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Abstract

Hepatocellular carcinoma (HCC) carries a poor prognosis with no effective treatment available 

other than liver transplantation for selected patients. Vascular invasion of HCC is one of the most 

important negative predictor of survival. As the regulation of invasion of HCC cells is not well 

understood, our aim was to study the mechanisms by which galectin 3, a β-galactosidase binding 

lectin mediates HCC cell migration. HCC was induced by N-diethylnitrosamine (DEN) in wild 

type and galectin 3−/− mice, and tumor formation, histology, and tumor cell invasion were 

assessed. The galectin 3−/− mice developed significantly smaller tumor burden with a less invasive 

phenotype than the wild type animals. Galectin 3 was upregulated in the wild type HCC tumor 

tissue, but not in the surrounding parenchyma. Galectin 3 expression in HCC was induced by NF-

κB transactivation as determined by chromatin immunoprecipitation assays. In vitro studies 

assessed the pro-migratory effects of galectin 3. The migration of hepatoma cells was significantly 

decreased after transfection by the galectin 3 siRNA and also after using the Rho kinase (ROCK) 

inhibitor Y-27632. The reorganization of the actin cytoskeleton, RhoA GTP ase activity and the 

phosphorylation of MLC2 were decreased in the galectin 3 siRNA-transfected cells. In addition, in 

vitro and in vivo evidence showed that galectin 3 deficiency reduced hepatoma cell proliferation 

and increased their apoptosis rate. In conclusion, galectin 3 is an important lectin that is induced in 

HCC cells, and promotes hepatoma cell motility and invasion by an autocrine pathway. Targeting 

galectin 3 therefore could be an important novel treatment strategy to halt disease progression.
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Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide 

(1), and its incidence and mortality rates continually rise. In the US it has the fastest growing 

death rate amongst all cancers (2). The only curative treatment approach is liver 

transplantation that is only available to the selected patients with localized early stage 

disease. HCC has a high metastatic and invasive potential leading to early recurrence after 

local ablative therapies or resection. The pathomechanism governing the invasiveness of 

HCC is poorly understood, and thus far there are no treatment strategies that can prevent 

HCC invasion. Galectin 3 is a unique 30 kDa molecule with a chimeric structure (3). As a 

member of the β-galactosidase binding lectin family, galectin 3 (also known as MAC-2) 

controls crucial cellular functions including cell adhesion, survival/apoptosis, regulation of 

adaptive immunity and macrophage activation (4–6). Galectin 3 also plays a role in the 

activation and transdifferentiation of hepatic stellate cells to myofibroblasts and in the 

progression of liver fibrosis (7,8). While normal hepatocytes do not express galectin 3, its 

expression was shown to be induced in patients with HCC (9,10), and in hepatocytes 

neighboring the fibrotic stroma in cirrhotic livers (9). In addition, tumor-associated 

macrophages in other tissues were also described as important sources of galectin 3 (11). In 

patients with HCC higher galectin 3 expression portended a worse overall survival (10). As 

the role of the galectin 3 in HCC progression has not been addressed, our goal was to assess 

the molecular mechanism by which galectin 3 contributes to tumor cell invasion. We have 

recently shown that galectin 3 binds to integrin αvβ3 suggesting it play a role in ligand 

clustering on the cell surface, referred to as “galectin lattice” (12). As integrins can directly 

signal to Rho GTPases modulating the phosphorylation of the myosin light chain (MLC) we 

postulated that galectin 3 regulates the invasiveness of HCC cells by a RhoA/ROCK 

pathway (13). Herein we show that galectin 3 is induced by an NFkB-dependent mechanism 

in HCC, and that galectin 3−/− mice exhibit significantly smaller tumor burden after HCC 

induction with a less invasive phenotype. Galectin 3-induced RhoA/ROCK activation was 

required for the phosphorylation of the MLC2, leading to actin reorganization and migration 

of hepatoma cells. We conclude that galectin 3 is an important regulator of cell invasion 

during HCC progression.

Materials and Methods

Animals, and analysis of HCC Growth

Galectin3−/− mice (kindly provided by Fu-Tong Liu, Department of Dermatology, UC 

Davis) in a C57/B6 background were generated by gene targeting technology, as described 

(14). As controls, age and sex-matched wild-type (wt) littermates were used. Male mice 

were injected by N-diethylnitrosamine (DEN) (5mg/kg, single dose ip. Sigma Aldrich, St. 

