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ABSTRACT
Many protein domains bind to short peptide sequences, called linear motifs. Data on
their sequence specificities is sparse, which is why biologists usually resort to basic
pattern searches to identify new putative binding sites for experimental follow-up.
Most motifs have poor specificity and prioritization of the matches is thus crucial
when scanning a full proteome with a pattern.

Here we present a generic method to prioritize motif occurrence predictions by
using cellular contextual information. We take 2 parameters as input: the motif oc-
currences and one or more of the interacting domains. The potential hits are ranked
based on how strongly the context network associates them with a protein containing
one of the specified domains, which leads to an increased predictive performance.
The method is available through a web interface at doremi.jensenlab.org, which
allows for an easy application of the method. We show that this approach leads to
improved predictions of binding partners for PDZ domains and the SUMO binding
domain. This is consistent with the earlier observation that coupling sequence motifs
with network information improves kinase-specific substrate predictions.
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INTRODUCTION
Physical interactions among proteins play a crucial role in cellular signaling. There are

two types of binding: domain–domain and domain–motif. For the latter type, a conserved

domain interacts with a short peptide sequence (linear motif), which may be subject to

post-translational modification (PTM) (Linding, 2010). Many proteins carry more than

one domain, which allows them to bind to multiple different proteins and thereby act,

for example, as scaffolds. Moreover, recent work has shown interdependence of PTM sites

both with each other and with linear motifs (Minguez et al., 2012). Studying these binding

sites and the domains that recognize them can thus help decipher the complex signalling

networks in the cell.

The computational task of dealing with motifs can be split into two separate tasks: the

discovery of novel, not known motifs and the search for new instances of already known

motifs. The discovery of novel motifs is challenging, nonetheless a number of techniques
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have been developed to address this problem (Chou & Schwartz, 2011; Davey et al., 2010;

Lam et al., 2010). More recently structural approaches have been applied to the problem

(Pathak et al., 2013) which, similar to other tools, rely on filtering out false positives in the

discovery phase of motif identification. Physicochemical approaches have been developed

to uncover patterns in the primary sequence that are characteristic of short peptide binding

region (Dosztányi, Mészáros & Simon, 2009), and machine learning techniques employed

to learn motifs from literature curated datasets (Lieber, Elemento & Tavazoie, 2010; Mooney

et al., 2012; Nguyen Ba et al., 2012). Also, several resources exist that attempt to catalogue

instances of linear motifs, incorporating manually curated and computational predictions

of motifs (Dinkel et al., 2011; Mi et al., 2012; Sigrist et al., 2010). The discovery of both

novel motifs and new instances is hindered by the problem of finding statistical significant

matches. Many motifs are short peptide sequences and thereby appear in many different

proteins by chance without representing a functional site (Obenauer, Cantley & Yaffe,

2003).

When searching for new instances, all occurrences of a motif should thereby be screened

for their biological validity. Based on the protein sequence, predictors for protein folding,

structure and disorder can be used to filter for potential motifs (Davey et al., 2011). As

functionally important sections of proteins tend to be conserved, further improvement can

be gained by incorporating orthology information. Additionally, keyword annotations can

help to distinguish the interesting proteins for the investigated processes (Ramu, 2003).

Further improvements can be achieved by integrating the cellular context of the

interactions. As we try to filter for binding-associated motifs, the information about

protein–protein interactions between the substrates and a protein containing the binding

domain is an obvious approach. As long as this information is available, the question of

biological relevance can be coupled to the question of co-localization and association; a

binding site that will never be in proximity to the corresponding domain is biological not

relevant in the studied context.

Previous work has shown that contextual information in the form of known physical

interactions (Mi et al., 2012) or functional associations (Linding et al., 2007; Weatheritt &

Jehl, 2012) can improve motif based approaches. These methods are publicly available, but

limit the query to a pre-defined set of motifs and interacting partners, which prevents their

use for analysis of not already known motifs.

Here, we present DoReMi (Domain aided Regular Expression Mining), a tool that

allows the user to specify any motif and the associated binding domain(s). By integrating

the protein–protein association data into the scoring schema, we extend the usage from

being a subsequently applied filter to a factor for ranking found potential instances. The

algorithm is publicly available using the web interface at doremi.jensenlab.org.

MATERIALS & METHODS
The algorithm takes a motif representation as input and scans a selection of representative

sequences to find matching instances. To filter these hits, the score of a motif search gets

combined with the protein–protein association scores derived from the STRING database
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to rank the occurrences (Franceschini et al., 2013). Previous work has demonstrated the

utility of allowing both regular expressions (RegEx) and position specific scoring matrices

(PSSM) to generate motif definitions (Haslam & Shields, 2012); therefore we allow both of

these as input as well as the result of any more advanced machine learning approach with a

qualitative result.

The association scores are generated from the STRING confidence association scores.

