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1. Synopsis

Möth et al. (2021) [1] investigated the effects of pest management regime (integrated
vs. organic), and field and landscape elements on plant-inhabiting mite abundance and
pollen deposition in vineyards. One of their main conclusions, dubbed “unexpected”, is
higher predatory mite abundance and pollen deposition in integrated rather than organic
vineyards. Möth et al. (2021) [1] sampled leaves from highly diverse grape varieties,
however, varieties and associated variability in mite microhabitat quality, which is largely
determined by leaf surface morphology, were neglected in sampling plans and analyses.
However, leaf surface morphology is a decisive factor for the occurrence and abundance
of grape-inhabiting mites. Retrospectively scrutinizing the diversity and heterogeneity of
sampled varieties and associated differences in leaf morphological characteristics, that is,
hairiness of the leaf underside, revealed higher microhabitat quality in vineyards subjected
to integrated pest management than in those subjected to organic pest management. In-
tegrating leaf hairiness as an explanatory variable into analyses challenges the claims by
Möth et al. [1] and puts the “unexpected” into perspective. Erect hair grades of the leaf un-
derside had strong explanatory power and significantly influenced three of four dependent
variables, that is, abundance of phytoseiid and eriophyid mites and pollen deposition on
leaves. Re-analysis suggests only weak effects of pest management regimes. These effects
are further undermined when considering that increased hairiness of the leaf underside
may exert inter-related additive or synergistic effects on mite abundance, due to hampering
pesticide deposits, increased provisioning of shelters, enhanced trapping of air-borne mites,
and mite and pollen retention on leaves. I conclude that non-consideration of microhabitat
quality may blur causal relationships between the occurrence of plant-inhabiting target
organisms and larger-scale environmental variables.

2. Background

Möth et al. (2021) [1] investigated the influence of integrated versus organic pest
management regimes as well as field and landscape elements on mite abundance and
pollen deposition in Eastern Austrian vineyards. They examined the relevance of envi-
ronmental factors at various spatial scales such as interrow vegetation type and cover
at the field scale, and landscape scale factors such as surrounding vineyards and forests
on mite abundance and pollen deposition on grape leaves. Pest management regimes
were characterized by various sub-variables such as frequency and toxicity of the applied
products. The main conclusions by Möth et al. (2021) [1], dubbed “unexpected”, is higher
abundance of phytoseiid mites, primarily Typhlodromus pyri, and tydeid mites, primarily
Tydeus goetzi, and higher pollen deposition in integrated than organically pest-controlled
vineyards. Möth et al. (2021) [1] explain their findings by a mite-friendlier and more pollen
favorable integrated pest management regime because of fewer sprays and lower toxicity
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of the applied products. Mite-promoting field and landscape factors put forward were
a high percentage of vineyards surrounding the target (sampled) vineyard and sponta-
neous as compared to seeded interrow vegetation. Lacking report of the sampled grape
varieties and associated lacking consideration of the microhabitat quality of the leaves of
the sampled vineyards prompted writing this comment. Grape varieties strongly differ
in leaf surface morphology and thus microhabitat quality for plant-inhabiting mites. Leaf
surface morphology is generally acknowledged to be a decisive factor for the occurrence
and abundance of plant-inhabiting arthropod, especially mite, populations and pollen
deposition [2–4].

