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A B S T R A C T

Phenomenological growth models (PGMs) provide a framework for characterizing epidemic trajectories,
estimating key transmission parameters, gaining insight into the contribution of various transmission pathways,
and providing long-term and short-term forecasts. Such models only require a small number of parameters to
describe epidemic growth patterns. They can be expressed by an ordinary differential equation (ODE) of the
type 𝐶 ′(𝑡) = 𝑓 (𝑡, 𝐶;𝛩) for 𝑡 > 0, 𝐶(0) = 𝐶0, where 𝑡 is time, 𝐶(𝑡) is the total size of the epidemic (the cumulative
number of cases) at time 𝑡, 𝐶0 is the initial number of cases, 𝑓 is a model-specific incidence function, and 𝛩 is
a vector of parameters. The current COVID-19 pandemic is a scenario for which such models are of obvious
importance. In Bürger et al. (2019) it is demonstrated that some PGMs are better at fitting data of specific
epidemic outbreaks than others even when the models have the same number of parameters. This situation
motivates the need to measure differences in the dynamics that two different models are capable of generating.
The present work contributes to a systematic study of differences between PGMs and how these may explain
the ability of certain models to provide a better fit to data than others. To this end a so-called empirical
directed distance (EDD) is defined to describe the differences in the dynamics between different dynamic
models. The EDD of one PGM from another one quantifies how well the former fits data generated by the
latter. The concept of EDD is, however, not symmetric in the usual sense of metric spaces. The procedure of
calculating EDDs is applied to synthetic data and real data from influenza, Ebola, and COVID-19 outbreaks.
1. Introduction

1.1. Scope

A wide variety of mathematical models have been used to study
the patterns of growth processes of populations and epidemics in
humans, animals, and plants [1–14]. Here we are especially interested
in dynamic growth models for characterizing epidemic trajectories,
estimating key transmission parameters, gaining insight into the contri-
bution of various transmission pathways, and providing long-term and
short-term forecasts. The recent monograph by Yan and Chowell [15]
provides an introduction to the topic. We herein focus on phenomeno-
logical growth models (PGMs) that only require a small number of
parameters are commonly used to describe epidemic growth patterns,
and which can be expressed by an ordinary differential equation (ODE)
of the type

𝐶 ′(𝑡) ∶=
d𝐶(𝑡)
d𝑡

= 𝑓 (𝑡, 𝐶;𝛩), 𝑡 > 0; 𝐶(0) = 𝐶0, (1.1)

∗ Corresponding author.
E-mail addresses: rburger@ing-mat.udec.cl (R. Bürger), llara@ing-mat.udec.cl (L.Y. Lara-Díaz).

where 𝑡 is time, 𝐶(𝑡) is the total size of the epidemic (the cumulative
number of cases) at time 𝑡, 𝐶0 is the initial number of cases, 𝑓 is
an incidence function that is specific to each PGM under study, and
𝛩 is a vector of parameters. Such models have been used to study
the epidemics of influenza [16–18], Ebola [19–22], Zika [23–25],
Chikungunya [26], and others of global interest. The current COVID-
19 pandemic is a scenario for which such models are of obvious
importance [27–34].

In [16] we demonstrate that some models are better at fitting data of
specific epidemic outbreaks than others even when the models have the
same number of parameters. Consider, for instance, the three-parameter
so-called generalized logistic model (GLM) specified by

𝑓 (𝑡, 𝐶;𝛩) = 𝑟𝐶(𝑡)𝑝
(

1 − 𝐶(𝑡)∕𝐾
)

, 𝛩 = (𝑟, 𝑝, 𝐾), (1.2)

where the parameter 𝑟 > 0 indicates the growth rate (its dimension is
1∕time), 𝐾 is the size of the epidemic, and 𝑝 ∈ [0, 1] is a growth scaling
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parameter that indicates the kind of growth (e.g., exponential vs. sub-
exponential). In the comparative analysis between two models and their
generalizations [16], the GLM was able to capture the trajectories for
37 real datasets describing the progression of epidemic outbreaks. In
fact, this model showed to have the smallest error between the data
and the fit, and the estimated parameters were identifiable, that is, the
average value of each parameter was effectively a central value in the
confidence intervals, where we used the definitions and calculations
introduced in [35] for the error and the confidence intervals.

Although several PGMs could be considered for a given dataset,
little work has been conducted to analyze the differences between
models. Here we define the empirical directed distance between two
PGMs as a measure of differences in the dynamics that each model
is capable of generating. We address questions such as whether the
dynamics of the logistic growth model (LM), defined by

𝑓 (𝑡, 𝐶;𝛩) = 𝑟𝐶(𝑡)
(

1 − 𝐶(𝑡)∕𝐾
)

, 𝛩 = (𝑟, 𝐾), (1.3)

is more similar to that of the Gompertz model (GoM), corresponding to

𝑓 (𝑡, 𝐶;𝛩) = 𝑟𝐶(𝑡) exp(−𝑏𝑡), 𝛩 = (𝑟, 𝑏), (1.4)

where the parameter 𝑏 > 0 describes the exponential decay of the
growth rate 𝑟, or to that of the Richards model (RM)

𝑓 (𝑡, 𝐶;𝛩) = 𝑟𝐶(𝑡)
(

1 − (𝐶(𝑡)∕𝐾)𝑝
)

, 𝛩 = (𝑟, 𝐾, 𝑝). (1.5)

We emphasize that we use the terminologies ‘‘generalized logistic
model’’ (GLM) and ‘‘Richards model’’ (RM) to address different models,
namely those given by (1.2) and (1.5), respectively. Only the model
(1.5) is the one proposed originally in Richards’ paper [4]. That said,
we are well aware that in parts of the literature, for instance in
[36–38], the model (1.5) is referred to as ‘‘a generalized logistic model’’
(cf., e.g., [37]), that is ‘‘generalized logistic’’ and ‘‘Richards model’’ are
used synonymously. We recall that our equation (1.2) is a generali-
zation of the logistic model (1.3) where the exponent 𝑝 is applied to
the first factor 𝐶(𝑡) in (1.3), while the Richards model (1.5) represents
a different generalization that arises from applying an exponent 𝑝 to
𝐶(𝑡)∕𝐾 within the growth-limiting factor 1 − 𝐶(𝑡)∕𝐾.

Before proceeding, we comment that it is arguable whether in the
context of epidemiology the scalar ODE (1.1) is really a phenomenologi-
cal model or simply a generator of functions to be fitted to the available
data. Strictly speaking only the LM can be viewed as an epidemiolo-
gical model since it arises from the well-known susceptible–infectious
(SI) compartmental model in the absence of births and deaths (see,
e.g., [8]). However, the use of the word ‘model’ for (1.1) is not only
very common in the epidemiological literature (including [1,5,16,19–
21,23,30,31,35] of the references cited so far), but we also mention
that the various parameters carry relevant information characterizing
the strength of an epidemic outbreak, much in contrast, say, to abstract
coefficients of a function (e.g., spline function) to approximate data.
That said, we emphasize that the approach of the present work is one of
statistics applied to medicine and biology, and is independent of what
one regards to be the ‘true’ status of (1.1).

There is a need to develop a methodology that helps quantify
the differences in the dynamics obtained from different models that
aim to capture growth processes in the social and natural sciences.
Such a methodology can be helpful to assess which models are more
parsimonious than others in different contexts. In the context of epi-
demic modeling, many models have been developed to investigate the
transmission dynamics and control of infectious diseases [10,14,39].
However, there has not been a systematic study of differences between
models and how differences in dynamics may explain the ability of cer-
tain models to provide a better fit to data than others. Here we aim to
make progress in this direction by focusing on simple models that strive
to capture many of the empirical patterns found in epidemic data. The
main practical reason why one would be interested in understanding
the distance between models stems from the need to understand how
different the solutions from different models are. If two models are able
2

to reproduce the same temporal dynamics, the researcher would be
better off relying on the simpler model. Because a number of PGMs
exist in the literature, we argue that understanding their differences
in terms of the dynamics that they can produce adds to the literature
and will help guide researchers in different applied disciplines select a
reasonably small set of models rather than considering a large set of
models many of which produce very similar results or fits to the data.