Louis, MO) at 4 weeks of age to induce HCC. Control mice were injected with the vehicle, 

only. The mice were then subjected for micro-CT scan and tissue harvest after 52 weeks. 

Tumor formation (size, location, number of satellite lesions) were assessed by micro-CT 

using Fenestra LC as a contrast agent (Inveon, Siemens Health Care Global, Erlangen, 
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Germany). The volumetric analysis was performed with the ASIPro VMsoftware (Concorde 

MicroSystems, Knoxville, TN).

Five wt and four galectin 3−/− mice were included in this study. All procedures were 

reviewed and approved by the Animal Care Committee of the University of California 

Davis.

RNA interference

The immortalized mouse hepatoma cells Hepa1-6 (ATCC, Manassas, VA) were cultured in 

DMEM supplemented with 10% fetal bovine serum. The cells were maintained at 37°C in 

5% CO2 until the cells were 80% confluent, and then used for transfection.

SiRNA to galectin 3 (Santa Cruz Biotechnology, Santa Cruz, CA), or negative control 

scrambled siRNA (25nM, QIAGEN, Valencia, CA) was transfected into Hepa1-6 with 

RiboJuice transfection reagent (Novagen, Madison, WI), according to the manufacturer’s 

instruction.

cDNA transfection

Hepa1-6 cells were transfected with the pCMX-IκBα phosphorylation mutant (kindly 

provided by S. Devaraj (Texas Children’s Hospital, Houston, TX), originally from Addgene, 

pCMX-IkBα developed by Dr. Inder Verma (15), or the control vector (transfection 

efficiency, 60–70%), using the GeneJuice Transfection reagent (Novagen), following the 

manufacturer’s instruction.

Chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) Assay

NFκB binding sites within mouse Gal3 promoter (+200 ~ −2000bp) were identified by 

PROMO online (http://alggen.lsi.upc.es/cgi). ChIP was carried out as described previously 

(16). After agarose gel electrophoresis and the product’s size was confirmed with the 

average length 200–600 bp., rabbit anti-NFκB (p65) (Cell Signaling Technology, Beverly, 

MA) was used to pull down the transcription factor/DNA complex. Purified rabbit IgG 

(Santa Cruz Biotechnology Inc.) served as a control. Immunoprecipitated DNA was 

measured by qPCR for the respective NFκB binding sites using Power SYBR Green PCR 

master mix (Applied Biosystems, Foster City, CA). Primers were designed using Genscript 

online tool (https://www.genscript.com/ssl-bin/app/primer). A fragment (−205 to −137) 

adjacent to putative NFκB binding sites were amplified with primers: forward, 5′-

GCAGGATGAGACCCTGACA-3′, and reverse, 5′-GACCGCACCCAGACTCTC-3′. For 

qPCR results, the relative gene expression profile was achieved by normalizing the ΔCt of 

targets to the Ct of IgG ChIP of each sample. The data were presented as fold enrichment.

Wound closure assay

The scrambled or galectin 3 siRNA-transfected Hepa1-6 cells were incubated in the 

presence or the absence of recombinant galectin 3 (1μM, provided by Dr. F-T Liu, UC 

Davis). After 48 hours of transfection, the cultures were scraped with a single-edged razor 

blade. Twenty four hours later, five microscopic fields were evaluated, and the number of 

cells migrating across the wound edge were determined in each field and calculated for each 
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injury. In non-treated cells, migration was also assessed in the presence of Y-27632 (ROCK 

inhibitor, 10μM, Sigma, St Louis, MO). The experiments were repeated three times.

Immunohistochemistry and Immunofluorescence microscopy

The liver/tumor tissue was fixed in 4% buffered formalin and embedded in paraffin. H & E 

and reticulin staining were conducted by the department of pathology, UC Davis. The 

histology was analyzed by a hepatopathologist in a blinded fashion.

To detect galectin 3, the slides (4μm) were deparaffinized and rehydrated. For antigen 

retrieving, the slides were boiled in citrate buffer (0.01M, pH6.0). After incubated in 3% 

aqueous H2O2 to ablate endogenous peroxidase, the sections were washed in 0.1% Triton 

X-100 and blocked with the reagents provided by the UltraVision Protein Block (Thermo 

Scientific, Rockford, IL). Sections were then sequentially incubated with primary antibody 

(galectin 3, 1:1000, kindly provided by Dr. F-T Liu (17); glypican 3, 1:100, Abcam, 

Cambridge, MA), secondary HRP conjugated antibody (1:500, Santa Cruz Biotechnology, 

CA). The slides were then treated with DAB Substrates (Abcam) to visualize the signal and 

counterstained with Mayer’s hematoxylin. The vascular invasion was quantified in 5 fields 

in each animal.