The target animals sampled by Möth et al. (2021) [1], plant-inhabiting mites, have
body lengths of 0.2 (for eriophyid mites) to 0.5 mm (for phytoseiid mites) [5]. During the
vegetative periods, the microhabitats of these mites are the leaves, and here, mainly the un-
dersides. These animals thus primarily experience the leaf surfaces as their landscapes [6],
in which they forage, reproduce and interact with other organisms. As with most ecological
processes and patterns, scale is a critical issue when investigating environmental factors
influencing the occurrence and abundance of plant-inhabiting mites in local fields. For
plant-inhabiting mites, relevant spatial scales range from the microscale (sites within leaves
to whole leaves) over intermediate scales such as whole plants to other plants within the
vineyard, to the macroscale such as vegetation surrounding the vineyard and other local
and regional landscape elements. Of primary importance, no matter of the ecological
scale, are the microhabitats where the target animals, plant-inhabiting mites, primarily
live and spend most of their lives, because some leaves provide microhabitats that are
suitable for colonization, establishment and growth of their populations whereas others do
not. If the leaf microhabitat is unsuitable, the surrounding field and landscape elements
may be highly favorable for mites dispersing into the sampled sites yet the organisms in
questions will not settle and reproduce, and as populations grow there [7]. In general, when
developing sampling protocols and experimental designs for field and landscape studies,
and deciding which factors should be included in analysis, the experimenter should project
one’s view of the world into the target organism [8,9]. It has been stressed repeatedly that
understanding of large-scale ecological processes and patterns is critically enhanced by
mechanistic understanding of individual and population level processes at smaller spatial
scales, such as the microhabitat level [8,10]. For the animals and study in question [1], if
the leaf features determining microhabitat quality from a mite-centered perspective are not
accounted for, blurred or erroneous conclusions about the influence of pest management,
and larger spatial scale factors at the field and landscape levels on those mites may be
drawn.

The sampling unit by Möth et al. (2021) [1] was 20 leaves per vineyard but the sam-
pled vineyards consisted of 10 highly diverse grape varieties that were not homogenously
distributed between integrated and organic vineyards (Möth, personal communication,
Table S1). Thirteen of the 16 pairs of integrated and organic vineyards within a prede-
fined radius of investigation had heterogeneous varieties and three had homogeneous
varieties (Table S1). There is ample evidence that grape leaves differ in their quality as mite
microhabitat among grape varieties [3,4]. For predatory mites, numerous studies have
shown that one highly critical factor is the leaf surface morphology, and here, especially
the occurrence and density of trichomes, bristles and domatia-like structures on the abaxial
side of the leaf [11,12]. The dominant predatory mite species in vineyards of central Europe
including Austria is T. pyri, which is known to thrive on grape varieties with pubescent
and/or domatia-rich leaf undersides [13–15]. If the encountered microhabitat features are
unfavorable, T. pyri does not successfully colonize and establish, and their populations do
not grow, on those plants [16]. In consequence, and at a larger spatial scale, species-specific
adaptations to leaf microhabitat features may even result in two adjacent vineyards of
different varieties being populated by different predatory mite species or sustaining largely
differing predatory mite abundances [7,13,14,17,18].
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Based on the diversity and heterogeneous distribution of grape varieties within and
between pairs of integrated and organic vineyards sampled by Möth et al. (2021) [1], I
hypothesized that (i) grape variety-associated leaf morphological traits, i.e., hairiness of the
leaf underside, differed between vineyards under organic and integrated pest management
regimes, (ii) hairiness of the leaf underside has major explanatory power for the observed
patterns of mite abundance and pollen deposition in Eastern Austrian vineyards, and
(iii) addition of leaf hairiness as an independent variable in statistical modeling changes
the set of variables that best explain mite abundance and pollen deposition. To test
these hypotheses, the typical hairiness grades of the leaves of the grape varieties [19]
sampled by Möth et al. (2021) [1] were compared between integrated and organic vineyards.
Subsequently, some of the findings by Möth et al. (2021) [1] on mite abundance and pollen
deposition in vineyards, as affected by pest management regime, field and landscape
factors, arewere re-analyzed by additionally taking variety-specific hairiness of the leaf
underside into account.