To address these questions we measure the differences in the dy-
namics between different dynamics models of the form (1.1). Here we
employ simulated data for three generalized growth models (namely
GLM, GGoM and RM), and with the help of mathematical and compu-
tational methods we calculate the fit and performance errors in terms of
which the empirical directed distances (EDDs) are defined. As we will
show, it turns out that the GLM is closer to the dynamics of the RM. On
the other hand, the generalized Gompertz model (GGoM) defined by

𝑓 (𝑡, 𝐶;𝛩) = 𝑟𝐶(𝑡)𝑝 exp(−𝑏𝑡), 𝛩 = (𝑟, 𝑏, 𝑝). (1.6)

s the farthest from the RM and GLM. This is because the scaling
arameter (𝑝 in (1.2), (1.5) and (1.6)) plays a more significant role in
he GLM since its variation within the GLM causes more changes in its
ynamics than for the other models.

The EDD between two PGMs, say 𝐴 and 𝐵, is based on simulation
tudy that we introduce in the following sections. As the foregoing
iscussion shows, the word ‘‘distance’’ in this work is not to be under-
tood in the mathematical sense as distance function on a metric space;
ather, we employ it to characterize a measure of distance based on
he mean squared error. The terminology of ‘‘distance measure between
odels’’ has been employed elsewhere, cf., e.g., [40].

.2. Related work

To illustrate how models can support different features of epidemic
ata, we can refer to the scaling of epidemic growth that characterizes
he early growth dynamics of epidemics. While some epidemics spread
apidly through a population following an exponential growth phase
uch as pandemic influenza or the ongoing epidemic of the novel
oronavirus emerging from China (COVID-19) [27], some outbreaks
pread more slowly as a result of the mode of transmission or the
ontact network through which the pathogen spreads. For instance,
exually transmitted diseases and Ebola do not spread through the air,
ut require a specific type of intimate contact to spread. In such situ-
tions the disease is expected to spread follow sub-exponential growth
atterns. When a model only supports exponential growth dynamics,
e could expect differences between such a model and more flexible
odels that can capture a range of early epidemic growth dynamics

41].
The authors’ interest in PGMs is mainly motivated by epidemiolog-

cal applications, where the quantity that grows is usually the size of
he population of infected humans. The same models also arise in quite
ifferent contexts. In fact, PGMs are commonly used in fields such as
athematical oncology and population dynamics because they consider

n a simple but (up tome extent and depending on the applications)
ffective way phenomena concerning the growth of cells or of animal
r human populations. In other words these models mirror in a simple
ay phenomena pertaining to these population growth phenomena. In
articular they are utilized to describe the growth of a tumor where
(𝑡) is proportional to the number of cells in the tumor. We refer to

extbook entries, e.g. [42, Ch. 6], [43, Sect. 1.8], [44, p. 39], and [8,
ect. 8.2], the monograph by T.E. Wheldon [45], as well as some classic
eferences cited in most of these works such as Aroesty et al. [46] and
ewton [47]. In particular, in the latter two works it is demonstrated

hat the Gompertz model (1.4), under suitable choices of 𝑟 and 𝑏, agrees
emarkably well with data on tumor growth as long as 𝐶 is not too
mall (as is pointed out in [42,44]). More recent contributions that
tudy, and compare, the applicability of various PGMs to tumor growth
nclude [36–38,48,49].
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One important step in our treatment consists in generating a fit of
ne of the PGMs to data that are either generated by another model
r using real outbreak data. Since the parametric forms of PGMs are
ssentially non-linear, standard least-squares methods are often not
pplicable. Thus, to provide these fits, we resort to the Simulated
nnealing (SA) method. This method is defined in [50] as a power-

ul stochastic search method applicable to a wide range of problems
hat occur in a variety of disciplines including physics, engineering
roblems, mathematical programming, and statistics. In particular, in
he context of epidemiological models, SA has been applied to devise
ptimal time-profiles of public health intervention to shape voluntary
accination for childhood diseases, see Buonomo et al. [51].

The problem can be formulated as follows. Suppose we are given
inite-dimensional solution space , and a function 𝑓 ∶  → R, and

we want find an optimal configuration 𝑥∗ ∈  such that 𝑓 (𝑥∗) =
in𝑥∈ 𝑓 (𝑥). This method has become very popular because the al-
orithm can solve unconstrained and bound-constrained optimization
roblems, especially in the multidimensional case when the objective
unction may have many local extremes and may not be smooth. In
hat case, SA is advantageous because it does not require calculation
f derivatives, and thus be considered as a derivative-free method.
n papers including [52,53] this method has been used for parameter
stimation, which motivated our computation.

.3. Outline of the paper

In the next sections we define the PGMs considered in our study
s well as the numerical method for parameter estimation and the
uantification of the distance between two models. The concept of
mpirical directed distance (EDD) from one PGM to another is detailed
n Section 2. To this end we summarize in Section 2.1 properties of
he models under consideration and recall explicit solutions wherever
vailable. Then, in Section 2.2 we outline the procedure to measure
he EDD from a phenomenological growth model 𝐵 to another phe-
omenological growth model 𝐴, denoted by EDD(𝐵 → 𝐴), which we

summarize in Algorithm 2.1. A crucial role within this algorithm is
played by the SA method (utilized to find the optimal parameters
for model 𝐵 when fitting a dataset generated by model 𝐴), which
is briefly discussed in Section 2.3. Next, in Section 3 we apply the
methodology to four models: LM, GLM, RM (with logistic growth)
and GGoM introduced in Section 1.1 considering synthetic datasets (as
outlined in Section 2.2). Specifically, we introduce in Section 3.1 the
parameters and solution spaces for each of these models, with special
emphasis on the exponent 𝑝. The specific application of the SA method
is discussed in Section 3.2. Then, in Sections 3.3 to 3.6 we present
Experiments 1, 2, 3, and 4 in which we calculate distances from the
LM, RM, GLM, and GGoM to other models, respectively. In Section 4
we apply the methodology to real data of outbreaks of influenza, Ebola,
and COVID-19. Some conclusions are collected in Section 5.

2. Distance between phenomenological growth models

2.1. Notation and solution of PGMs

We begin the discussion with a comment on notation. The no-
tation chosen for the incidence function 𝑓 = 𝑓 (𝑡, 𝐶;𝛩) presupposes
that 𝑡 and 𝐶 are independent arguments. In fact, it is also possible to
rewrite all models utilized herein as autonomous ordinary differential
equations of the form

𝐶 ′(𝑡) = 𝜑(𝐶;𝛩), 𝑡 > 0; 𝐶(0) = 𝐶0. (2.1)

This is directly obvious for the GLM (1.2) and the RM (1.5). Rewriting
the ODEs for the GoM and GGoM (with 0 < 𝑝 < 1) as

exp(−𝑏𝜏) = 1
𝑟

d
d𝜏

ln𝐶(𝜏) and exp(−𝑏𝜏) = 1
𝑟(1 − 𝑝)

d
d𝜏

𝐶1−𝑝
for 0 ≤ 𝜏 ≤ 𝑡,

3

integrating with respect to 𝜏, and substituting the corresponding ex-
pression for exp(−𝑏𝑡) in (1.4) and (1.6), respectively, one obtains

(𝐶;𝛩) =
(

𝑟 + 𝑏 ln𝐶0
)

𝐶 − 𝑏𝐶 ln𝐶

for the GoM and

𝜑(𝐶;𝛩) = 𝐶𝑝
(

𝑏
𝑝 − 1

(

𝐶1−𝑝 − 𝐶1−𝑝
0

)

+ 𝑟
)

, 0 < 𝑝 < 1,

for the GGoM. The original and autonomous forms, (1.1) and (2.1),
are of course equivalent in all cases. However, one or another form
is preferable depending on the context of application of the respective
PGM, that is, on whether dependence of the growth rate on time or on
the current size of population should be emphasized. For instance, as
is pointed out in [46], in the application to tumor growth it considered
more suggestive to relate the specific growth rate for a particular tumor
to its size. On the other hand, in the application to epidemiological data
we wish to compare model curves to given time series of data. Further-
more, we prefer a formulation that allows one to include explicit time
dependence of the incidence rate by external factors at a later stage.
One such external factor could be, for example, the seasonal variation
of temperature. As compromise between these different viewpoints, we
have chosen the dependence 𝑓 = 𝑓 (𝑡, 𝐶;𝛩). Finally, we mention that
additional insight and comparison between different models can also
be achieved from considering the population size and its growth rate
as separate state variables and analyzing the fixed points and stability
of the resulting dynamical system of two scalar equations, as is done
e.g. in [48]. For instance, the GGoM (1.6) can be written as the coupled
system 𝐶 ′ = 𝑎𝐶𝑝, 𝑎′ = −𝑏𝑎 with the initial conditions 𝐶(0) = 𝐶0,
𝑎(0) = 𝑟.

