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Aims: In this retrospective, multi-center study, we aimed to estimate the diagnostic

accuracy and generalizability of an established deep learning (DL)-based fully

automated algorithm in detecting coronary stenosis on coronary computed tomography

angiography (CCTA).

Methods and results: A total of 527 patients (33.0% female, mean age: 62.2 ±

10.2 years) with suspected coronary artery disease (CAD) who underwent CCTA and

invasive coronary angiography (ICA) were enrolled from 27 hospitals from January 2016

to August 2019. Using ICA as a standard reference, the diagnostic accuracy of the DL

algorithm in the detection of ≥50% stenosis was compared to that of expert readers.

In the vessel-based evaluation, the DL algorithm had a higher sensitivity (65.7%) and

negative predictive value (NPV) (78.8%) and a significantly higher area under the curve

(AUC) (0.83, p < 0.001). In the patient-based evaluation, the DL algorithm achieved a

higher sensitivity (90.0%), NPV (52.2%) and AUC (0.81). Generalizability analysis of the

DL algorithm was conducted by comparing its diagnostic performance in subgroups

stratified by sex, age, geographic area and CT scanner type. The AUCs of the DL

algorithm in the aforementioned subgroups ranged from 0.79 to 0.86 and from 0.75 to

0.93 in the vessel-based and patient-based evaluations, both without significant group

differences (p > 0.05). The DL algorithm significantly reduced post-processing time (160

[IQR:139–192] seconds), in comparison to manual work (p < 0.001).

Conclusions: The DL algorithm performed no inferior to expert readers in CAD

diagnosis on CCTA and had good generalizability and time efficiency.

Keywords: coronary artery disease, computed tomographic angiography, deep learning, invasive coronary

angiography (ICA), diagnostic test
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INTRODUCTION

Coronary computed tomography angiography (CCTA) is a non-
invasive tool with a high diagnostic accuracy and negative
predictive value (NPV) in the estimation of coronary narrowing
(1). Nevertheless, the CCTA examination workflow is time
consuming and labor intensive, with an average post-processing
and reporting time ≥30min (2). With a growing number of
coronary artery disease (CAD) patients (3, 4), the supply-demand
imbalance of CCTA has become a growing problem. Therefore,
the acceleration of the current CCTA workflow is imperative.

Deep learning (DL) has been used to assist in the imaging
interpretation of CAD (5, 6), incorporating the risk stratification
of patients (7–9) and the segmentation and quantification of
cardiac and coronary structures (10–12). The generalizability of
DL-based models is of increased importance because overfitted
models could hardly be applied in real-world clinical practice.
Recently, we developed a DL-based fully automated algorithm
to streamline CCTA reconstruction and interpretation workflows
and found that the DL algorithm significantly improved the
time efficiency and diagnostic consistency of CCTA (13, 14).
In addition, by using invasive coronary angiography (ICA) as
a standard reference, the accuracy of the DL algorithm was
not inferior to that of expert readers. However, the CCTA data
were acquired from a single center with only one or two types
of computed tomography (CT) scanners, and the diagnostic
performance and reproducibility of the DL algorithm still need
to be evaluated.

Accordingly, we used a completely external multi-center
dataset to estimate the diagnostic accuracy and generalizability
of the DL algorithm in comparison to ICA. The CCTA data
were obtained from 27 sites (across 5 geographic areas), 4 types
of vendors and 5 brands of CT scanners. There are two aims
of our study: (a) to compare the diagnostic accuracy of the DL
algorithm with that of expert readers in a larger sample; and
(b) to determine whether the DL algorithm performs robustly
for data obtained from patients with different ages, sexes, and
geographic information and for data acquired from different
types of CT scanners.

METHODS

Study Design and Datasets
Patients with suspected CAD from 27 hospitals and 5 geographic
areas (Northeast, Northwest, South, North and East China)
(Supplementary Table 1) were retrospectively enrolled between
January 2017 and August 2019. The study was registered at the
Chinese Clinical Trial Registry (ChiCTR1900021867), and the
protocol was approved by the local institutional review boards
of each of the 27 enrolling hospitals in China, and the informed
consent was waived. Each participating hospital incorporated
CCTA and ICA into daily clinical practice. The inclusion criteria
were the accomplishment of CCTA followed by ICA within 6
months. The exclusion criteria were as follows: missing CCTA or
ICA data, history of coronary artery bypass grafting or stenting,
coronary anomalies, poor image quality of ICA data or young age
(<18 years).