Human HCC sections were obtained from the department of pathology, UC Davis. 

Sequential sections were processed for DAB staining to detect galectin 3/glypican 3, and 

galectin 3/NF-κB (p65) following the protocol described. NF-κB (p65) antibody (1:200) 

was purchased from Cell signaling Technology.

Cryostat sections from the frozen liver/tumor tissue, in consecutive sections to those slides 

with H & E staining were co-stained with anti-galectin 3 and F4/80 antibodies (1:200, 

eBioscience, San Diego, CA) followed by fluorescence labeled secondary antibodies (Life 

Technology). The images were analyzed by fluorescent microscopy to assess the 

colocalization of galectin 3 and F4/80. The galectin 3+/F4/80+ cells were counted from 5 

random views each slides. The cryostat sections were also probed with e-cadherin (1:500, 

BD Biosciences, San Jose, CA) to analyze the cell migratory activity. To assess the cell 

proliferation and apoptosis, Ki67 (Abcam) and active caspase-3 (1:500, Cell Signaling 

Technology) staining were performed. The positive cells in 5 fields were counted for each 

mouse.

To detect the cellular localization of RhoA, Hepa1-6 cells were transfected with scrambled 

or galectin 3 siRNA, fixed with 4% paraformaldehyde and permeabilized in 0.2% Triton 

X-100/PBS. After washing, they were blocked with 2% bovine serum albumin followed by 

incubating with anti-RhoA monoclonal antibody (1:40, Santa Cruz Biotechnology) for 16 

hours at 4°C. The slides were then washed and incubated with rhodamine-conjugated 

phalloidin to visualize F-actin filaments. After washing, the secondary Alex Fluor 488-

labeled anti-mouse IgG (1:1000, Life Technologies, Carlsbad, CA) was applied. The images 

were analyzed by fluorescence microscopy.
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Hepa1-6 cells transfected with scrambled or galectin 3 siRNA were treated with fas ligand 

(5ng/ml, 16 hours, Millipore, Billerica, MA), and stained for active caspase 3. The cell 

proliferation was evaluated by Ki67 staining.

RNA extraction and real-time RT-PCR

RNA was extracted from the cells or tissues using RNeasy Mini kit (QIAGEN) following 

the manufacturer’s instruction. cDNA was synthesized using the iScript cDNA Synthesis kit 

(Bio-Rad, Hercules, CA). The SYBR Green DNA Master mix (Applied Biosystems,) was 

used for real-time PCR analysis (Life Technologies). The galectin-3 primers used were 

described previously (8). For e-cadherin, the forward primer was 5′-

CGAGAGAGTTACCCTACATA-3′ and the reverse, 5′-

GTGTTGGGGGCATCATCATC-3′; for vimentin, forward, 5′-

GCACCCTGCAGTCATTCAGA-3′ and reverse, 5′-

CCACTTTCCGTTCAAGGTCAAG-3′.

Rho activation, pull-down assay

Tumor tissue or siRNA-transfected Hepa1-6 cells were lyzed and the supernatant was 

collected for the pull-down assay using a Rho activation assay kit (Millipore,). In brief, the 

cell lysates containing 1mg protein were mixed with glutathione-agarose beads bound with 

Rhotekin, containing a GTP-Rho binding domain. After incubation, the agarose beads were 

washed and collected by centrifugation, then resuspended in the sample buffer containing 

1M dithiothreitol. The active GTP-Rho was released and denatured by boiling. The 

supernatant was collected and separated by SDS-polyacrylamide gel. The GTP-bound RhoA 

was detected by the antibody provided by the kit.