As the database only provides direct associations, indirect paths have to be calculated to

cover also indirect interactions like e.g., scaffolding. Indirect interactions are computed

by multiplying connecting edges on the path between the proteins of interest. To reduce

the effect of over-connected nodes (hubs), we penalize for the connectivity by normalizing

for the sum of all connecting edges of the node. The final score of an interaction can be

described by the formula:

nlast
n=2

C(nn−1 → nn)

(1 +


C(nn → nx) − (C(nn−1 → nn) + C(nn → nn)))β

with C(nn−1 → nn) being the confidence score of two nodes interacting and
C(nn → nx) being the sum of the confidence scores of all connecting edges of nn. The

parameter β was set based on our experience in the NetworKIN project to a value of 0.34.

After extending the network to cover indirect paths, the dataset covers a wide range of

associations between single proteins, each represented by a single score. This score can be

interpreted as the likelihood of two proteins interacting with each other.

The potential interaction partners are recruited by selecting all proteins containing

the interacting domain(s). To find these proteins, the Hidden-Markov-Model (HMM)

representations provided by the PFAM database are used to scan the whole STRING

sequence database for matching structures (Punta et al., 2012). For the scan, we use the

HMMER3 package with default parameters as stated by PFAM. These domain-protein

associations are pre-calculated to later increase the performance of the web service.

All proteins carrying at least one of the interacting domain(s) of interest are treated as

potential interactors. In the case of multiple potential interactors for one substrate, the

highest scoring one is considered the most probable and its score is used in the subsequent

calculations.

The result from the PSSM search and the derived contextual network score are

combined using a weighting factor to be able to adjust the algorithm to different biological

cases.

Final Score = Motif 1−α
∗ Associationα.

This weighting factor is used to account for the different impact the two factors have in

the biological context. For example, the SUMO binding domain has a strongly conserved

motif, leading to the assumption that the motif is sufficient to achieve good predictive

performance. Conversely, the process of ubiquitination is well known for not having any

preference for certain amino acids surrounding the modified residue, thus it is favorable

to put more weight on the context information. If the motif search method only returns a
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binary value (e.g., regular expression returns only matches but no scores), DoReMi sorts

the matches by the context network score alone.

To make the algorithm easily accessible and applicable, we developed a web service

implementing the described workflow. The interface of this webservice allows for multiple

different inputs for the motif finding part, which are subsequently enhanced with the

pre-computed network information.

RESULTS AND DISCUSSION
To estimate the performance of our method, we selected two sets of binding sites, which

have been previously been used for training of SUMOylation predictors (Matic et al.,

2010; Ren et al., 2009). The family of SUMO (Small Ubiquitin-like Modifier) proteins

comprises of multiple small members that are covalently attached to the proteins. As the

name suggests, the proteins are similar to ubiquitin, and the whole enzymatic cascade is

alike to the process of ubiquitination. SUMOylation is involved in functions like protein

stability, nuclear-cytosolic transport, and transcriptional regulation. The SUMO binding

motif can be split into 2 groups: the first motif is a strongly conserved one whereas the

second is less restrictive.

The older dataset from Ren et al. (2009) was used to calculate the PSSM and set the

weighting factor α. We subsequently benchmarked the resulting predictor on the newer

dataset by Matic et al., removing all sites that have been already used in the training.

To compare the approach of creating a PSSM to a regular expression, we used the

SUMOylation motif

[VILMAFP](K).E

from the Eukaryotic Linear Motif (ELM) database (Dinkel et al., 2011).

In addition, we trained a predictor based on the combined datasets and benchmarked

its performance by five-fold cross validation. The results of the partitioning were slightly

better than the results from training on one dataset and benchmarking on the other. This

suggests that cross validation gives a realistic performance estimate.

Given this, we also used cross validation to test the ability of DoReMi to predict binding

partners for PDZ domains (Kim et al., 2012). PDZ domains are abundant in eukaryotes

and eubacteria and commonly bind to the C-terminal end of proteins (Ponting, 1997).

They are often associated with other domains like SH3 and therefor play an important

role in the cell signaling (Zhang et al., 2011). The ELM database lists three different motifs,

although they can be easily joined as they differ only in position four:

...[DE].[ACVILF]$

...[VLIFY].[ACVILF]$

...[ST].[ACVILF]$

...[DEFILSTVY].[ACVILF]$.

Overall, the motif is relatively loose and the C-terminal location may be the strongest

indicator for a real occurrence.
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Table 1 Detailed performance numbers for the benchmarking. The first number states the perfor-
mance without contextual information while the second number includes contextual information.

Sensitivity Specificity AROC

SUMO—Split set—RegExp 0.50/0.50 0.98/0.99 −/0.46

SUMO—Split set—PSSM 0.59/0.62 0.96/0.96 0.82/0.84

SUMO—Partitioning 0.75/0.77 0.90/0.90 0.82/0.84

PDZ—Partitioning 0.43/0.49 0.90/0.90 0.70/0.72

The combined set for SUMOylation contained 1063 sites while the publication by Kim

et al. (2012) provided 367 instances. For the benchmarking, we pre-defined α to 0.4 and

0.8 for the SUMO and PDZ test sets respectively. We selected these values based on the

conservation of the known sequences, as one can expect a greater influence of the cellular

context, given the higher flexibility of the motif. Cross validation was repeated five times

and the reported numbers are the median performance.