3. Methods
3.1. Characterization and Quantification of Microhabitat Quality

Information on the grape varieties sampled by Möth et al. (2021) [1] were provided
by Stefan Möth (personal communication; publicly accessible at https://doi.org/10.528
1/zenodo.4562219, accessed on 12 March 2021). Grape cultivar-specific ampelographic
characteristics of the leaf underside, that is, hairiness of the leaf blade and main veins,
were derived from the OIV grape variety catalogue [19]. Hairiness grades are genetically-
determined, variety-specific leaf morphological traits and well reflect the suitability of
grape leaves for predatory mite occurrence and abundance [12]. In ampelography, leaf
trichomes are divided into prostrate and erect (bristle) hairs on the leaf blade and on
the main veins; their density grades may range from 1 (none or very sparse) to 9 (very
dense) [19]. For varieties with a range of possible hairiness grades (Chardonnay, Cabernet
Sauvignon and Sauvignon Blanc) in the OIV catalogue [19], the characterization followed
the specifications for the variety type dominating in Austrian vineyards [20]. Grades for
young leaves were used for the first sampling date in May and grades for mature leaves
were used for the four later sampling dates. Separate grades for prostrate and erect (bristle-
formed) hairs on the blade and main veins were summed up to create one overall grade (on
blade plus on main veins) for prostrate hairs and one overall grade for erect hairs, jointly
characterizing the leaf underside of a given variety. Erect (bristle) hairs are also a suitable
indicator for the occurrence of acarodomatia-like structures on the leaf undersides [12]
albeit domatia are poorly developed in cultivated Vitis species compared to their wild
ancestors [11,21,22]. For prostrate hairs, grades 12 and 14 consisted of just 3 and 4 samples
and were therefore included in grade 10 for analyses.

3.2. Statistical Analyses

Statistical analyses were carried out using SPSS 26 (IBM, Armonk, NY, USA).
Erect and prostrate hair grades of the undersides of young and mature leaves were

compared between vineyards subjected to integrated and organic pest management regimes
by Mann–Whitney U-tests.

Erect and prostrate hair grades of the undersides of leaves were added as explanatory
variables to the generalized linear models (GLMs) reported by Möth et al. (2021) [1].
Different from [1], both Akaike’s Information Criterion corrected for small sample size
(AICC) and the Bayesian Information Criterion (BIC) were used to identify the best-fitting,
i.e., the most parsimonious, model having the fewest parameters. The reason for additional
use of BIC is that BIC penalizes more complex models more strongly than does AICC,
i.e., it is more stringent regarding parsimony [23]. Starting with the full models for each
dependent variable, explanatory variables were subsequently removed from the models
in a stepwise procedure until arriving at the most parsimonious model providing the
best fit according to AICC and/or BIC (difference >2 either for AICC and/or BIC to the
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next best model). Similarly, as in [1], lg(x + 1) transformed data of phytoseiid, tydeid and
eriophyid mites per 100 cm2 leaf area and pollen density per 1 cm2 leaf area were used
as dependent variables, percent vineyards in the surrounding, proportion of total and
woody semi-natural habitats (SNHs), season-specific interrow cover percentage (spring-
specific cover for the first date in May, and summer-specific cover for the other four dates)
and pollen availability (lg(x + 1); only for mites), were used a covariates (continuous
variables); pest management type (integrated versus organic), interrow vegetation type
(poor, rich, spontaneous), and grape variety-specific prostrate and erect hair grades were
used as nominal (categorical) variables. The hair grades were considered ordinal but not
continuous variables because the intervals between grades are only an approximation of
increasing intensity of hairiness of the leaf undersides but do not exactly and non-linearly
reflect the proportional blade and main vein areas covered by hairs. Different from [1],
phytoseiid abundance was not included as covariate in the GLM on their prey, eriophyid
mites. The reason is that predator-prey relations are typically non-linear. Due to the time
delay in numerical response of predators to the abundance dynamics of their prey, predator-
prey population curves often oscillate in a sinus-like fashion with a time lag between prey
and predators. Thus, depending on the sampling point in these cycles, all sorts of relation
of predator-prey abundances, from negative to neutral to positive, may be observed.