For the growth models summarized in Table 1, 𝑝 = 0 corresponds
to a constant incidence over time, 𝑝 = 1 corresponds to exponential
growth, and any intermediate value 0 < 𝑝 < 1 leads to a model
that describes initial sub-exponential growth dynamics [41,54–56]. In
fact, in prior work we have demonstrated that some epidemics are
characterized by early slower-than-exponential growth using flexible
phenomenological models (see [54,55]).

Three of these models have an initial logistic growth because when
𝑝 = 1 for the GLM and RM, in other words the LM is recovered.
In contrast, this is not the case for the GGoM. (The RM and GLM
show two forms of incorporating the parameter 𝑝 to the LM model to
btain the generalized growth form 𝑟𝐶𝑝(𝑡).) We wish to measure how
lose the logistic models are to each other and to the GGoM, and to
ssess whether two or three parameters are sufficient to recover other
ynamics. We recall the following explicit solutions. The solution of the
M (1.1), (1.3) is given by

(𝑡) =
𝐾𝐶(0) exp(𝑟𝑡)

𝐾 + 𝐶(0)(exp(𝑟𝑡) − 1)
, (2.2)

hat of the GoM (1.1), (1.4) (that is, the GGoM for 𝑝 = 1) by

(𝑡) = 𝐶(0) exp
(

(𝑟∕𝑏)
(

1 − exp(−𝑏𝑡)
))

, (2.3)

hile for the GGoM (1.1), (1.4) we get

(𝑡) =
(

(1 − 𝑝)(𝑟∕𝑏)
(

1 − exp(−𝑏𝑡)
)

+ 𝐶(0)1−𝑝
)1∕(1−𝑝) (where 0 < 𝑝 < 1).

(2.4)

he solution of the RM (1.1), (1.5) is

(𝑡) =
𝐾𝐶(0) exp(𝑟𝑡)

(𝐾𝑝 + 𝐶(0)𝑝(exp(𝑝𝑟𝑡) − 1))1∕𝑝
. (2.5)

s is pointed out in [16], the GLM (1.1), (1.2) does not have a solution
n closed algebraic form for general values 𝑝 ∈ (0, 1). (This point is

also discussed in detail in [57]; the Pütter–Bertalanffy growth equation
studied in that paper includes (1.1), (1.2) as a special case.) For the
GLM we solve the initial-value problem (1.1) numerically whenever
necessary.
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Fig. 1. Process to fit the model 𝐵 to dataset 𝑓𝐴(𝑡, 𝐶;𝛩𝑆 ) generated with model 𝐴.
Table 1
Summary of information on models and parameters.
Phenomenological growth model Parameters

Logistic growth model (LM) 𝛩 = (𝜃1 = 𝑟, 𝜃2 = 𝐾); 𝑟, 𝐾 > 0
Generalized Logistic growth model (GLM) 𝛩 = (𝜃1 = 𝑟, 𝜃2 = 𝐾, 𝜃3 = 𝑝); 𝑟, 𝐾 > 0, 𝑝 ∈ [0, 1]
Richards model (RM) 𝛩 = (𝜃1 = 𝑟, 𝜃2 = 𝐾, 𝜃3 = 𝑝); 𝑟, 𝐾 > 0, 𝑝 ∈ [0, 1]
Generalized Gompertz model (GGoM) 𝛩 = {𝜃1 = 𝑟, 𝜃2 = 𝑏, 𝜃3 = 𝑝}; 𝑟, 𝑏 > 0, 𝑝 ∈ [0, 1]
Phenomenological growth models can capture epidemic growth
atterns, through the relationship between the case incidence curve and
he cumulative incidence curve. The integrated version of (1.1), namely

(𝑡) = 𝐶(0) + ∫

𝑡

0
𝑓 (𝜏;𝐶;𝛩) d𝜏, 𝑡 > 0,

an be approximated by the following formula if we assume that values
f the incidence function 𝑓 (𝑡, 𝐶;𝛩) are given at discrete times 𝑡 = 𝑡𝑘,

𝑘 = 1,… , 𝑛 only:

𝐶(𝑡𝑘) ≈ 𝐶(0) +
𝑘
∑

𝑙=1
(𝑡𝑙 − 𝑡𝑙−1)𝑓 (𝑡𝑙 , 𝐶;𝛩), 𝑘 = 1, 2,… , 𝑛, 𝑡0 = 0,

with 𝑡𝑘 ∈ [0, 𝑇 ]. Thus, we may recover the cumulative curve 𝑡 ↦ 𝐶(𝑡)
in terms of tabulated values of the incidence function 𝑓 (𝑡, 𝐶;𝛩), and
similarly we may approximate 𝑓 (𝑡𝑘;𝐶;𝛩) in terms of given discrete
values 𝐶(𝑡𝑘) as follows:

𝑓 (𝑡𝑘;𝛩) ≈
𝐶(𝑡𝑘) − 𝐶(𝑡𝑘−1)

𝑡𝑘 − 𝑡𝑘−1
, 𝑘 = 1, 2,… , 𝑛,

with 𝑓 (𝑡0;𝐶;𝛩) = 𝐶(𝑡0). (2.6)

2.2. Measuring the distance between PGMs

To determine EDD(𝐵 → 𝐴), we start by defining 𝑆 parameter
sets 𝛩𝑗 , 𝑗 = 1,… , 𝑆 for model 𝐴 for which we determine the incidence
curves, that is, we compute the (exact or numerical) solutions for the
ODE (1.1) for model 𝐴 for each parameter set 𝛩𝑗 , and these are our
datasets to fit model 𝐵. We fit model 𝐵 to each of these curves by using
𝑄 different initial parameter sets to execute a numerical program that
applies a process of minimization to estimate parameters of model 𝐵.
These initial parameter sets, in turn, are created by using a method
of latin hypercube sampling that creates 𝑄 random values within a
4

defined range. For instance, for the parameter 𝐾 we create 𝑄 = 10
values between 0 and 1000. Assume now that 𝑦𝑡𝑖 , 𝑖 = 1,… , 𝑛, are the
points or data for each time 𝑡𝑖 of model 𝐴, and 𝑓 (𝑡𝑖, 𝐶; �̂�), are the
values of fits obtained with model 𝐵, where �̂� is the set of estimated
parameters of model 𝐵. Then we determine the root mean square error
(RMSE)

RMSE ∶=

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑓 (𝑡𝑖, 𝐶; �̂�) − 𝑦𝑡𝑖
)2

to compute the distance between the data curve, tabulated at 𝑡1,… , 𝑡𝑛,
and a fit with model 𝐵 expressed by the values 𝑓 (𝑡𝑖, 𝐶; �̂�), 𝑖 = 1,… , 𝑛.
We select the best fit with the smallest RMSE between the 𝑄 fits for
each of the 𝑆 data curves (see Fig. 1), and then consider the mean of
the 𝑆 best values of RSME as the distance from model 𝐵 to model 𝐴.
Besides, we will also calculate the sum of squared errors (SSE) given
by

SSE =
𝑛
∑

𝑖=1

(

𝑓 (𝑡𝑖, 𝐶; �̂�) − 𝑦𝑡𝑖
)2,

because this quantity naturally arises in the context of least-squares
methods. The necessary computations are summarized in Algorithm 2.1
and in Fig. 2.

Algorithm 2.1 (Calculating EDD(𝐵 → 𝐴)).

Input:

– Parameter sets {𝛩𝑗}𝑗=1,…,𝑆 of model 𝐴 that define the inci-
dence curves

{𝑓𝐴(𝑡, 𝐶;𝛩𝑗 )}𝑗=1,…,𝑆 , 𝑡 ∈ [0, 𝑇 ]

(simulated data).
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Fig. 2. Step by step of measuring the empirical directed distance between two models.