In accordance with the Society of Cardiovascular Computed
Tomography (SCCT) guidelines or each site’s institutional
policy (15), all image acquisition and image post-processing for
CCTA and ICA data were performed with no restrictions on
the CT scanner type or the type of iodinated X-ray contrast. All
the CCTA data were acquired on CT scanners of 64-detector
rows or greater of 5 scanner brands: GE Medical Systems
(Discovery CT750, Revolution CT), Philips Medical Systems
(iCT), Siemens Healthineers (SOMATOM Force, SOMATOM
Definition Flash, SOMATOM Definition AS+, Biograph),
Toshiba (Aquilion ONE) and Shanghai United Imaging
Healthcare (UIH uCT760) (Supplementary Figure 1). The CT
scanner type differed by center. The type of electrocardiographic
gating method was defined as either retrospective helical gating
or prospective axial triggering. The tube potential (kV) ranged
from 70 to 140 kV (Table 1 and Supplementary Table 2).
Datasets were reconstructed retrospectively with iterative
reconstruction and electrocardiography editing when necessary.
The phase with optimal image quality was used for further
CCTA analysis.

Manual Post-processing and Visual
Assessment of Coronary Stenosis
Reformats images including maximum intensity projection
(MIP), multi-planar reformation (MPR), curved planar

TABLE 1 | Baseline information.

Variable All patients (n = 527)

Sex

Male 353/527 (67.0%)

Female 174/527 (33.0%)

Age (years) 62.2 ± 10.2

HR (bpm) 65.9 ± 14.3

BMI (kg/m2 ) 24.6 ± 3.0

Hypertension 310/507 (61.1%)

Hyperlipidemia 79/456 (17.3%)

DM 133/497 (26.8%)

Smoking 207/486 (42.6%)

CAD history 24/513 (4.7%)

Tube potential

≤80 kV 17/527 (3.2%)

90 ∼ 110 kV 178/527 (33.8%)

≥120 kV 332/527 (63.0%)

DLP (mGy × cm) 544.0 [298.1–974.5]

Numbers of diseased vessels on ICA

LM disease 12

0 vessel disease 92

1 vessel disease 210

2 vessel disease 170

3 vessel disease 55

Data are n/N (% of non-missing data), mean (SD) or median [interquartile range].

HR, hear rate; BMI, body mass index; DM, diabetes mellitus; CAD, coronary artery

disease; DLP, dose length product; ICA, invasive coronary angiography; LM, left main.
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FIGURE 1 | Manual and deep learning (DL)-based fully automated pipeline of coronary computed tomography angiography (CCTA) examination and interpretation.

(A,B) displays the manual and DL-based pipeline respectively. In the DL-based pipeline, the volume rendering, curve plannar reformation, maximum intensity

projection and axial images are automatically presented. The stenosis reports including the position of the lesion, the plague types and percentage of stenosis are also

automatically displayed.

reformation (CPR) and volume rendering (VR) were obtained on
a on an image analysis workstation (GE Advantage Workstation
4.7, GE Healthcare, Milwaukee, Wisconsin). The interpretation
of the CCTA was performed by 10 board-certified radiologists,
with experience in judging more than 5,000 CCTA scans.
The 10 readers were blinded to the clinical history of the
enrolled patients, and they were not involved in the patients’
clinical assessment. The 10 readers were divided evenly into 5
groups, and all the anonymous scans were distributed randomly
among the 5 groups. For any group, each of the 2 readers
independently evaluated the anonymized and randomly ordered
scans and was blinded to the ICA results of the enrolled
patients. The image quality of each segment was estimated
by a Likert 5-scale score: a score of 5 indicated excellent
quality (absence of artifacts associated with motion or coronary
calcification); a score of 4 indicated good quality (very mild
artifacts); a score of 3 indicated moderate quality (minor
artifacts); score of 2 was still considered diagnostic quality
(considerable artifacts but maintained visualization of arterial
lumen); and a score of 1 indicated non-diagnostic quality
(with severe motion artifacts or extensive wall calcification).
The coronary artery tree was visually evaluated based on an
SCCT 18-segment model (16) by using axial sections and
curved multi-planar reformations along the vessel centreline
for all segments with image quality scores of ≥1 and without