4. Results

The ten grape varieties sampled by Möth et al. (2021) [1] largely varied in erect
and prostrate hair grades on the leaf undersides and variety pairs under integrated and
organic pest management only matched in 3 of 16 circles (Table S1). Erect hair grades of
the leaf underside differed significantly between vineyards subjected to integrated and
organic pest management (Mann–Whitney U-tests; n = 16 each for integrated and organic
vineyards; U = 71.5, p = 0.022 for erect hair grades of young leaves and U = 65.5, p = 0.015
for mature leaves); vineyards under integrated pest management had more erect hairs
on the underside of both young and mature leaves than vineyards under organic pest
management (Figure 1). Prostrate hair grades of young (U = 117, p = 0.665) and mature
(U = 115, p = 0.642) leaves were similar in both types of vineyards.

The most parsimonious GLMs (Table 1) revealed that date (for all four dependent
variables; Figures S1a, S2a, S3 and S4), erect hair grades of the leaf underside (for phytoseiid
and eriophyid mite abundance and pollen deposition; Figure 2), and interrow vegetation
type (for phytoseiid, eriophyid and tydeid mite abundance; Figures S1a, S2a and S3) were
the most relevant predictors across all four dependent variables. Type of pest management
(Figure S1a) and percent vineyards in the surrounding of the target vineyard (Figure S1b)
had only an influence on phytoseiid mite abundance, prostrate hair grade of the leaf
underside influenced only eriophyid mite abundance (Figure 2) and pollen deposition on
leaves was a significant covariate only for eriophyid mite abundance (Figure S2b). The
second best-fitting model for pollen deposition (difference <2 to the best-fitting model, that
is, 1.201 in BIC and 1.261 in AICC) also included distance to the next woody semi-natural
habitat, however, for the sake of parsimony, only the simplest model with the lowest AICC
and BIC values is presented here. For the other three dependent variables, the second-best
models had >2 difference in AICC and/or BIC.
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represent the median, boxes represent the interquartile (IQ) range, whiskers are 1.5 times the IQ range, symbols depict the 
outliers. Different small and capital letters on top of boxes indicate significant differences in leaf hairiness of sampled 
vineyards under integrated and organic pest management (n = 16 for each pest management regime and leaf age category; 
Mann–Whitney U-tests p < 0.05). 
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Table 1. Results of generalized linear models (GLM; normal distribution, identity link) on phyto-
seiid, tydeid and eriophyid mite abundance per 100 cm² leaf area and pollen deposition per 1 cm² 
leaf area in vineyards sampled by Möth et al. (2021). All dependent variables were lg(x + 1) trans-
formed before analysis. AICC = −58.118, BIC = −17.962 for Phytoseiidae; AICC = −215.227, BIC = 
−169.828 for Eriophyidae; AICC = −90.554, BIC = −66.906 for Tydeidae; AICC = −22.144, BIC = 7.132 
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(Intercept) 52.344 1 <0.001 
Date 77.757 4 <0.001 

Pest Management Regime 19.055 1 <0.001 
Interrow Vegetation Type 8.618 2 0.013 

Figure 1. Variety-dependent erect hair grades (representing the sum of grades on the blade and main veins) of the leaf
underside in vineyards under integrated and organic pest management regimes sampled by [1]. Thick horizontal lines
represent the median, boxes represent the interquartile (IQ) range, whiskers are 1.5 times the IQ range, symbols depict
the outliers. Different small and capital letters on top of boxes indicate significant differences in leaf hairiness of sampled
vineyards under integrated and organic pest management (n = 16 for each pest management regime and leaf age category;
Mann–Whitney U-tests p < 0.05).

Table 1. Results of generalized linear models (GLM; normal distribution, identity link) on phytoseiid,
tydeid and eriophyid mite abundance per 100 cm2 leaf area and pollen deposition per 1 cm2 leaf
area in vineyards sampled by Möth et al. (2021). All dependent variables were lg(x + 1) transformed
before analysis. AICC = −58.118, BIC = −17.962 for Phytoseiidae; AICC = −215.227, BIC = −169.828
for Eriophyidae; AICC = −90.554, BIC = −66.906 for Tydeidae; AICC = −22.144, BIC = 7.132 for
pollen. Significant explanatory variables of leaf hairiness are highlighted in bold.