Western Blot analysis

Benign liver and tumor tissue was homogenized in RIPA buffer with protease inhibitor 

cocktails. The protein concentration was determined with the Bio-Rad protein assay kit 

(Thermo Scientific) and 20 μg of protein was separated by SDS–PAGE. The blot was 

probed with anti-galectin3 (kindly provided by Dr. F-T Liu, UC Davis) and anti-GAPDH 

(Trevigen, Gaithersburg, MD) as internal control. Hepa1-6 cells were transfected with 

scrambled or galectin3 siRNA, as above. Fifty μg of protein was used for Western blot. The 

blots were incubated with the appropriate antibodies for 16h at 4 C: anti-phospo-NFκB 

(p65) (Cell Signaling Techology), phospho MLC2 and MLC2 antibodies (Cell Signaling 

Technology), phospho-Akt and total Akt antibodies (Cell Signaling Technology) or the anti-

galectin 3 antibody. The membranes were incubated with horseradish peroxidase-conjugated 

secondary antibodies (Santa Cruz Biotechnology) and the blots were developed by enhanced 

chemiluminescence (Thermo Scientific, Rockford, IL). The intensity of signals was 

quantified with ImageJ (National Institutes of Health, Bethesda, MD). The data were 

normalized to the expression of anti-GAPDH antibody.
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Statistical Analysis

The data shown represent at least three experiments and expressed as the mean ± SEM. 

Differences between groups were compared using one-way analysis of variance (ANOVA) 

associated with the Dunnett’s test. Statistical significance was considered when p<0.05.

Results

Galectin 3−/− mice have a decreased tumor burden and a less invasive phenotype of HCC

To study the role of galectin 3 in an in vivo model of HCC, the wild type and galectin 3−/− 

mice were injected with DEN or corn oil at the age of 4 weeks to induce HCC. Micro-CT 

scans were performed after 52 weeks to assess tumor size by volumetric analysis. (Fig. 1Aa–

d). While in the wt mice the livers were largely replaced by tumors, the tumor burden in the 

galectin 3−/− mice was significantly reduced (**p<0.01, Fig. 1B). The liver tissues were 

harvested and processed for reticulin staining and glypican 3 immunohistochemistry staining 

to confirm the presence of HCC (Fig. 1C). Both wt and galectin 3−/− mice remarkably lost 

reticulin stains in the tumor area (Fig. 1C a, b). They both were positive for another HCC 

marker glypican 3 (Fig. 1C c, d).

Based on the histological analysis (Fig. 2A), HCC from the wt mice exhibited more invasive 

properties with spindle-like cells and frequent vascular invasion (arrows). The tumors from 

the galectin 3−/− mice exhibited a more differentiated, glandular phenotype, with 

histologically normal areas (nl) with portal tracts present. The vascular invasion foci were 

counted in five fields each animal (Fig. 2B). Significantly less vascular invasion was 

observed in the galectin 3−/− livers. The mRNA levels of e-cadherin and vimentin were 

assessed to further evaluate the invasive properties in these tumor tissues (Fig. 2C, D). Wt 

tumors expressed significant lower level of e-cadherin (*p<0.05) and higher level of 

vimentin, suggesting an invasive phenotype compared to the knockout tumors. The e-

cadherin immunofluorescent staining also showed reduced e-cadherin in the wt tumor (Fig. 

2 E).

Fluorescent staining was also performed to detect Ki67 and active caspase 3 to assess the 

cell proliferation and apoptosis (Fig. 2F). The positive cells were quantified as described. 

The wt tumor showed higher proliferation activity and lower apoptosis.

Galectin 3 is upregulated in HCC tumor cells and tumor associated macrophages

Next we examined the expression of galectin 3 in HCC. Sequential sections from human 

HCC were stained with galectin 3 and HCC marker glypican 3 (Fig. 3 A). The galectin 3 

positive areas were highly identical with the glypican 3 positive areas, indicating the 

correlation of galectin 3 and HCC. In mice (Fig. 3B), galectin 3 was highly expressed in the 

DEN tumor, mainly in hepatoma cells; macrophages were positive as well (Fig. 3B, d, 

arrows). No galectin 3 signal was seen in normal hepatocytes (B, a). The induction of 

galectin 3 in HCC was then confirmed with Western blot analysis using benign and resected 

tumor tissues from the wt DEN mice (Fig. 3C, D). The expression of galectin 3 was 

significantly higher in tumors than that in the surrounding parenchyma (***p<0.001). As 

tumor associated macrophages were shown to express galectin 3, consecutive sections were 
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processed for H & E and immunofluorescent staining with galectin 3 and the macrophage 

marker F4/80 (Fig. 3F). Beside the increased galectin 3 expression in the tumor cells, there 

were a significantly higher number of macrophages co-expressing galectin 3 and F4/80 (Fig. 

3F, G b–g, arrowhead) in the tumor tissues compared to the surrounding stroma (**p<0.01).