severe calcification. According to the Coronary Artery Disease
Reporting and Data System (CAD-RADS) (17) guidelines,
luminal diameter stenosis severity was assessed in segments
with a diameter of 1.5mm or greater. The manual pipeline
of post-processing and stenosis assessment is summarized in
Figure 1A.

All CCTA findings were compared with the corresponding
ICA results. The anonymized and randomly ordered ICA scans
were evaluated by another 10 cardiologists with experience
in judging more than 3,000 ICA scans. Following the same
stenosis grading scale as CCTA, 10 independent and blinded
readers were distributed evenly into 5 groups, and each group
graded the coronary stenosis from ICA scans for segments with
a diameter of 1.5mm or greater. In the primary analysis, at
least 50% diameter stenosis was defined as obstructive CAD
for both CCTA and ICA. The secondary analysis defined a
cutoff of ≥70% diameter stenosis for CCTA and ICA. And
this analysis was only used to investigate the generalizability of
the DL-algorithm.

If 2 readers in the same group failed to achieve a unanimous
agreement for a CCTA or ICA finding, the consensus was made
by either a CCTA arbitration panel consisting of 2 radiologists
with experience in judging more than 8,000 CCTA scans or
an ICA arbitration panel consisting of 2 cardiologists with
experience in judging more than 8,000 ICA scans.
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Automated Post-processing and
Assessment
We used a previous-reported DL algorithm (13) to achieve
automatic vascular extraction and stenosis assessment
(Figures 1B, 2). The DL algorithm (CoronaryDoc, ShuKun
Techonolgy, Beijing) can be divided into three parts: coronary
vascular segmentation, coronary artery branches and segments
identification and stenosis detection (Supplementary Figure 2).
A total of 9425 retrospectively collected CCTA data from 45
hospitals in China were used for training (70%), tuning (20%)
and validating (10%) the DL algorithm. Image quality evaluation
and image annotation were performed in a data center, where 32
board-certified radiologists joined the work.

An improved 3-dimensional (3D) U-Net was used for
coronary tree segmentation (18) which combined with a Bottle-
Neck design for coronary arteries and aorta segmentation, and
a connected growth prediction model (CGPM) for solving
the problem of vascular segmentation fracture. The 3D U-net
architecture was trained using the stochastic gradient descent
(SGD) optimizer with a momentum of 0.95, a peak learning rate
of 0.1 for randomly initialized weights, a weight decay of 0.0001,
and an initial learning rate of 0.01 that shrank by 0.99995 after
each training step of 200,000 iterations. Dice loss was used to
evaluate the model performance (19). The model with the lowest
Dice loss on the validation set was selected.

With the segmented coronary tree, the corresponding
centrelines were generated using a 3D skeleton extraction
algorithm (20). Reformat images including MIP, MPR, CPR and
VR were automatically obtained. A fully automatic identification
algorithm for coronary arteries based on SCCT 18-segment

FIGURE 2 | Coronary stenosis detection of expert readers vs. the deep

learning (DL)-based fully automated algorithm, in comparison to invasive

coronary artery (ICA). (A) demonstrates DL-based and (C) displays manual

based volume rendering image of a coronary tree, respectively. (B,D) displays

curve planner reformation image of left anterior descending (LAD) with stenosis

(white arrow) based on DL or manual post-processing, respectively. (E) shows

the lesion (white arrow) of LAD in invasive coronary angiography with a mild

(25–49%) stenosis.

model was applied to identify the branches and segments of
each coronary artery (16). In stenosis detection, V-net Fully
Convolutional Neural Networks for Volumetric Medical Image
Segmentation (V-net) was used (13). Atherosclerotic plaque
can be classified into calcified plaque, non-calcified plaque, and
mixed plaque according to its composition. Due to the different
CT density of the different plagues, two 2D V-net models were
trained to detect the calcified plaque on CPR and the non-
calcified and mixed plaques on straightened MPR, respectively.
Stenosis along the long axis of the vessel was calculated based
on the radius of the plaque and the radius of upstream and
downstream blood vessels.