– Initial parameter sets {𝛩𝐵,𝑖}𝑖=1,…,𝑄 of model 𝐵.
– Sampling times 𝑡𝑘, 𝑘 = 1,… , 𝑛 at which the incidence curves

(both of the simulated data and the approximation) are
evaluated.

for 𝑗 = 1,… , 𝑆

𝑖∗(𝑗) ← 1
for 𝑖 = 1,… , 𝑄

(1) Determine the vector of estimated parameters �̂�𝐵,𝑖,𝑗
for the 𝑗th data curve based on the initial parameter
vector 𝛩𝐵,𝑖 by Simulated Annealing.

(2) Calculate

RMSE𝑖𝑗 =

√

√

√

√

1
𝑛

𝑛
∑

𝑘=1

(

𝑓𝐵(𝑡𝑘;𝐶; �̂�𝐵,𝑖,𝑗 ) − 𝑓𝐴(𝑡𝑘;𝐶;𝛩𝑗 )
)2.

(3) if RMSE𝑖𝑗 ≤ RMSE𝑖∗(𝑗),𝑗 then

𝑖∗(𝑗) ← 𝑖

endif

endfor

endfor
Output: the empirical directed distance from model 𝐵 to model 𝐴,

EDD(𝐵 → 𝐴) ← 1
𝑆

𝑆
∑

𝑗=1
RSME𝑖∗(𝑗),𝑗 .
5

2.3. Simulated annealing method for parameter estimation

As we want know the distance between two PGMs, we need numer-
ical methods to calculate the fits from a model 𝐵 to a model 𝐴 and
in some cases to determine solutions of the ODEs. Then to achieve the
best fit it is necessary to estimate parameters, for which we employ
the Simulated Annealing method to minimize the Euclidean distance
between the curve from model 𝐴 and the fit with the estimation
parameters of model 𝐵. The Simulated Annealing (SA) method has
been useful to solve optimization problems [58], in particular for
parameter estimation [52,59,60], as in our case, where the goal here is
to minimize the function

𝛩 ↦ 𝐽 (𝛩) ∶=

√

√

√

√

𝑛
∑

𝑘=1

(

𝑓 (𝑡𝑘;𝐶;𝛩) − data𝑡𝑘
)2,

being 𝑡 ↦ 𝑓 (𝑡, 𝐶;𝛩) the incidence function of a PGM evaluated for a
parameter vector 𝛩 that should satisfy 𝛩 ∈  for some admissible set
 compatible with the algebraic form of 𝑓 for 𝑛 different time points 𝑡𝑘,

here data𝑡𝑘 correspond to data in time series. In our study, the values
data𝑡𝑘}𝑘=1,…,𝑛 are the datasets generated by model 𝐴, and model 𝐵 will
efine the incidence function 𝑓 and the set . Hence, the optimization
roblem at hand can be defined as follows:

ind �̂� ∈  such that 𝐽 (�̂�) = min
𝛩∈

𝐽 (𝛩). (2.7)

his problem is solved by employing the routines exposed in Appendix.

. Application of the methodology

.1. Parameters of specific phenomenological growth models

The methodology of Section 2.2 will allow us to determine the
ontribution of the scaling parameter 𝑝 and to observe the closeness
etween the dynamics of the models 𝐴 and 𝐵, where model 𝐴 ∈
GLM,RM,GGoM} is used to generate simulated data or data curves

and model 𝐵 ∈ {LM,GLM,RM,GGoM}, 𝐵 ≠ 𝐴, is employed to calculate
fits. To assess the contribution of the parameter 𝑝, we select a set of
values of 𝑝 fairly close to 1 but leave other parameters fixed (taking
into account that the parameter 𝑏 of the GGoM depends on the value
of 𝑝). Then, we analyze the distance of model 𝐵 to curves generated
with model 𝐴. For example, if we consider 𝐵 = LM and its fits to
each data curve generated with model 𝐴, we can calculate the RMSEs,
and finally to have the distance from the LM to GLM, RM and GGoM
curves. Furthermore, we also calculate the distance from the GLM to
RM and GGoM curves, the RM to GLM and GGoM curves and finally
from the GGoM m to GLM and RM curves. These processes will be
named Experiment 1, 2, 3, and 4, respectively. (All these distances are
to be understood in the sense of EDD, of course.)

For the experiments we consider the three parameters 𝑟, 𝑝, and 𝐾.
o compare models with equivalent parameters, we choose (as in [16,
ect. 1]) the following expressions for the parameters 𝑏 and 𝑟 within
he GGoM in terms of the parameter 𝐾 and the initial value 𝐶(0):

𝑟 = 1 −
𝐶(0)
𝐾

, (3.1)

𝑏 =

⎧

⎪

⎨

⎪

⎩

𝑟
log(𝐾∕𝐶(0))

if 𝑝 = 1,

𝑟(1 − 𝑝)
𝐾1−𝑝 − 𝐶(0)1−𝑝

if 0 < 𝑝 < 1,
(3.2)

here the expression for 𝑝 = 1 is the limit of that for 0 < 𝑝 < 1, i.e.,
𝑟

log(𝐾∕𝐶(0))
= lim

𝑝→1,𝑝<1

𝑟(1 − 𝑝)
𝐾1−𝑝 − 𝐶(0)1−𝑝

.

Therefore, to standardize the analysis, we consider the parameter set
𝛩 = (𝑟, 𝑝, 𝐾) for all models with 𝐾 = 1000, 𝐶(0) = 1, 𝑟 determined by
(3.1), and 𝑏 calculated from (3.2) in dependence of the value of the
parameter 𝑝, which is allowed to assume one of the values

𝑝 ∈  ∶= {1, 0.995, 0.99, 0.98, 0.95, 0.85, 0.8}.
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Table 2
Summary of parameters for each model curve.

Parameters for GGoM curves Parameters for RM curves Parameters for GLM curves

𝑟 𝑏 𝑝 𝑟 𝑝 𝐾 𝑟 𝑝 𝐾

0.999 0.1446 1.000 0.999 1.000 1000 0.999 1.000 1000
0.999 0.1421 0.995 0.999 0.995 1000 0.999 0.995 1000
0.999 0.1397 0.990 0.999 0.990 1000 0.999 0.990 1000
0.999 0.1349 0.980 0.999 0.980 1000 0.999 0.980 1000
0.999 0.1211 0.950 0.999 0.950 1000 0.999 0.950 1000
0.999 0.0824 0.850 0.999 0.850 1000 0.999 0.850 1000
0.999 0.0670 0.800 0.999 0.800 1000 0.999 0.800 1000
Fig. 3. Data curves for each growth model.
T
I

r
t
s
w
p
c
s
𝑄
r
m
h
t
c

ummarizing, we utilize the parameters

𝑟, 𝑝, 𝐾) = (0.999, 𝑝, 1000) with 𝑝 ∈  .

hese values are used directly for the GLM and RM, while for the GGoM
e employ the corresponding parameters (𝑟, 𝑝, 𝑏) = (0.999, 𝑝, 𝑏) with
= 0.1446 if 𝑝 = 1 and 𝑏 = 0.1421, 0.1397, 0.1349, 0.1211, 0.0824,

nd 0.0670 for 𝑝 = 0.995, 0.99, 0.98, 0.95, 0.85, and 0.8, respectively.
These parameters, listed also in Table 2, produce the data curves

hown in Fig. 3. Roughly speaking, these curves illustrate that the role
f the parameter 𝑝 within the GGoM and GLM is to describe the initial
rowth of the incidence curve, while within the RM the initial phase of
he curves, where values of 𝐶(𝑡) are still fairly small, is almost the same
or all 𝑝-values. Furthermore, we see that with decreasing values of 𝑝
he extremal value (peak) of the incidence curves of the GGoM and GLM
ecreases rapidly, while that of the RM model decreases only slowly.
n addition, the GGoM and GLM exhibit an appreciable shift of the
iming of that maximum (i.e., the peak time increases significantly with
ecreasing 𝑝) while this effect is not much appreciable for the RM (with
he chosen parameters). (For the GGoM and RM the respective closed
ormulas for 𝐶(𝑡), (2.4) and (2.5), may be utilized and differentiated to
iscuss all these properties in explicit form, see [16].)

To help the fits, we generate the data curves from model 𝐴, with
valuations for every 0 < ℎ < 1 time units to have more points or data
or fit model 𝐵 in each case, i.e. we select 𝑡𝑘 = 𝑘ℎ, 𝑘 = 0, 1, 2, 3,… , 𝑛. For
xample, we use temporal meshwidth of ℎ = 0.25 for the GLM curves.