When selecting an appropriate score cut off by fixing the false positive rate (0.3 for

SUMO, 0.15 for PDZ) we can show an improvement of the true positive rate by up to

15 percentage points for the PDZ domain and 10 for the SUMO binding domain. The

smaller increase for the SUMO domain is explained by the already good performance of

the motif-based predictor, which leaves less room for improvement. These examples use

simple motif predictors; for comparison, we also applied the context information to an

already existing SUMO predictor (SUMOsp) to investigate the possibility of improving

on more advanced methods. We acknowledge that the result will be influenced by the

fact that this benchmark uses true positives on which the predictor got trained. The

shown improvement by using contextual information should be valid. Comparable to

the first examples, we see an improvement of the true positive rate by up to 10 percentage

points, which motivated the inclusion of this possibility into the web interface. A more

detailed listing of the performance numbers can be seen in Table 1. Although the overall

performance is not significantly better for some of the examples, in a real world scenario,

the method performs better. The stated improvements mean, that if we would have a list of

results and sort it by the final score, true positives are enriched in the beginning of this list.

This is important, as the search of new instances of known motifs is mainly dominated by

the task of filtering out false positives.

These results show that, although advanced methods like SUMOsp perform better than

the basic approach of combining a RegEx or PSSM with contextual information, it can

also be improved by the same approach. This shows the flexibility and versatility of this

approach. Especially under the current state of lack of data that we see in the field of linear

motif, it can be of great help in discriminating between true and false positive predictions.

It also adds a non-sequence specific layer to many methods.

The web interface allows the user to easily apply the algorithm in a simple two-step

process. The first step allows the user to define the potential binding sites. The first input

type is specifying a regular expression; further details on the allowed format options are
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Figure 1 Flowchart of the typical workflow of DoReMi. (1) The user typically provides the motif
description in 3 different ways: regular Expression(s) define a motif by the basic format allowed in most
implementations. Amino acids are defined by their one-letter code with “.” standing for any. Multiple
potential residues can be encoded by using square brackets, e.g., “[DE]”. To quantify selected residues,
we allow the basic operators “*”, “+”, “{2}” or “{3, 4}”. To use a PSSM for the motif search, the user
simply provides a set of known binding motifs; these are used to calculate the amino acid distribution
at each position, correcting for the overall amino acid distribution of the proteome. As a last option,
users can provide results from other tools like SLiMsearch. (2) The second required input is the set of
interacting domains. We provide the domains in PFAM-A. Proteins carrying any of the selected domains
are defined as potential interaction partners. The highest scoring interacting protein for each motif
instance is selected as potential binding partner. (3) The two scores are combined to rank each instance
of the found motif.

shown in Fig. 1. Alternatively, the user can provide a set of known binding peptides,

which will be used to calculate a PSSM. Both the regular expression and the PSSM will

be used to scan the human proteome for occurrences. As last option, the user can submit

predictions from other motif search engines by providing identifier, position and score.

These identifiers and positions have to be prior been mapped to the background sequence

set used in DoReMi (STRING database version 9.05).

The second step allows for the selection of one or more potential binding domains. The

interface allows the user to search for Pfam domains by their accession, id or description.

From the list of search results, the user can select the relevant domains (Fig. 2A). If

necessary, multiple searches can be performed to select differently named domains.

The output page shows a brief summary of the analysis (Fig. 2B). This includes plots

of score distributions for each score (motif, network and combined score) to aid in
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Figure 2 Web interface of DoReMi. (A) The interface allows the user to search for Pfam domains by their
accession, id or description. From the list of search results, the user can select the relevant domains. If
necessary, multiple searches can be performed to select differently named domains. (B) The output page
shows a brief summary of the analysis. This includes plots of score distributions for each score (motif,
network and combined score) to aid in the selection of an appropriate score cut-off for downstream
analysis of the results after downloading.

the selection of an appropriate score cut-off for downstream analysis of the results after

downloading.

CONCLUSIONS
Our work focused on making the integration of contextual information to enhance the

search for motif occurrences into an easy to execute task. We show that the addition of

protein–protein interaction knowledge can improve the predictive performance of existing

methods, even when doing it in a fully automated manner. This can be especially useful in

the field of linear motifs; as for these, due to lack of data, advanced methods are not easy to

develop. Further performance enhancements can potentially be reached when improving

the domain associations in a more confined way.
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For future enhancements, we plan to expand the usability of the method and web

interface. Currently, only the human proteome is available; however, the method is in

principle applicable to any fully sequenced organism. We thus consider expanding it to

major eukaryotic model organisms. We are also working on integrating DoReMi with

existing motif resources such as the ELM database.
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