Statistical Analysis
Statistical analysis was performed using SPSS (version 26.0,
SPSS Inc., Chicago, USA) and MedCalc (version 19.0.7,
MedCalc Software bvba, Ostend, Belgium). Continuous normally
distributed variables are described using the mean ± SD,
while not normally distributed variables are presented as
median (quartiles). Categorical descriptive data are described as
numbers (percentages).

To compensate for the bias caused by (a) simply regarding
non-diagnostic results as either positive or negative results or
(b) the exclusion of non-diagnostic data, multiple imputation
was applied to impute the missing data of the non-diagnostic
results in the visual assessment. The variables of sex, age, area,
rows of detectors, and brand type with complete information
and available visual assessment outcomes of CCTA were used
in multiple imputation models. In addition, a sensitivity analysis
was conducted by using the 3 × 2 table method to classify non-
diagnostic results either as “false negative” or “false positive” (21)
(Supplementary Figure 3).

Receiver operating characteristic analysis was used to compare
the diagnostic performance of the DL algorithm and human
experts, using ICA as a standard reference. For a ≥50%
stenosis segment with a diameter of ≥1.5mm, the sensitivity,
specificity, positive predictive value (PPV), NPV, and AUC with
95% confidence interval (CI) were calculated by the standard
methods (22). AUCs were compared using the non-parametric
approach of DeLong and colleagues (23). Only vessel-based and
patient-based results were evaluated because they were the most
clinically meaningful.

To estimate the generalizability of the DL algorithm, AUCs
were compared in sex-, age-, geographic- and scanner type-
based subgroups.

Time comparison of the DL algorithm vs. manual work was
performed by using Wilcoxon signed-rank test.

RESULTS

Study Participants
Five hundred ninety-eight patients were enrolled. A total of 70
patients were excluded for the following reasons: 9 patients had a
time interval ≥6 months between CCTA and ICA, 1 patient had
a history of coronary artery bypass grafting (CABG), 8 patients
had a history of stenting, 50 patients had incomplete or non-
diagnostic ICA data, and 2 patients had coronary anomalies. In
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addition, 2,089 segments were missing, and 610 segments were
excluded because they had diameter <1.5mm. Therefore, 527
patients with 2,073 vessels and 6,787 segments were included in
the analysis (Figure 3).

Table 1 summarizes the demographic characteristics of the
analysis cohort of 527 patients. Overall, in this cohort, the mean
age was 62.2 ± 10.2 years, and 33.0% were females. The vessel-
based prevalence of obstructive CAD was 40.3%, and the patient-
based prevalence was 83.5%.

Vessel-Based Comparison of the
Diagnostic Accuracy of the DL Algorithm
vs. Expert Readers
The sensitivity of the DL algorithm was 65.7 (CI 62.4–68.9%),
which was higher than that of the expert readers, which
was 58.6 (CI 57.2–60.1%). The NPV of the DL algorithm
(78.8%; CI 76.6–81.0%) was also higher than that of the
experts (76.7%; CI 75.7–77.6%). However, the specificity and
PPV of the DL algorithm were lower. Using the 3 ×

2 table method, the additional sensitivity analysis showed
that the DL algorithm performed better than the expert
readers in terms of sensitivity [DL algorithm 65.7% (CI 62.4–
68.9%) vs. experts 51.3% (CI 47.9–54.5%)] and NPV [DL
algorithm 78.8% (CI 76.6–81.0%) vs. experts 73.0% (CI 70.7–
75.3%)], while the specificity of the DL algorithm was lower.
The PPVs of the DL algorithm and experts were similar
(Table 2).