Galectin 3 induction in hepatoma cells is mediated by NF-κB activation

To study the mechanism of galectin 3 upregulation in hepatoma cells, we focused on NF-

κB, as the induction of NF-κB is a key event to the pathogenesis of HCC (18), and the 

promoter area of galectin 3 has been described to have NF-κB-responsive elements 

(8,19,20). Sequential sections from human HCC were stained for galectin 3 and NF-κB 

(p65) (Fig. 4A). The nuclear staining of p65 was observed in galectin 3 positive cells, 

suggesting the correlation of the activation of NF-κB signaling and galectin 3 expression in 

HCC. Next, tumor tissues and adjacent benign tissue from DEN-treated WT mice were 

processed for ChIP-qPCR assay to assess the transcriptional regulation of NF-κB on the 

galectin 3 promoter. The transactivation of NF-κB within the mouse galectin 3 promoter 

was significantly induced in the tumor tissues (Fig. 4B, *p<0.05). To corroborate our in vivo 

data we transfected Hepa1-6 cells with the pCMX-IκBα (phosphorylation mutant) vector to 

block the NF-κB signaling cascade, or a control vector. The PCR data showed that the 

galectin 3 expression decreased in the pCMX-IκBα-transfected cells (Fig. 4C, ***p<0.001), 

suggesting that NF-kB plays an important role in galectin 3 induction in HCC 

carcinogenesis. To compare the activation of NF-κB in wt and galectin 3−/− tumors, the 

tissues were homogenized for Western blots to detect phospho-p65 (Fig. 4D, E). The 

phospho-65 level was significantly less in the knockout tumors (*p<0.05).

Galectin 3 induces the migration of HCC cells

Because of the observed histological differences, and the smaller tumor burden in the 

galectin 3−/− mice we postulated that galectin 3 modulates the invasive properties of HCC 

cells. Hepa1-6 cells were transfected with scrambled or galectin 3 siRNA, and scratch assay 

was performed. The galectin 3 siRNA –transfected cells showed a significantly lower 

migratory activity compared to the cells transfected with scrambled siRNA (Fig. 4A and B, 

**p<0.01). The inhibition of migration was partially reversed by recombinant galectin 3 

(Fig. 4A, d, and B, ***p<0.001), suggesting that extracellular galectin 3 is also involved in 

regulating HCC cell motility.

We also examined the proliferation and apoptosis rate of these cells (Fig. 5C–E). The 

hepa1-6 cells expressing scrambled or galectin 3 siRNA were stained for Ki67. To evaluate 

the apoptosis, these cells were treated with fas ligand (FSL) prior the staining for active 

caspase 3. The Ki67+ cells were significantly reduced by galectin 3 siRNA (*p<0.05); and 

the active caspase 3+ cells were increased by galectin 3 silencing (**p<0.01). This 

confirmed our in vivo data that galectin 3 deficiency impaired cell proliferation and 

promoted apoptosis in mouse HCC (Fig. 2F).

As cytoskeletal remodeling is crucial in cell migration, next we focused on the galectin 3-

mediated regulation and recruitment of the RhoA GTPase to the leading edge, and the 

reorganization of the actin cytoskeleton. Hepa1-6 cells were transfected with scrambled or 
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galectin 3 siRNA, and immunofluorescence microscopy was done to visualize F-actin 

filaments and RhoA (Fig. 6A). The galectin 3 siRNA-transfected cells exhibited different 

morphology with a more rounded phenotype, whereas the non-transfected or scrambled 

siRNA transfected cells had elongated, fusiform morphology. RhoA and F-actin were co-

localized to the leading edge in the non-transfected and scrambled siRNA transfected cells 

(arrows). In contrast, these signals were cytoplasmic in the cells expressing the galectin 3 

siRNA. To study RhoA activation, a pull-down assay was done to assess the GTP-bound 

RhoA in galectin 3 or scrambled siRNA-transfected cells. RhoA GTPase activation was 

decreased after transfection with the galectin 3 siRNA (Fig. 6B, C, *p<0.05). The RhoA 

activation was also examined in vivo. The wt and the galectin 3−/− tumor tissues were 

processed for the pull-down assay (Fig. 6D, E). The galectin 3−/− tumors showed a lower 

level of active RhoA.