Dependent and Explanatory Variables Wald χ2 df p Value

Phytoseiidae
(Intercept) 52.344 1 <0.001

Date 77.757 4 <0.001
Pest Management Regime 19.055 1 <0.001
Interrow Vegetation Type 8.618 2 0.013

Erect Hair Grade 26.979 4 <0.001
Percent Vineyards 22.815 1 <0.001

Eriophyidae
(Intercept) 0.858 1 0.354

Date 81.995 4 <0.001
Interrow Vegetation Type 7.229 2 0.027

Prostrate Hair Grade 21.346 3 <0.001
Erect Hair Grade 15.254 4 0.004

Pollen 3.858 1 0.050
Tydeidae
(Intercept) 184.144 1 <0.001

Date 138.225 4 <0.001
Interrow Vegetation Type 25.281 2 <0.001

Pollen
(Intercept) 8420.283 1 <0.001

Date 319.278 4 <0.001
Erect Hair Grade 23.057 4 <0.001
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Figure 2. Significant influence of erect and prostrate hair grades of the leaf underside on phytoseiid (A) and eriophyid
(C,D) abundance and pollen deposition (B) (mean ± SE) in vineyards sampled by [1]. Figures visualizing all significant
explanatory variables in GLMs on phytoseiid, tydeid and eriophyid abundance as well as pollen deposition are provided in
the Supplementary File (Figures S1a,b, S2a,b, S3 and S4).

5. Discussion

Accounting for leaf surface traits largely determining grape leaf microhabitat quality
for plant-inhabiting mites, i.e., grading of the density of two types of hairs (erect and pros-
trate) on the leaf underside, critically changed the set of significant pest management, field
and landscape factors affecting phytoseiid mites, eriophyid mites and pollen deposition in
vineyards sampled by [1]. Higher erect hair grades were associated with higher phytoseiid
and eriophyid mite densities and pollen deposition on leaves. The only landscape- scale
factors remaining significant, relative to the analysis by [1], are percent vineyards in the
surrounding of the target vineyard positively affecting phytoseiid mite abundance and,
with lower importance because only present in the second best-fitting model, distant to the
next woody semi-natural habitat for pollen deposition. Pest management regime only influ-
enced phytoseiid mites, with lower densities in organic than integrated vineyards, whereas
non-consideration of microhabitat quality in analyses prompted Möth et al. (2021) [1]
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to conclude on significant pest management influences on phytoseiid and tydeid mite
abundance and pollen deposition on leaves.

Differences in leaf morphological features, such as degree of hairiness and/or occur-
rence of domatia-like structures on the underside of leaves, have important implications to
the effects of pest management, and field and landscape factors on mite occurrence and
abundance and pollen deposition. The re-analyses presented here did not include interac-
tions between leaf hairiness and other explanatory variables, to make it better comparable
to the analyses reported by [1], but data exploration suggested some significant interactions.
For example, more favorable hairiness of the leaf underside and more favorable sponta-
neous interrow vegetation were both biased towards vineyards under integrated pest
management and the positive effect of leaf hairiness on phytoseiid mite abundance was
more evident in vineyards with spontaneous versus seeded interrow vegetation. Moreover,
one has to be aware that jointly biased explanatory variables may have additive or even
synergistic effects, aggravating identification of cause and effect. Most importantly, leaf
morphological structures such as hairiness and domatia also heavily influence the effects of
pesticide sprays because such structures provide shelters and refuges protecting the mites
from direct exposure to sprays and/or contact with their residues [3]. Additionally, hairy
leaf surfaces are more hydrophobic than smooth leaves (hairy leaves have higher contact
angles for fluid droplets [23]) resulting in poorer spread, adhesion to, and penetration of,
the leaf tissue, and decreased residues of sprays, leading to more likely and longer lasting
contact with sprays by mites living on smooth leaves [24,25]. This may partially explain
why Möth et al. (2021) [1] did not detect a direct significant influence of the toxicity of
the applied products in their best-fitting GLMs explaining mite abundance. Nonetheless,
the potentially detrimental effects of frequent sulfur spray applications, as sometimes
conducted in organic viticulture, on predatory mites have long been known [26,27] yet
such adverse effects may especially apply to varieties with smooth surfaces. Leaf hairiness
also influences pollen deposition on leaves because hairs serve as traps for air-borne pollen
grains and enhance retention of pollen grains on the leaf surface [3]. Hairiness effects such
as providing protection and enhanced trapping of air-borne mites, also apply to eriophyid
mites. Regarding eriophyid mites, it is noteworthy mentioning that the washing technique
employed by [1] is little suitable for sampling gall-inducing and gall-inhabiting eriophyid
mites Colomerus vitis because of the contents of the galls, where the eriophyids primarily
live, is barely accessible to the washing technique. Retrospectively, counting the number of
galls per leaf, opening some galls and counting the number of gall-inhabiting eriophyids
would have yielded a more realistic picture of eriophyid occurrence and abundance.