The AUC of the DL algorithm was 0.83 (CI 0.82–0.84),
which was significantly higher than that of the expert
readers, with an AUC of 0.80 (CI 0.79–0.81) (p <

0.001). In the additional sensitivity analysis, the DL
algorithm achieved an AUC of 0.76 (CI 0.74–0.78)

TABLE 2 | Diagnostic accuracy of expert readers vs. deep-learning based fully

automated (DL) algorithm.

Expert readers DL algorithm

(with imputation

method)a
(with the 3 × 2

table method)b

Vessel-based evaluation

Sensitivity (95% CI) 58.6 (57.2–60.1%) 51.3 (47.9–54.5%) 65.7 (62.4–68.9%)

Specificity (95% CI) 92.2 (91.5–92.9%) 88.9 (87.1–90.5%) 85.6 (83.6–87.6%)

PPV (95% CI) 83.6 (82.3–84.9%) 75.6 (72.3–79.0%) 75.5 (72.4–78.5%)

NPV (95% CI) 76.7 (75.7–77.6%) 73.0 (70.7–75.3%) 78.8 (76.6–81.0%)

Patient-based evaluation

Sensitivity (95% CI) 84.0 (82.5–85.7%) 53.6 (48.4–58.6%) 90.0 (86.8–92.7%)

Specificity (95% CI) 71.0 (66.7–75.4%) 59.8 (49.4–70.1%) 55.2 (43.7–66.7%)

PPV (95% CI) 93.6 (92.6–94.7%) 87.1 (83.0–90.4%) 91.0 (88.3–93.6%)

NPV (95% CI) 46.7 (43.0–50.5%) 20.3 (15.2–25.4%) 52.2 (42.4–62.0%)

a indicates the results of the imputed visual assessment.
bmeans the results of the visual assessment with the 3 × 2 table method, which classifies

non-diagnostic results as “false negative” or “false positive.”

PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.

FIGURE 3 | Flow chart of patient enrolment. CCTA, coronary computed tomography angiography; ICA, invasive coronary angiography; CABG, coronary artery

bypass grafting.
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compared with 0.70 (CI 0.68–0.72) for the expert readers
(p < 0.001) (Figures 4A,B).

Patient-Based Comparison of the
Diagnostic Accuracy of the DL Algorithm
vs. Expert Readers
In the comparisons of the imputed visual evaluations, the
sensitivity of the DL algorithm was higher [DL algorithm 90.0
(CI 86.8–92.7%) vs. experts 84.0 (CI 82.5–85.7%)], while the
specificity and PPV of the DL algorithm were lower. The
NPV of the DL algorithm was 52.2 (CI 42.4–62.0%), slightly
higher than that of the experts (46.7; CI 43.0–50.5%). In the
additional sensitivity analysis, the DL algorithm had higher
sensitivity [DL algorithm 90.0 (CI 86.8–92.7%) vs. experts 53.6
(CI 48.4–58.6%)] and NPV [DL algorithm 52.20 (CI 42.4–
62.0%) vs. experts 20.3 (CI 15.2–25.4%)] than the expert

readers. Regarding specificity, the DL algorithm and experts
were similar, and regarding PPV, the DL algorithm performed
better (Table 2).

The AUC of the DL algorithm was 0.81 (CI 0.79–0.83),
which was the same (0.81; CI 0.78–0.83) for the imputed
visual evaluation. By using the 3 × 2 table method, the
AUC of the DL algorithm was significantly higher [DL
algorithm 0.73 (CI 0.67–0.78) vs. experts 0.57 (CI 0.51–0.62)]
(p < 0.001) (Figures 4C,D).