.2. Application of the simulated annealing (SA) method

The SA method will be used to estimate parameters, as presented in
Appendix, where we will use the Matlab function SIMULANNEALBND
o implement the SA algorithm. The objective function to minimize
s (2.7) for parameter vectors 𝛩 and functions 𝑓 that depend on
he choice of model 𝐵 in each case. For simplicity, the application
f SA method, we will use the solutions from model B, where by
tilizing (2.6), we could recover 𝑓 in terms of 𝐶.
 e

6

able 3
nitial parameter set for each model B.
Model 𝐵

LM 𝛩 = (𝑟, 𝐾) GLM 𝛩 = (𝑟, 𝑝, 𝐾) RM 𝛩 = (𝑟, 𝑝, 𝐾) GGoM 𝛩 = (𝑟, 𝑏, 𝑝)

(0, 4) × (0, 1000] (0, 4) × (0, 1] × (0, 1000] (0, 4) × (0, 1] × (0, 1000] (0, 4) × (0, 1] × (0, 1]

For example, the function 𝑓 within the objective function for 𝐵 =
LM is calculated by using the solution 𝐶 to the LM presented in (2.2),
i.e. we use the explicit solution of this model, as we also do for the RM
with (2.5) and the GGoM with (2.3) and (2.4) for the respective cases
𝑝 = 1 and 0 < 𝑝 < 1. However, since the GLM does not have a solution
in closed algebraic form we employ a numerical approximation to solve
the initial value problem to the GLM (see all details in the Appendix).

Then, once the form of the algebraic model under study is given,
we need to define the solution spaces for each model which depend
on the role of each parameter within each model function. Here the
quantities 𝐾, 𝐶(0), and 𝑝 are fixed and the expressions for the pa-
ameters 𝑟 and 𝑏 are given by (3.1) and (3.2), respectively. To search
he solution spaces for each parameter, we consider the conditions
ummarized in Table 1 to define the sets specified in Table 3, where
e select the initial parameter to run the SA algorithm. This algorithm
rovides a solution that varies from run to run since the algorithm
onsists in a random process that utilizes a probability criterion to
elect the optimal value. However, if we apply the SA algorithm to

possible initial parameter sets, then with these solutions we can
educe or limit the solution space between the maximum and the
inimum best parameters shown for the run. This new solution space
elps us to control results and improve the solution and the calculation
ime. This process follows the idea shown in [52] concerning double-
ycle application of SA. The solution spaces that result from the fits for
ach model 𝐵 with each data curve are summarized in Table 4.
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Table 4
Solution spaces for the parameter estimation with each model B and data curves.
Model 𝐵 Model 𝐴

GLM curves RM curves GGoM curves

LM (𝑟, 𝐾) [0.5, 1.1] × (700, 1010) [0.9, 1.1] × (900, 1010) [0.2, 0.5] × [400, 800]

[0.8, 1] × [0.2, 1] × [500, 1010),
0.99 ≤ 𝑝 ≤ 1;

GLM (𝑟, 𝑝, 𝐾) [0.5, 1.5] × [0.4, 0.85] × [800, 1010), [1.5, 1.6] × [0.5, 0.7] × [800, 1000]
0.95 ≤ 𝑝 < 0.99;
[0.5, 1] × [0.4, 0.999] × [900, 1010),
0.8 ≤ 𝑝 < 0.95

RM (𝑟, 𝑝, 𝐾) [0.7, 0.99] × [0.2, 0.999] × [800, 1010) [1.8, 1.9] × [0.05, 0.08] × [800, 1000],
0.95 ≤ 𝑝 ≤ 1
[1.8, 2] × [0.05, 0.08] × [800, 1010),
0.8 ≤ 𝑝 ≤ 0.25

GGoM (𝑟, 𝑏, 𝑝) (0, 3) × (0, 1] × (0, 1] (0, 3) × (0, 1] × (0, 1]
Table 5
RSME for each data curve, where columns 3 to 9 correspond to the error for the indicated value of 𝑝, and column 10 shows
the mean RMSE, that is, EDD(𝐵 → 𝐴).
Model B Model 𝐴 Error RMSE to each fit with model 𝐵 EDD(𝐵 → 𝐴)

𝑝 = 1 𝑝 = 0.995 𝑝 = 0.99 𝑝 = 0.98 𝑝 = 0.95 𝑝 = 0.85 𝑝 = 0.8

LM
GGoM 5.2319 5.1864 5.1430 5.1163 5.0480 4.7069 4.4697 5.1163
GLM 0.1900 0.2455 0.4625 0.8184 1.7021 2.6900 2.6570 0.8184
RM 0.0568 0.0685 0.0955 0.1706 0.4099 1.1989 1.5615 0.1706

RM GGoM 0.6827 0.6804 0.7055 0.7668 0.9285 1.3375 1.4244 0.7668
GLM 0.0037 0.0381 0.0741 0.1347 0.2638 0.3397 0.3066 0.1347

GLM GGoM 0.4712 0.4757 0.4556 0.4481 0.4284 0.3513 0.3015 0.4481
RM 0.0069 0.1536 0.0605 0.1993 0.2477 0.7268 1.6235 0.1993

GGoM GLM 12.1578 11.6221 11.1988 10.2038 7.8028 3.4788 1.8623 10.2038
RM 12.1667 12.1529 12.0017 12.0359 11.4630 10.1060 9.3656 12.0017
Table 6
Experiment 1: parameter estimation for LM with GGoM, GLM and RM data curves.

Parameter estimation for LM

CURVES With GGoM curves With GLM curves With RM curves

With 𝑝 𝑟 𝐾 𝑟 𝐾 𝑟 𝐾

1 0.4193 621.2245 1.0017 1007.1734 1.0012 1001.6787
0.995 0.4149 617.9446 0.9836 997.3534 0.9999 998.2173
0.99 0.4105 617.1784 0.9662 992.6324 0.9989 999.1522
0.98 0.4018 610.0832 0.9310 969.1496 0.9965 996.8109
0.95 0.3756 598.7651 0.8341 941.6386 0.9888 987.6975
0.85 0.2931 554.6741 0.5643 806.5594 0.9600 959.6222
0.8 0.2550 535.9005 0.4597 754.1879 0.9433 946.7694

3.3. Experiment 1: empirical directed distances from the logistic model (LM)
to other models

With the best set of initial parameters and the best parameter
estimation, we have Fig. 4 with the best fits for the LM, where we
can see that the LM is closer to the RM curves, since it captures this
dynamics better than for that of the other models. On the other hand,
LM is further from GGoM curves, this is due to the long time defined for
GGoM data, that the LM exceeds the maximum given by it. A similar
situation occurs when the maximum decreases for GLM curves and time
increases. The RMSEs calculated to measure the EDD are shown in
Table 5 and Fig. 5. It turns out that when the value of 𝑝 is decreased
for the GLM and RM, the error increases more for the GLM than for
the RM while a different situation occurs with the GGoM, since the
error decreases when 𝑝 is decreased, but this change is slower than the
increase of the error for the GLM and RM. The increase of the RMSE
for data generated by the LM is expected because when 𝑝 = 1, the
dynamics of the LM and that of these models should be the same, where
in Table 6 (first row) we can see that the parameter estimation for GLM
and RM data curves with 𝑝 = 1 are closer to real parameters, i.e., to
𝛩 = (𝑟 = 0.999, 𝑝 = 1, 𝐾 = 1000). Another observation about results for
7

parameter estimation summarized in Table 6 is that the growth rate 𝑟
of the LM for data curves generated by the GGoM is naturally smaller
than the growth rate for data generated by the LM, because the GGoM
has a slower increase, where for the same reason for GLM data with
𝑝 = 0.8 the growth rate decreases to 0.4597.

3.4. Experiment 2: empirical directed distances from the Richards model
(RM) to other models

We follow the structure of presentation of results of Experiment 1.
In Fig. 6 we can observe that the RM (in the role of model 𝐵) is
closer to the GLM than to the GGoM, where the fits captures almost
all the dynamics presented for the GLM data curves. Now with the
RMSE calculated, we have effectively the smallest errors for the fit to
GLM data, where in Table 5 we see that the RMSE increases faster with
GGoM data than with GLM data. Besides, the RMSEs for GLM curves
are less than 0.5, evidencing relative closeness between the logistic
models. Concerning the parameter estimation (Table 7), we have a good
approximation between the parameters for GLM when 𝑝 = 1, where the
estimated parameter 𝑝 varies more than the growth rate 𝑟 to capture the
decrease of the maximum value, evidencing a good contribution of this
parameter. On the other hand the variation of the parameter 𝑟 is smaller
than that of 𝑝 and 𝐾 when the RM is used to fit the GGoM curves.