6. Conclusions

In an ideal way, albeit possibly difficult to achieve in such a field study, Möth et al.
(2021) [1] would have sampled paired vineyards of the same variety within circles. Alterna-
tively, and more easily achievable, they could have sampled pairs of different varieties that
have similar leaf surface structures. At the very least, they should have counterbalanced
widely-known issues associated with variety heterogeneity by including different varieties
with similar leaf hairiness grades in each pest management regime, integrated and organic,
to buffer any presumable influences of variety-specific microhabitat qualities for mite
population development and pollen deposition. Biased distribution of varieties and not
accounting for mite microhabitat quality may have blurred cause and effect. Given the
numerous positive effects of leaf hairiness on pollen deposition, microhabitat quality for
plant-inhabiting mites, and poorer adhesion of pesticides, combined with more favorable
interrow vegetation type (spontaneous), one may even speculate that the differences in
phytoseiid mite abundance have causally little to do with the pest management regimes
per se but are a consequence of the combination of various factors being favorably biased
towards vineyards under integrated pest management. Overall, this comment emphasizes
the need to assume a target-organism-centered view when developing field sampling
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plans for plant-inhabiting arthropods and provides a cautionary tale of the relevance of
microhabitat quality in pertinent field and landscape-scale studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12080671/s1. Table S1: Erect and prostrate hair grades of the 32 vineyards paired
within 16 circles, each having a 500 m radius, sampled by Möth et al. (2021) [1]. Erect and prostrate
hair grades of the leaf blade and the main veins given in the OIV catalogue [19] were summed
(minimum sum is 2, maximum is 18); in case of a variety-typical range of grades given in [19], the
specifications of [20] were additionally considered to select the best matching grades for this variety in
Austria. Due to rarity of cases in prostrate hair grades 12 and 14, these cases were included in grade 10
for analyses, Figure S1: Explanatory variables (1.a nominal variables (mean ± SE): (A) date, (B) erect
hair grade of the leaf underside, (C) vegetation type, (D) pest management regime; 1.b continuous
variable (linear regression ± 95% CI): percent vineyards in the surrounding of the target vineyard)
significantly influencing phytoseiid mite abundance in vineyards, Figure S2: Explanatory variables
(2.a nominal variables (mean ± SE): (A) date, (B) vegetation type, (C) erect hair grade of the leaf
underside, (D) prostrate hair grade of the leaf underside; 2.b continuous variable (linear regression
± 95% CI): percent vineyards in the surrounding of the target vineyard) significantly influencing
eriophyid mite abundance in vineyards, Figure S3: Explanatory variables: (A) date, (B) vegetation
type significantly influencing tydeid mite abundance in vineyards, Figure S4: Explanatory variables:
(A) date, (B) erect hair grade on the leaf underside significantly influencing pollen deposition in
vineyards.
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