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Molecular subtyping of cancer is recognized as a critical and challenging step towards
individualized therapy. Most existing computational methods solve this problem via multi-
classification of gene-expressions of cancer samples. Although these methods, especially
deep learning, perform well in data classification, they usually require large amounts of data
for model training and have limitations in interpretability. Besides, as cancer is a complex
systemic disease, the phenotypic difference between cancer samples can hardly be fully
understood by only analyzing single molecules, and differential expression-based
molecular subtyping methods are reportedly not conserved. To address the above
issues, we present here a new framework for molecular subtyping of cancer through
identifying a robust specific co-expression module for each subtype of cancer, generating
network features for each sample by perturbing correlation levels of specific edges, and
then training a deep neural network for multi-class classification. When applied to breast
cancer (BRCA) and stomach adenocarcinoma (STAD) molecular subtyping, it has superior
classification performance over existing methods. In addition to improving classification
performance, we consider the specific co-expressed modules selected for subtyping to be
biologically meaningful, which potentially offers new insight for diagnostic biomarker
design, mechanistic studies of cancer, and individualized treatment plan selection.

Keywords: molecular subtyping of cancer, specific co-expression module, network perturbation, multi-
classification, machine learning

1 INTRODUCTION

Precision cancer medicine aims to characterize the distinct biology of an individual or a group of
cancer patients sharing certain commonalities and treat them by targeting the specific oncogenic
event shared by such a group (Lipinski et al., 2016; Russnes et al., 2017; Ozturk et al., 2018; Zhang
et al., 2019). Using breast cancer as an example, the majority of such cancers fall into one of the three
subtypes: estrogen receptor positive (ER+), human epidermal growth factor receptor 2 positive
(HER2+), and triple-negative (Vuong et al., 2014). Distinct treatment plans have been developed to
effectively treat these three subtypes of breast cancer. Patients with ER+ tumors receive endocrine
therapy, supplemented with chemotherapy for some; patients of HER2+ tumors receive targeted
drug therapy or small-molecule inhibitor therapy combined with chemotherapy; and patients of
triple-negative breast cancer are treated using chemotherapy only (Waks andWiner, 2019; Yin et al.,
2020). Clearly, the effectiveness of such a treatment plan depends on our ability to accurately subtype
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cancer tissues with shared biology, particularly common
druggable targets among subgroups of a specific cancer type
(Chaisaingmongkol et al., 2017). This is the focus of the
current study, specifically to identify distinguishing features,
measured using transcriptomic data, only shared by samples of
each specified subtype of cancer (Valle et al., 2020).

Cancer subtyping through applications of machine learning
techniques has been done by numerous authors on multiple
cancer types. Cascianelli et al. developed a classification
method for breast cancer subtyping that employs several
machine learning classifiers to solve the multi-classification
task for breast cancer subtyping (Cascianelli et al., 2020).
Markus et al. modeled and solved the breast cancer subtyping
problem based on integrated analyses of gene expression and
DNA methylation data using a random forest algorithm (List
et al., 2014). Deep-learning algorithms have recently been applied
to tackle the cancer subtyping problem through an end-to-end
approach. Guo, et al. have reported a deep-learning framework to
learn the representation of high-dimensional features derived
from gene expression data and alternative splicing profiles and
solve the subtyping problem of breast cancer (Yang et al., 2018).

While these methods, such as deep learning, have powerful
capabilities in data classification, most of these methods have
limitations in interpretability and tend to require large amounts
of data for model training (Chen et al., 2019), which has clearly
limited the applications of omic-data based subtyping. In
addition, these methods generally rely on gene expression data
for classification and have largely ignored the interaction
information among the expressed genes in cancer, which
generally carries more information than the expression levels
of individual genes (Segura-Lepe et al., 2019; Lee et al., 2020). This
is particularly important for modeling genes in cancer tissues,
knowing that considerable metabolic reprogramming has taken
place in cancer tissue cells, as we have previously demonstrated
(Sun et al., 2020), which could be captured by co-expression
information. Hence, it is worth the effort to develop co-
expression-based classifiers to capture the distinct
reprogrammed metabolisms and hence the corresponding
phenotypes of individual subtypes of cancer.

A few papers have been published on cancer subtyping based
on co-expression information, which classify cancer samples
based on the general characteristics of the relevant co-
expression networks (Liu et al., 2016; Yu et al., 2020). Jiang
et al. developed a multi-classification method for cancer samples
based on differential co-expression analyses (Jiang et al., 2019),
and predicted a sample’s label through calculating its
perturbation on the most specific edges of each subclass-
representing network module. Although this method performs
well in cancer subtyping, there is a lack of interpretability as the
identified edges tend to be unconnected, hence the lack of
functional information.