3.5. Experiment 3: empirical directed distances from the generalized logistic
model (GLM) to other models

In Fig. 7, we can see a performance closer to both dynamics with
GLM, where this model captures fairly well the maximum value and the
length time. Observing the RMSEs 5, we can see that these are smaller
than 1.6, as expected when we consider the fits shown in Fig. 7. Now,
analyzing Table 5 we observe that the errors increase faster for RM
(when 𝑝 decreases) than with GGoM, where the errors decrease slowly
when 𝑝 decreases. This behavior may be due to the dynamics of the
GLM, where if the maximum value decreases, the time length increases,



R. Bürger, G. Chowell and L.Y. Lara-Díaz Mathematical Biosciences 334 (2021) 108558

v

Fig. 4. Experiment 1: results of fits of the LM (model 𝐵) to the curves of data generated by the GGoM (top row), GLM (middle row), and GLM (bottom row), for the indicated
alues of 𝑝.
Fig. 5. Experiment 1: illustrative diagram for the empirical directed distances
EDD(LM → GGoM), EDD(LM → RM), and EDD(LM → GLM) based on data curves.
8

Table 7
Experiment 2: parameter estimation for RM with GGoM and GLM data curves.

Parameter estimation for RM

CURVES With GGoM curves With GLM curves

With 𝑝 𝑟 𝑝 𝐾 𝑟 𝑝 𝐾

1 1.9998 0.0800 954.1139 0.9990 0.9999 1000.0513
0.995 1.9999 0.0798 957.9978 0.9876 0.9732 999.5539
0.99 1.9973 0.0789 953.8977 0.9763 0.9476 999.4866
0.98 1.9912 0.0771 944.5345 0.9547 0.8976 997.8995
0.95 1.9431 0.0740 937.1508 0.9000 0.7532 1000.3445
0.85 1.8952 0.0593 892.6791 0.8000 0.4048 998.1613
0.8 1.9238 0.0500 869.3741 0.8551 0.2612 1003.6135
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Fig. 6. Experiment 2: results of fits of the RM (model 𝐵) to the curves of data generated by the GGoM (top row) and the GLM (bottom row), for the indicated values of 𝑝.
Fig. 7. Experiment 3: results of fits of the GLM (model 𝐵) to the curves of data generated by the GGoM (top row) and the RM (bottom row), for the indicated values of 𝑝.
but for the RM data curves, the time length and maximum value are
closer to each other. About parameter estimation (see Table 8), we have
that for the parameter set with the RM curves the values are closer
to parameters of the GLM with 𝑝 = 1, i.e, 𝛩 = (0.999, 1, 1000). This,
9

because, the RM curves vary little of the RM initial curve with 𝑝 = 1.
The previous result contrasts with the fit for GGoM curves, because
when the parameter 𝑝 varies for GGoM curves, the maximum value
decreases and the time length increases, where with the GGoM the
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Table 8
Experiment 3: parameter estimation for GLM with GGoM and RM data curves.

Parameter estimation for GLM

CURVES With GGoM curves With RM curves

With 𝑝 𝑟 𝑝 𝐾 𝑟 𝑝 𝐾

1 1.5402 0.6744 998.0430 0.9994 0.9999 1000.1965
0.995 1.5293 0.6734 986.8504 1.0000 0.9999 999.3734
0.99 1.5054 0.6743 989.5241 1.0000 0.9991 1000.4114
0.98 1.5221 0.6670 992.3809 1.0000 0.9984 1003.5106
0.95 1.5278 0.6508 992.7939 1.0000 0.9961 992.1099
0.85 1.5204 0.5962 994.5254 1.0000 0.9876 971.7100
0.8 1.5112 0.5678 989.0751 0.9888 0.9850 915.3278

Table 9
Experiment 4: parameter estimation for GGoM with GLM and RM data curves.

Parameter estimation for GGoM

CURVES With GLM curves With RM curves

With 𝑝 𝑟 𝑏 𝑝 𝑟 𝑏 𝑝

1 2.3207 0.3237 1.0000 2.3516 0.3279 1.0000
0.995 2.3068 0.3220 1.0000 2.2635 0.3159 1.0000
0.99 2.2932 0.3201 1.0000 2.2761 0.3178 1.0000
0.98 2.1953 0.3068 1.0000 2.4303 0.3326 0.9948
0.95 1.9338 0.2712 1.0000 2.2822 0.3187 1.0000
0.85 1.2596 0.1678 0.9823 2.2986 0.3214 1.0000
0.8 1.2670 0.1500 0.9496 2.2716 0.3180 1.0000

length time is the same when the parameter 𝑝 decreases. For this reason
the parameter estimation for the GGoM curves varies the parameter 𝑝

ore than others.

.6. Experiment 4: empirical directed distances from the generalized Gom-
ertz model (GGoM) to other models

For this experiment, we consider the GGoM model as model 𝐵, and
he models 𝐴 are RM and GLM, with the parameters summarized in
able 2. In Fig. 8 we can see the fits for RM and GLM data curves.
10
his figure indicates that the GGoM does not capture the dynamics
f the logistic models, where the maximum values are very large for
he period of time defined in these data curves. The RMSEs in Table 5
re very large if compared with the previous experiments. The errors
ecrease when the parameter 𝑝 is decreased, but this situation is due

to approximation between the maximum values of the data curves and
the maximum value that the GGoM can reach with the given period of
time.

Finally, the parameter estimation obtained for each fit is summa-
rized in Table 9, where we observe that the parameter 𝑝 is almost fixed.
Being for the RM curves the other parameters almost equally fixed,
this is due to the slow decrease for the maximum value. This contrasts
with the result for the GLM, where the maximum value decreases
faster than for the RM. For this reason the parameters 𝑟 and 𝑏 are
varying. Summarizing, we have in Fig. 9 the distances presented among
the models studied, where each arrow indicates the direction of the
distance from model 𝐵 to model 𝐴.

4. Examples: Application to real data

In order to see the best performance evidenced by the GLM model
when capturing the other dynamics studied in the experiments per-
formed, we present three examples with real data. In this case, we
consider the data of weekly cases of influenza in Chile (24 data points
in total) produced between autumn and winter of 2009 [61], Ebola (51
data points in total) in Sierra Leone dating from 2014 [62] and recent
outbreak of COVID-19 [63] presented in various provinces of China
(excluding Hubei province) (52 data points in total). Since we consider
real data, for the application of the procedure of Section 3 we replace
model 𝐴 by real data but keep employing the same methodology of
Section 3 with model 𝐵, where we also create a refinement of the
real data by interpolation from the cumulative curve 𝐶, achieving for
these examples twice the original number of points. From the RMSEs
calculated and registered in Table 10 and the bar chart of Fig. 10 we
observe that the RMSEs for the non-interpolated data are close to the

double from the RMSEs for the interpolated data, where effectively
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Fig. 9. Comparative graph for each EDD and model.
Fig. 10. Application to real data: bar charts for the RMSE for each real data and refinement time.
Table 10
Application to real data: RSME for different time refinements.
Model Influenza Ebola COVID-19

Interpolation No interpolation Interpolation No interpolation Interpolation No interpolation

LM 28.4864 55.5662 44.5472 90.0674 59.6479 108.9944
GLM 26.2694 49.7601 24.4430 47.8958 21.2940 45.4623
GGoM 52.7972 113.9227 51.8345 94.6347 174.9620 356.6672
RM 29.1628 55.8399 26.2160 53.3493 54.9620 109.9705
GLM meets be the best model with the smaller RMSE to the three
examples.