HCC cell migration is Rho-kinase and MLCK mediated

Because Rho kinase (ROCK) is a downstream effector of RhoA in the regulation of 

cytoskeletal reorganization and cell motility, Hepa1-6 cells were incubated with Y-27632 

(ROCK inhibitor), and migration was assessed by a wound closure assay. The cell migration 

was significantly inhibited by Y-27632 (Fig. 7A and B, *p<0.05). The contraction of the 

actin cytoskeleton through activation of myosin 2 is essential in exerting force to induce the 

cells motility (21). The actin-myosin 2 interaction is regulated by the phosphorylation of 

MLC2 on Ser-19 (22). The regulatory light chains of the myosin 2 (MLC2) are known to be 

phosphorylated by the myosin light chain kinase (MLCK) as a downstream target of ROCK 

(22). We found that in the galectin 3 siRNA-transfected Hepa1-6 cells, corresponding to the 

decrease in RhoA and ROCK activity; the phosphorylation of MLC2 was significantly 

reduced (Fig. 7C, D, *p<0.05).

Discussion

Tumor cell migration and locoregional invasion are characteristic features of HCC spread, 

and because of the lack of satisfactory treatment options, these histological findings herald a 

poor prognosis. Because the remodeling of the cytoskeleton is crucial in cell migration, and 

the Rho family of small GTPases are known to regulate the actin cytoskeleton, (23,24) we 

have postulated that galectin 3 regulates and enhances RhoA activity in HCC tumor cells. 

Galectin 3 has been described to trigger signaling cascades by crosslinking with the glycan 

parts of the glycoconjugates (25), and we and others have shown that by binding to integrins 

it could elicit downstream signals affecting cytoskeletal reorganization and phagocytosis in 

hepatic stellate cells (8,12). In the current study we sought to understand the mechanism by 

which galectin 3 controls tumor cell motility. We found that RhoA GTPase activation and 

downstream ROCK and MLC2 phosphorylation leading to actin reorganization were 

dependent on galectin 3. RhoA/ROCK activation were described earlier as correlating to the 

locoregional invasion of human HCC (26), however the upstream regulators or cellular 

targets have not been fully evaluated. Discovering galectin 3 as a proximal inducer of the 

RhoA/ROCK pathway therefore could lead to novel therapeutic strategies. Targeting 

galectin 3 production or interfering with its ability to bind to the lattice could result in a less 

invasive phenotype, and a prolonged survival (27,28).
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Whether the intra-or extra-cellular galectin 3 has a more dominant role in regulating cell 

motility is also an important question. In this study we mainly focused on the mechanistic 

aspects by which intracellular galectin 3 modulates invasiveness. Our data suggest that 

galectin 3 affects tumor cell migration by an autocrine process, as we found that galectin 3 

was significantly induced in HCC cells, and siRNA targeting decreased the migratory 

activity. Nevertheless our data also suggest that galectin 3 produced in a paracrine manner 

likely by tumor associated macrophages can stimulate hepatoma cell motility possibly by 

affecting galectin 3/integrin crosslinking. The dominant cell type corresponding to the major 

source of galectin 3 production in HCC could be further studied in the future in cell specific 

knockout mice.

We have also tested the role of galectin 3 in vivo in the DEN-induced HCC model. The 

results indicated a decreased tumor burden, number of intrahepatic metastases, and a more 

differentiated tumor phenotype with the lack of vascular invasion in the galectin 3−/− mice. 

HCC tumor cells and tumor associated macrophages were both positive for galectin 3. A 

plausible explanation for this is the induction of NF-κB transactivation, as we have shown in 

HCC tumor tissue and Hepa1-6 cells (Figure 4). NF-κB induction is an important step in 

HCC tumorigenesis (29–31), and its link to the increased HCC cell motility is well 

recognized (32,33). Galectin 3 induction of course can occur by other mechanisms as well, 

as it was shown that the epigenetic regulation of galectin 3 by β1 integrin induces cell 

motility (31). Galectin 3 can also be involved in other regulatory pathways in cancer cell 

migration. The expression level of galectin 3 in colon cancer cells is correlated with cell 

migratory activity and this is mediated by K-Ras/Raf/Erk signaling (34). Furthermore, as 

galectin 3 is a binding partner for β-catenin in immortalized breast cancer and colon cancer 

cells (35), it could be involved in the regulation of Wnt/β-catenin signaling cascade in HCC.

In addition our in vitro and in vivo data showed that galectin 3 deficiency in hepatoma cells 

is correlated with decreased proliferative activity and increased apoptosis (Figure 2F and 

Figure 5C). These are in an agreement to the previous findings that galectin 3 promotes cells 

proliferation and protect cells from proapoptotic stimuli (36,37).