Generalizability of the DL Algorithm
For vessel-based evaluation, the DL algorithm had similar
AUCs in (a) the sex-based subgroups (male and female),
(b) the age-based subgroups (<50 years, 50–69 years and
≥70 years), (c) the geographic-based subgroups (Northeast,
Northwest, South, North and East China), (d) the subgroups

FIGURE 4 | Diagnostic accuracy of expert readers vs. the deep learning (DL)-based fully automated algorithm. (A) shows that the receiver operating characteristic

(ROC) curve of the DL algorithm was higher than that of the imputed visual assessment results in the vessel-based evaluation. (B) displays the ROC curve of the DL

algorithm and that of the expert readers with the 3 × 2 table method in the vessel-based evaluation. (C,D) depicts patient-based group comparisons between the DL

algorithm and expert readers, (C) shows the results of the multiple imputation data, and (D) demonstrates the outcomes of the 3 × 2 table method. The results with

significant group differences are shown with p-values.
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FIGURE 5 | Robustness of the deep learning (DL)-based fully automated algorithm. (A–E) displays the receiver operating characteristic (ROC) curve of the DL

algorithm in different subgroups at the vessel-based level. (A) shows the results of males and females, (B) is the outcome of patients with different ages, (C) depicts

the results of patients from different geographic areas, and (D,E) display the outcomes of data acquired on different rows of detectors and different brands of CT

scanners. (F–J) shows the ROC curve of the DL algorithm in groups stratified by sex (F), age (G), geographic areas (H), rows of detectors (I) and brands of CT

scanners (J) at the patient-based level.

of different detector rows (64 rows, 128 rows, 256 rows and
320 rows) and (e) the subgroups of different CT scanner

brands (GE, Siemens, Philips, Toshiba and UIH) (p > 0.05)
(Figures 5A–E).
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For the patient-based evaluation, the diagnostic performance
of the DL algorithm remained robust in different subgroups (p >

0.05) (Figures 5F–J).
When using ≥70% stenosis a cutoff, the DL algorithm

had similar AUCs in different subgroups (p > 0.05)
(Supplementary Figures 3, 4).

Time Comparison of the DL Algorithm vs.
Manual Post-processing
The median post-processing time by manual work was 837
[IQR:609–1,065] seconds, while DL algorithm (160 [IQR:139–
192] sec) significantly reduced the post-processing time
(p < 0.001).

DISCUSSION

In this multi-center study, we used a completely external dataset
to validate the diagnostic accuracy and generalizability of the
DL algorithm. We found that (a) the DL algorithm performed
no inferior to experts with higher sensitivity, NPV and AUC;
(b) the DL algorithm performed robustly in different subgroups
stratified by sex, age, geographic area, rows of detectors and
brands of CT scanners; (c) the DL algorithm significantly reduced
time cost.

Using ICA as a standard reference, two studies compared the
diagnostic accuracy of the DL algorithm and expert readers. One
reported that the DL algorithm outperformed expert readers with
a vessel-based AUC of 0.87 (13), and the other showed that the
DL algorithm performed equally to expert readers (14). Several
limitations underlie these findings: (a) single-center designs with
a small sample size, (b) CCTA data were acquired from only 1
or 2 types of CT scanners and (c) biases caused by excluding
segments with poor image quality (21, 24). Several other DL-
based automated algorithms have proven useful in distinguishing
stenotic coronary arteries (25, 26). However, these results were
obtained by using human readers’ outcomes rather than ICA as
standard references. Our evaluation of the diagnostic accuracy
of the DL algorithm was based on a multi-center (27 sites in 5
geographic areas) andmulti-vendor (4 types of detector rows and
5 brands of CT scanners) dataset. Instead of excluding segments
with poor image quality or classifying non-evaluable results as
either positive or negative, we used multiple imputation and
the 3 × 2 table method to deal with non-diagnostic segments
for visual assessment, avoiding the biased overestimation of
diagnostic accuracy (21). Because the 3 × 2 table method
classified non-diagnostic results as “false” results, the diagnostic
accuracy based on the 3 × 2 table method was poorer than that
based on multiple imputation. Compared with expert readers,
the diagnostic performance of the DL algorithm was better with
reliable accuracy for the diagnosis of obstructive CAD. The AUCs
of the DL algorithm were 0.83 and 0.81 at the vessel and patient
levels, respectively.