From the figures of the fits, with and without interpolation (see
Figs. 11 and 12) for three examples, we can observe that the refinement
from real data does not have a great impact on the performance of the
GGoM (red), but in the Ebola case this model for early growth produces
a better fit than others. For the fits made with the LM, we can observe
that for the case of influenza the refinement leaves the fit similar to a fit
without interpolation where for this case, the LM is better than the RM.
A different situation occurs for the Ebola and COVID-19 cases where
for Ebola the maximum value for the incidence curve increases and
the cumulative curve increases close to real cumulative curve, though
this is not better than the fits by the GLM and the RM. For COVID-19
the LM decreases the maximum value for the incidence curve and the
cumulative curve decreases close to the cumulative curve of the RM,
although this is not better than the fits by the GLM and RM. Now if we
observe the fits with the RM and the GLM, we see that their fits though
very similar for Ebola data, the GLM fits are better where the RMSE is
smaller. On the other hand, with influenza data, we can see that for RM
and GLM models, the curve with GLM is above the RM curve, staying
11
in the middle the LM curve, and the situation changes when the data
are interpolated, where the RM curve turns out to be above the GLM
and LM curves, but the GLM produces the best fit with the smallest
RMSE. In the case of COVID-19, the fits with the GLM with and without
interpolated data are very close. A different situation occurs with the
RM where the fits to the interpolated and non-interpolated data are
below the data and therefore with RMSEs bigger than those for the
GLM. Furthermore, Table 11 indicates that for the parameter estimation
the values are very close between the real data and interpolated data,
where for the LM this shows smaller variations and the GGoM model
shows more variations with Ebola data.

5. Conclusions

First of all, let us recall that the purpose of this work is not pri-
marily a fit of determined phenomenological growth models to specific
data but to introduce a general methodology of applying statistics
to medicine and biology. Nevertheless, we may briefly comment the
specific outcome for the five models studied in this paper before coming
to possible extensions.
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Fig. 11. Application to raw data: fits to influenza, Ebola and COVID-19 data.
Fig. 12. Application to interpolated data: fits to influenza, Ebola and COVID-19 data.
able 11
pplication to real data: Parameter estimation for fit with real data.
Model Influenza Ebola COVID-19

Interpolation

LM (0.5561, 2467.9) (0.3141, 8988.2) (0.3413, 9074.6586)
GLM (0.5964, 1, 2228.8) (0.7481, 0.8546, 10989) (3.6232, 0.6869, 12963.9057)
GGoM (1.244, 0.1809, 1) (1.0000, 0.0897, 0.9487) (5.7818, 0.0989, 0.6709)
RM (0.5603, 1, 2655.7) (0.4189, 0.4273, 11057) (0.4188, 0.6302, 9196.4353)

No interpolation

LM (0.5565, 2475.9) (0.3127, 8327.7) (0.3426, 9844.7509)
GLM (0.6003, 1, 2363.1) (0.7640, 0.8515, 11212) (2.7782, 0.7213, 12316.4258)
GGoM (1.2434, 0.1800, 1) (0.8134, 0.0968, 1.0000) (5.0086, 0.1020, 0.6931)
RM (0.55451, 2392.5) (0.4326, 0.4000, 11698) (0.4133, 0.6472, 9145.3252)

Overall, we can say that in light of the results of the application of
he methodology to different types of growth curves, the GLM produces
12
curves that are closer to the (simulated) data than other models, and
the curves produced by the GGoM are most distant to the other models.
Besides, the results indicate that introducing the parameter 𝑝 within
the GLM and RM significantly improves the adjustment compared with
the original logistic model (LM), while most results obtained with the
GGoM lead to parameters 𝑝 ≈ 1 in most fits, that is, the GGoM is
essentially reduced to the GoM with parameters 𝛩 = (𝑟, 𝑏) with 𝑝 = 1.
To further highlight the value of the GLM, we mention that this model
does not only better approximate the dynamics of data obtained by
simulation with other models but as Section 4 illustrates, also captures
better real data due the advantageous contribution of the growth
scaling parameter 𝑝. This fact is also demonstrated in our previous
work [16]. A possible ‘‘mechanistic’’ explanation of the superiority of
the GLM could be related to the different degrees of influence of the
parameters. For example, within the GLM we have 𝐶(𝑡) → 𝐾 as 𝑡 → ∞,
so we simply need to adjust 𝐾 to specify a final size of the epidemic
while varying 𝑟 and 𝑝 does not affect this property. In contrast, as
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Fig. 13. Application to real data: fits with Richards Model (𝑝 > 1) for influenza data.
T
A
m

follows from (2.4) (see also [16]), for the GGoM with 0 < 𝑝 < 1 we
have

𝐶(𝑡) →
(

(1 − 𝑝)(𝑟∕𝑏) + 𝐶(0)1−𝑝
)1∕(1−𝑝) as 𝑡 → ∞,

hich means that the final size of the epidemic depends on a num-
er of parameters, in particular the exponent 𝑝 that is supposed to
haracterize early growth, and on the initial size of the epidemic 𝐶(0),
hich is usually a small number that can hardly be determined with

ertainty. Probably the fact that within the GLM the early and late
tages of the epidemic are dominantly influenced by different param-
ters, namely 𝑝 and 𝑟; and 𝐾, respectively, provides an advantage for
eliable parameter identification.

Our interest in the range 0 < 𝑝 < 1 for the GLM and GGoM
omes from the wish to characterize sub-exponential initial growth, as
s motivated in [54–56]. However, this same parameter 𝑝 can have
nother nature in the RM, where there are studies with 𝑝 > 1, for
xample, the papers [64,65], where we recall that in [16] it was stated
hat the parameter 𝑝 within the RM does not serve as an adjustable
arameter to capture sub-exponential initial growth. Rather, by its
osition within the RM the parameter 𝑝 could allow the shape of upper
art of the cumulative curve to be independent of the shape of the lower
art, i.e., measures the extent of deviation from the S-shaped dynamics
f the classical logistic growth model. Besides, as the parameter 𝑝 tends
o zero, the RM curve tends towards the Gompertz growth curve in the
ense d𝐶∕d𝑡 = 𝑟𝐶(𝑡) ln(𝐾∕𝐶(𝑡)) (see our discussion of the autonomous
orm of the Gompertz differential equation in Section 2.1). There are
ther studies on different forms to generalize PGMs, as [64] which
hows for case of logistic growth, different to our idea of generalized
rowth model with 𝑟𝐶(𝑡)𝑝, where 𝑝 is a scaling parameter. Therefore
uture work will study the EDDs distances between other generalized
GMs. Then if we consider the range 𝑝 > 1 for the RM, we can see
hat this model captures the dynamics of influenza data better than the
LM, as is evidenced in Fig. 13 and Table 12.

We emphasize that our restriction to just five PGMs (namely the
M, GLM, GoM, GGoM, and RM) does in no way represent a limitation
nherent to the present approach. In fact, it is not the intention of
he present work to provide an exhaustive survey of PGMs in epi-
emiology but to introduce a methodology to compare PGMs within
small selection with each other. In this sense, other models could

e examined as well with the same methodology. For instance, one
ould consider the four-parameter so-called generalized Richards model
GRM; see [1,21,23]) given by

(𝑡, 𝐶;𝛩) = 𝑟𝐶𝑝(1 − (𝐶∕𝐾)𝑞
)

, 𝛩 = (𝑟, 𝑝, 𝑞, 𝐾), 𝑟, 𝑞, 𝐾 > 0, 0 < 𝑝 ≤ 1

hat combines the generalizations of the GLM (1.2) and the RM (1.5).
13
able 12
pplication to real data: Results for different time refinements and real data for RM
odel with 𝑝 > 1.
Results Influenza Ebola COVID-19

Interpolation

RMSE 17.2332 26.2223 46,9405
Parameter
Estimation (0.4883, 3, 1993.2) (0.4173, 0.4308, 11036) (0.4551, 0.5408, 9895.1873)

No interpolation

RMSE 28.7735 51.6678 100,3531
Parameter
Estimation (0.49, 2.6641, 2068.1) (0.4228, 0.4191, 11182) (0.4350, 0.5877, 9556.1028)

Finally, we remark that the methodology of the present work could
also be applied to other applications where describing growth by phe-
nomenological models is of interest. As an example, we mentioned in
Section 1.2 the growth of tumors. In fact, there is a wealth of alternative
phenomenological growth models designed for that application, and
to which the present methodology could be applied in future work.
We refer to [36,38,48] for overviews, and as one specific example
the so-called Gomp-ex law (proposed in [45]; see [36]) that for the
autonomous form (2.1) can be specified as

𝜑(𝐶;𝛩) = (𝑡, 𝐶;𝛩)