Galectin 3 plays an important role in liver fibrosis by inducing the activation of hepatic 

stellate cells and promoting the deposition of the extracellular matrix (7,8). We have 

previously shown that the active myofibroblasts and Kupffer cells secrete galectin 3 (8). As 

the majority of HCCs arise in cirrhotic livers in humans, it is interesting to speculate that 

these cells beside tumor associated macrophages could also be important paracrine sources 

of galectin 3 in HCC tumorigenesis.

In summary, in this paper we have shown that galectin 3 promotes HCC cell migration, by 

inducing RhoA GTP-ase activity, MLC2 phosphorylation, and actin rearrangement required 

for a motile phenotype. In vivo galectin 3−/− mice developed smaller tumor burden with a 

more differentiated phenotype in response to the carcinogen DEN. Development of 

therapeutic strategies targeting galectin 3 could prevent invasion and metastasis, and this in 

turn can lengthen a progression-free period that could bridge to liver transplantation.
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Figure 1. Galectin 3−/− mice exhibit decreased tumor burden compared to the wild type mice
Wild type and galectin 3−/− mice were injected with DEN at 4 weeks of age to induce HCC. 

After 52 weeks, the mice were injected via tail vein with 200μl of the contrast agent Fenestra 

LC and subjected to Micro-CT scan. The tumor size was assessed by volumetric analysis 

(A). The HCC on the CT is depicted as large hypodense areas (arrows) in the wild type 

mouse, (coronal view, a; and horizontal view, c). In the galectin3−/− mice smaller tumors 

were seen (b and d, arrowhead). By volumetric analysis, in the galectin 3−/− mice the tumor 

burden was significantly lower. (B, **p<0.01, N=5). The liver tissues from these mice were 

processed for immunohistochemistry to detect reticulin (C, a and b) and glypican 3 (C, c 
and d). Both wt and galectin 3−/− livers showed reduced reticulin and they were positive for 

glypican 3. This confirmed the presence of HCC in the mice. Bar=100 μm
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Figure 2. Galectin 3−/− tumors show less invasive phenotype
Liver sections from the DEN-injected wild type and galectin 3−/− mice were stained by H&E 

(A). HCC from the wild type (WT) mice exhibited more invasive properties with spindle-

shaped cells whereas tumors from galectin3−/− mice had a more differentiated phenotype 

(nl-normal, tu-tumor tissue. Vascular invasion was observed in WT tumors,(arrows). 

Bar=100 μm. The foci of vascular invasion were counted in 5 fields from each animal (B). 

The wt mice showed significant more foci compared to the knockout mice (**p<0.01, N=4). 

RT-PCR was conducted to measure the mRNA of e-cadherin and vimentin (C, D). The wt 

tumors expressed a significant higher level of e-cadherin (*p<0.05, N=4)) and a lower level 

of vimentin, suggesting a high invasive phenotype compared to the galectin 3−/− tumors. 

Immunofluorescent staining was done on the frozen sections to detect e-cadherin (E). 

Consistent with the PCR data, the wt tumor showed lower expression of e-cadherin. Bar=50 

μm.

The frozen sections were also stained for Ki67 and active caspase 3 (F). The positive cells 

were counted in 5 fields from each animal. The wt tumors showed more Ki67+ cells and less 

active caspase 3+ cells (*p<0.05).
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Figure 3. Galectin 3 is upregulated in HCC tumor cells and tumor associated macrophages
Sequential sections from human HCC patients were used for immunohistochemistry staining 

targeting galectin 3 and glypican 3 (A). The image showed that the galectin 3 positive areas 

were highly identical with the glypican 3 positive areas in human HCC. The 

immunohistochemistry staining for galectin 3 was then conducted in the tissues from normal 

(NL) and wt DEN treated mice (B). Galectin 3 was highly expressed in DEN induced 

tumors (b–d), mainly in hepatoma cells. The high magnification image (B, d) depicted 

tumor-associated macrophages also expressing galectin 3 (arrow). Normal hepatocytes in 

control liver did not express galectin 3 (B, a). Western blot analysis and ImageJ 

quantification showed that galectin 3 expression was significantly higher in the tumor 

tissues (C, D. N=4, ***p<0.001). Western blot assay was also conducted on the wt and 

galectin 3−/− tumors for antibody validation (E). No bands were detected in ~30kDa area in 

the knockout tumors and strong signals were shown in the wt tumors. Immunofluorescence 

and confocal microscopy on consecutive sections to the H&E-stained sections was 

performed to assess galectin 3 (red) and F4/80 (marker for tumor associated macrophages 

TAM, green, F). Analyzing the areas of HCC bordering the surrounding parenchyma, 

clusters of TAM co-expressed galectin 3 and F4/80 (b–d, arrowhead, Bar=50 μm) whereas 

no expression was seen in the normal hepatocytes and F4/80 positive cells were rare in the 

normal tissue (e–g). The tumor tissue carried a significant higher number of galectin 3+/

F4/80+ cells (G, **p<0.01)
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Figure 4. Galectin 3 expression in HCC is induced by NF-κB transactivation
Consecutive sections from human HCC were stained for galectin 3 and NF-κB (p65) (A). 