As has been well elucidated, the vital clinical value of CCTA,
which has a non-invasive nature and high NPV, is to rule
out patients without obstructive CAD. Most previous CCTA
studies were performed on populations with a low (∼20%) to
intermediate (∼50%) prevalence of disease (1, 27, 28). NPV

is influenced by the prevalence of disease. Under an 82.4%
prevalence of CAD, a meta-analysis found that the NPV of CCTA
dropped to 42.1% (28). In our study, the 83.5% patient prevalence
of CAD decreased the NPVs of both the expert readers and the
DL algorithm. The NPV of the DL algorithm was 52.2%, which
was still higher than that of the expert readers. Our findings
indicated that the DL algorithm had a better rule-out ability than
visual inspection in patients with a high prevalence of CAD.

Generalizability is a great challenge for DL-based models. If
a model performs well in only a selected population, it could
hardly be applied in clinical practice. To test the generalizability
of the DL algorithm, we compared its diagnostic accuracy in
different subgroups.When≥50% luminal stenosis was diagnosed
as CAD, the AUCs of the DL algorithm varied from 0.79 to 0.88
at the vessel level and from 0.75 to 0.93 at the patient level. Using
≥70% luminal stenosis as a cutoff, the AUCs of the DL algorithm
varied from 0.82 to 0.90 at the vessel level and from 0.77 to
0.91 at the patient level. However, no significant differences were
found among patients with different ages, sexes or geographic
areas or among data acquired from different CT scanners. The
outcome validated the robust performance of the DL algorithm
and implied that the DL algorithm could work for patients in
most hospitals.

Post-processing and interpreting CCTA results are time
consuming and labor intensive. Fatigue from grading large
numbers of images and the subjectivity of image interpretations
usually result in non-negligible intra- and inter-reader variability.
The large and increasing CAD populations as well as insufficient
high-quality medical resources are deteriorating the supply-
demand imbalance (29). Previous studies compared the post-
processing and diagnostic time between the DL algorithm and
humans and found that the DL algorithm displayed outstanding
time efficiency (saving >80% time) (13, 14). In our study,
the DL algorithm performed faster and no inferior to expert
readers, and the DL algorithm remained robust in diagnosing
CAD. Therefore, the DL algorithm will potentially improve the
current CCTA workflow by reducing the time cost, promoting
diagnostic consistency and retaining high diagnostic accuracy.
The DL algorithm will benefit both patients and clinicians in
several aspects. First, in the clinical scenario of a large hospital,
patients who undergo CCTA will receive good services faster.
For small health centers that lack professional CCTA clinicians
or radiologists, the DL algorithm can supply patients with a
reliable primary CCTA diagnosis. For clinicians, their accuracy
and efficiency will be improved by the assistance of the DL
algorithm because of the faster and more consistent detection
of CAD. However, it is still worthwhile to consider how to best
combine the strengths of the DL algorithm and clinicians to
optimize the accuracy and efficiency of CCTA.

Our study has several limitations. Firstly, the prevalence of
CAD in our study was very high, thus decreasing NPVs. A
prospective study is needed to test the rule-out ability of the
DL algorithm in a larger population with a lower prevalence of
CAD. Secondly, luminal stenosis was visually assessed on ICA.
Although visual estimation of CCTA and ICA images is most
widely used in practical situation in China, using quantitative
coronary angiography as standard reference may improve
diagnostic performance of the DL algorithm. Thirdly, we only
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used the DL algorithm to diagnose anatomically significant CAD
on CCTA. Since the issue of detecting functionally significant
CAD (using fractional flow reserve derived from CCTA) has
seen a recent explosion of interest (30–32), further studies
will pay more attention to artificial intelligence in investigating
hemodynamic alterations in CAD.

In conclusion, we used a completely external dataset to test the
diagnostic performance of the DL algorithm. In this multi-center,
multi-vendor study, we found that the DL algorithm worked
faster than humans and performed no inferior to experts in terms
of sensitivity, NPV and AUC. The AUCs of the DL algorithm
remained satisfactory without significant group differences in
patients stratified by sex, age and geographic area, as well as data
stratified by CT scanner type. Our study indicated that the DL
algorithm could benefit patients and clinicians due to its good
accuracy, generalizability and time efficiency.
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