=

{

𝐶(𝑎 − 𝑏 ln𝐶crit ) if 0 < 𝐶 < 𝐶crit ,
𝐶(𝑎 − 𝑏 ln𝐶) if 𝐶 ≥ 𝐶crit ,

𝛩 = (𝑎, 𝑏, 𝐶crit ),

where the Gompertz law (under suitable choices of the constants 𝑎 and
𝑏) comes into effect only for sufficiently large populations (i.e., whose
size is larger or equal to a given critical size 𝐶crit), but below 𝐶crit
growth is exponential [36].
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Appendix. MATLAB Programs

Several numerical calculations contained in this work have been
performed by using MATLAB routines, in particular, to implement
Simulated Annealing we used different MATLAB functions, such as
SIMULANNEALBND, LHSDESIGN, and ODE23S. In the following we
expose the codes used to compute the parameter estimation, errors, and
the plots presented in Section 3.2.

c l e a r
c lo se a l l

f o r j=1:7
%Ca l l ing to data curves generated with a growth model ( model A)↩

using 7 d i f f e r e n t s e l e c t i o n of parameter p
load ( s p r i n t f ( ' Curves−(% d) . mat ' ,j) )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Data curves are generated rep lac ing the model A so lu t i on
% with the parameters summarized in Table 2 .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Data i d e n t i f i c a t i o n
X0=data(1 ,2) ; timevect=data ( : , 1 ) ; CURVES=data ( : , 2 ) ;
%Generating random 10 s e t s fo r the i n i t i a l parameters ( theta_1 ,↩

theta_2 , the ta _3 )
lhs1=lhsdesign(10 ,3) ; %Lat in hypercube sample of 10 values on ↩

each of 3 var iab le s , assuming in t h i s case 0<theta_1 ,↩
theta_2 <3, and 0<theta_3 <1

fo r i=1:3
theta_1s=3∗lhs1(i , 1 ) ; theta_2s=1∗lhs1(i , 2 ) ; theta_3s=lhs1(i↩

, 3 ) ;
theta1=[theta_1s theta_2s theta_3s ] ;

%F i t data curves using another Growth model ( Model B)
LB=[0 ,0 ,0] ; UB=[3 ,3 ,1] ;%Def ining Lower and Upper Boundaries↩

f o r each parameter of model B
%Implementation of Simulated Annealing algorithm to ↩

func t ion ob j e c t i ve to parameter es t imat ion of model B
ObjectiveFunction = @(x) min_func(x ,timevect ,CURVES ,X0 ,j) ;
[P ,FVAL ,EXITFLAG ,OUTPUT] = simulannealbnd(ObjectiveFunction↩

,theta1 ,LB ,UB) ;

%Parameter Est imat ion r e s u l t s
theta_hat=[];
theta_hat(1)=P(1) ; theta_hat(2)=P(2) ; theta_hat(3)=P(3) ;

%Compute the inc idence curve to Model B with the t a _ha t
[t , G]=slnModelB(theta_hat ,timevect ,X0) ;
Incidence ( : ,i)=G ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% As the GGoM, RM and LM models have e x p l i c i t so lu t ions ,
% the funct ion slnModelB fo r these s i t u a t i o n s correspond
% to t h e i r so lu t i on express ion , but to GLM we used the
% MATLAB funct ion ODE23s to so lve t h e i r ODE equation .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Compute e r ro r s
RMSEB ( : ,i)=sq r t (mean ( (Incidence ( : ,i)−CURVES) . ^ 2 ) ) ;
SSEB ( : ,i)=sum( (Incidence ( : ,i)−CURVES) . ^ 2 ) ;
MAEB ( : ,i)=mean( abs (Incidence ( : ,i)−CURVES) ) ;

%Generated r e s u l t s
Phats(i , : ,j)=P ;
InitialParameter(i , : ,j)=theta1 ;

%Saved r e s u l t s
save ( s p r i n t f ( ' Incidences−(%d) . mat ' ,i) , ' Inc idence ' )

end
save ( s p r i n t f ( 'RMSE−(%d) . mat ' ,j) , 'RMSEB ' )
save ( s p r i n t f ( ' SSE−(%d) . mat ' ,j) , ' SSEB ' )
save ( s p r i n t f ( 'MAE−(%d) . mat ' ,j) , 'MAEB '

end
save ( ' ParametersEst imation . mat ' , ' Phats ' )
save ( ' I n i t i a l Pa r ame t e r s . mat ' , ' I n i t i a l Pa rame te r ' )

%% Function ob j e c t i ve
funct ion Z = min_func(p ,t ,CURVES ,X0 ,i)
[t ,CP]=slnModelB(p ,t ,X0) ;
Z = sum( (CP−CURVES) . ^ 2 , 1 ) . ^ ( 1 / 2 ) ;

end

% Compute of er rors , parameters , and inc idence fo r the smal ler ↩

RMSEs
14
c l e a r
load ( ' ParametersEst imation . mat ' , ' Phats ' )
f o r k=1:7

load ( s p r i n t f ( 'RMSE−(%d) . mat ' ,k) , 'RMSEB ' )
load ( s p r i n t f ( ' SSE−(%d) . mat ' ,k) , ' SSEB ' )
load ( s p r i n t f ( 'MAE−(%d) . mat ' ,k) , 'MAEB ' )
load ( s p r i n t f ( ' Incidences−(%d) . mat ' ,k) , ' Inc idence ' )
%coord inates to smal ler RMSE
[˜ ,r]= f ind (RMSEB==min(RMSEB) ) ;
RMSEMin ( : ,k)=RMSEB(r) ;
SSEMin ( : ,k)=SSEB(r) ;
MAEMin ( : ,k)=MAEB(r) ;
CoordinatesRMSE ( : , : ,k)=r ;
%Se l e c t i on of Parameter es t imat ion and inc idence with smal ler ↩

RMSE
ParameterEstimationMin(k , : ) =Phats(r , : ,k) ;
IncidencesMIN= Incidence ( : ,r) ;

save ( s p r i n t f ( ' IncidencesMIN−(%d) . mat ' ,k) , ' IncidencesMIN ' )
end
save ( ' ParametersEstimationMIN . mat ' , ' ParameterEstimationMin ' )

% P lo t t i ng of curves and t h e i r f i t s showed in Figures 4 , 6 , 7 and ↩

8
c l ea r
c lo se a l l

=[1 ,0 .995 ,0 .99 ,0 .98 ,0 .95 ,0 .85 ,0 .8] ;
f i gu r e (1)
fo r i=1:7

load ( s p r i n t f ( ' Curves−(%d) . mat ' ,i) )
load ( s p r i n t f ( ' IncidencesMINB−(%d) . mat ' ,i) , ' IncidencesMIN ' )
hold on
subplot (1 ,7 ,i)
p lo t (data ( : , 1 ) ,data ( : , 2 ) , ' k∗ ' , ' LineWidth ' ,2)
hold on
p lo t (data ( : , 1 ) ,IncidencesMIN , ' r ' , ' LineWidth ' ,2)
s e t ( gca , ' FontSize ' , 10) ;
x l abe l ( ' t ' , ' Font s i ze ' ,10) ;
ax i s ([0 inf 0 65]) ;
s e t ( gca , ' f o n t s i z e ' ,12) ;
t i t l e ( num2str (p(i) ) )
xticks([0 5 10 15 20 30 40 50 60 ] )

end
uptitle( ' F i t with Model B to Model A curves ' )

s e t ( gcf , ' co lor ' , ' white ' )
ig = gcf ;
ig .Units = ' p i x e l s ' ;
ig .Position = [1 1 2000 400];

% Ca lcu la t ion of the so lu t i on to GLM
ODE model d e f i n i t i o n

funct ion dx=GLM(t ,x ,r ,p ,k)
x=r∗(1−(x/k) ) .∗x . ^p ;

end
Appl ica t ion numerical method to approximate the so lu t i on of model ↩

GLM
funct ion [t ,CP]=slnGLM(P ,t ,X0)
Parameters d e f i n i t i o n
=P(1) ; p=P(2) ; K=P(3) ;

[r p K ] ;
Appl ica t ion of method to so lve ODE

[t ,x]=ode23s(@GLM ,t ,X0 , [ ] ,r ,p ,K) ;
Generation inc idence curve
P=[x(1) ; d i f f (x) ] ;

end
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