The nuclear translocation (b, arrows) was observed in galectin 3 positive cells (Bar=50 μm). 

ChIP assay was performed on benign tissue and DEN-induced tumors in WT mice (B). The 

NF-κB-induced transactivation of the Gal3 promoter was significantly induced in the tumor 

tissues compared to the benign controls (N=4, *p < 0.05).

Hepa1-6 cells were transfected with the pCMX-IκBα (phosphorylation mutant blocking the 

nuclear translocation of NF-κB) or the control vectors (C). RT-PCR showed that galectin 3 

expression decreased in the pCMX-IκBα-expressing cells (mean±SEM, N=3, ***p<0.001). 

The NF-κB phosphorylation was examined in wt and galectin 3−/− tumors by Western blots 

(D, E) Less phospho-NF-κB was detected in the knockout tumors (*p<0.05).
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Figure 5. Galectin 3 mediates the migratory activity of hepatoma cells
To analyze the effect of galectin 3 on cell migration, Hepa1-6 cells were transfected with 

either scrambled (Scrsi) or galectin 3 siRNA (Gal3si), and 48 hours later wound closure 

assay was performed (A, B). Non-transfected (NT) cells were used as a control. After 24 

hours, the number of migrating cells significantly decreased following galectin 3 siRNA 

transfection (N=9, **p<0.01) compared to the scrambled siRNA transfected cells. This was 

reversed by exposing the cells to recombinant galectin 3 (1μM for 24 hours), suggesting the 

role of extracellular galectin 3 in the regulation of HCC cell migration. (***p<0.001)

The above siRNA expressing cells were processed for fluorescent staining to detect Ki67 

(C, D). The galectin 3 siRNA significantly reduced the number of Ki67+ cells (*p<0.05, 

N=4). To evaluate apoptosis, the above cells were incubated with fas ligand (FSL, 5 ng/ml, 

16 hr), then stained for active caspase 3 (C, E). The galectin 3 siRNA significantly increased 

the number of active caspase 3+ cells (**p<0.01, N=4).
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Figure 6. Galectin 3 inhibition results in the decrease in RhoA GTPase activity and actin 
reorganization in HCC cells
Hepa1-6 cells were transfected with either scrambled or galectin 3 siRNA. RhoA GTPase 

activity was assessed by pull-down of the GTP- RhoA in non-transfected (NT), scrambled or 

galectin 3 siRNA-transfected cells. RhoA activation was significantly decreased after 

galectin 3 siRNA transfection (B, C, mean±SEM, N=4, *p<0.05). The RhoA activation was 

examined in wt and galectin 3−/− tumors as well (D, E). Less active RhoA was seen in the 

knockout tumors.

Immunofluorescence staining was performed to assess RhoA (A: b, f, j, green) localization 

and phalloidin (A: a, e, i, red) to visualize F-actin filaments. RhoA/F-actin was localized to 

the leading edges in the non-transfected (NT) and scrambled siRNA transfected cells 

(arrows). The galectin 3 siRNA-transfected cells had a more rounded shape with no 

lamellipodia formation and the RhoA staining was mainly cytoplasmic (Bar=20 μm).
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Figure 7. HCC cell migration is regulated by a ROCK and MLCK-mediated pathway resulting 
in MLC2 phosphorylation
Hepa1-6 cells were incubated with Y-27632 (ROCK inhibitor, 10μM), and a wound closure 

assay was performed. ROCK inhibition resulted in a significant decrease in the migratory 

rate compared to the control cells. (A, B; N=4, *p<0.05). The phosphorylation of MLC2 was 

examined as downstream target of galectin 3 and RhoA/ROCK by Western blots (C). 

Densitometry based on 3 independent experiments showed that in the galectin 3 siRNA-

transfected cells, the phosphorylation of MLC2 was significantly reduced (D, N=3, 

*p<0.05).
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