512 -0.226 0.000 
Tyr 495 -0.140 -0.542 -0.403 -0.951 -0.551 0.003 -0.009 -0.403 
Gly 496 -0.147 -0.502 -0.302 -0.237 -0.383 0.003 -0.008 -0.613 
Phe 497 -0.709 -1.059 -0.902 -0.789 -0.996 0.002 0.003 -0.701 
Gln 498 -0.637 -0.282 0.001 -0.438 -0.194 -0.006 -0.007 -0.013 
Asn 501 0.129 0.710 0.005 0.175 0.262 -0.003 0.009 -0.004 
Gly 502 -1.132 0.071 -0.002 -0.686 -0.391 -0.003 -0.132 -0.017 
Tyr 505 -3.069 -1.800 -1.651 -3.127 -2.876 -0.147 0.010 -0.711 

Residues with the most favorable contributions (lower than − 0.4 kcal/mol) to the ΔGbinding, are bolded. 
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are in the next orders, respectively. Since the final two compounds are 
FDA approved, there is no need to do long-term clinical trials. This is the 
result of using the drug repurposing approach applied in this study. 
Therefore, we identified the atv and prz molecules as the potent in-
hibitors targeting RBD of the spike protein to treat the COVID-19. 
Comparison of the obtained results with the result of simulation of the 
k22 with the studied proteins showed that atv and prz are suitable in-
hibitors for these proteins. Moreover, the molecular mechanism of in-
hibition studied in this work will be helpful for designing the new SARS- 
CoV-2 inhibitors. 
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