In this paper, we present a new cancer molecular subtype
classification framework based on a specific co-expression
module and a deep neural network (DNN) named SCM-
DNN, which can identify a robust, distinct co-expression
module for each subtype of a cancer. A co-expression
module is a set of genes whose expressions highly correlate

with each other (Wolf et al., 2014), and a distinguishing co-
expression module is a co-expression module that is associated
with a specific subtype but not other subtypes of a cancer.
Intuitively, a distinguishing co-expression module should reflect
certain unique characteristics of a cancer subtype. Specifically, we
use the TCGA transcriptomics data to construct a co-expression
network over samples of each subtype and then apply weighted
correlation network analysis (WGCNA) (Zhang and Horvath,
2005; Langfelder and Horvath, 2008; Sipko et al., 2018) to
partition the network into co-expression modules. Then we
assess the discerning power of each co-expression module for
cancer subtyping by (1) identifying the most discerning modules
and their most specific edges between samples of the current
subtype and samples of other subtypes; 2) perturbing the
correlation levels of such edges to generate new samples with
co-expression network features for each sample; and 3) then
training the classifier based on such new samples. When
applying this classifier to breast cancer (BRCA) and stomach
adenocarcinoma (STAD), we found it has superior
performance under both macro-average recall (Macro-R) and
macro-average f1-score (Macro-F1) metrics over existing
methods. We consider that this co-expression module-based
subtyping not only provides an improved method for cancer
subtyping but also provides meaningful information about the
unique biology of cancer samples of each subtype, hence
potentially offering new information about the underlying
mechanism of the cancer subtype and suggesting new
individualized treatment targets.

2 MATERIALS AND METHODS

We present a new computational framework, SCM-DNN, shown
in Figure 1 and Figure 2, for subtyping cancer samples.

2.1 Data Processing
RNA-seq data and clinical information of breast cancer and
stomach cancer tissue and normal samples are downloaded
from the TCGA database (Weinstein et al., 2013). These
cancer samples are pre-labeled with their subtype information.
Overall, 113, 437, 37 and 115 samples are labeled as control, ER+,
HER2+, and triple-negative BRCA tissues respectively; and 33,
107, 23, 47, and 50 samples are marked as control, CIN, EBV,
MSI, and GS STAD tissues, respectively. The FPKM value (with
log2 transformation) is used to measure the expression levels in
our analysis. For each cancer type, genes whose average
expression levels are less than 10 over all the samples are
removed, and the median absolute deviation (mad) is used to
estimate the variance of a gene’s expression. In a dataset with
sample size N, the ‘mad’ value of gene X is calculated as follows:

mad � median Xi −median X( )| |( ) i � 1, 2, . . . , N( ). (1)
X = (X1, X2, . . . , Xi, . . . , XN), Xi is the expression value of gene

X of the ith sample. Clearly, the more similar the expression levels
of a gene are across all samples, the closer its “mad” value is to
zero. For our analyses, we only keep the top 90% genes with the
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largest “mad” values. Overall, 14,439 and 7,761 genes are kept for
BRCA and STAD, respectively.

2.2 Construction of Co-Expression
Networks and Generation of the
Co-Expression Modules
For each cancer type, we first construct gene co-expression
networks for each subtype; that is, for a cancer type with T
molecular subtypes, T co-expression networks need to be
constructed. The Spearman correlation coefficient is used to
construct the co-expression networks. According to (Anglani
et al., 2014), although spearman correlation is an efficient way
to construct co-expression networks, its coefficient and statistical
significance depend on the sample size to some extent. Since the
issue of imbalanced sample size always exists, directly
constructing co-expression networks for each category will
lead to incomparability among different categories. To solve
this problem, we perform sampling to construct the co-
expression network for each cancer type.

Given the sample sizes of each subtype {s1, s2, ...sT}, we have
performed F-fold sampling to calculate the correlations for each
subset, with each fold having Ns samples. Ns should be smaller
than min {s1, s2, ...sT}, and F should be large enough to ensure
that all samples are selected at least one time. For the fth fold in lth
subset, corlf represents the correlation values matrix for the co-
expression network, and pl

f represents the corresponding
p-values. The final correlation values and p-values of lth subset
are defined as Formula (2) and (3):

corl � 1
F
∑F
f�1

corlf. (2)

FIGURE 1 | (A) The workflow from data processing to specific edges identification. Take four-subclass classification as an example. Each subtype is represented
as a gene expressionmatrix with n genes after data processing. WGCNA is used to divide whole gene set into different co-expressionmodules. The specific edges of one
subtype are extracted from the specific module of their subtype. The perturbation of these specific edges (gene pairs) is used to generate network features data. (B)
Detailed process of generating one piece of network feature data. The perturbation values of a sample are the difference of specific edges between expanded
network and the reference network.

FIGURE 2 | Sufficient network feature data generation for model training
and prediction. One reference sample set consists of T groups of samples that
from T subtype (T: total number of subclass). Network feature data
corresponding to training samples are used for model training.
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Pl � ∏F
f�1

pl
f

⎛⎝ ⎞⎠1/F

. (3)

Furthermore, we have removed gene pairs in the network
whose associations are not significant (i.e., p-value >0.01) and
genes that do not connect with any other genes in the network. In
the end, we have obtained T co-expression networks {MeanNet1,
MeanNet2, ...MeanNetT} for each subtype. For each MeanNet, we
apply WGCNA to divide it into several co-expression modules.
We set the soft thresholds according to the scale free topology
fitting index R2 coefficient for each subtype. It reweights the
MeanNet by adjusting the coefficient of each co-expression pair
to make the network satisfy the scale-free property. All the genes
are then hierarchically clustered into different groups based on
the weighted network, and the genes that can’t cluster together
with other genes are stored in Module0.

2.3 Identification of the Specific
Co-Expression Modules
A specific co-expression module is defined if the genes of a
subtype are highly correlated in a subtype but weakly
correlated within other subtypes. It is worth noting that we
don’t consider Module0 of each subtype. We identify the
specific co-expression module of each subtype by integrating
the following two scores:

Score 1: Specific aggregation score. If genes of one subset are
concentrated in a module of one subtype but they are scattered in
many different modules for all the other subtypes, it indicates that
these genes have a specific co-expression pattern in this subtype.
According to this idea, we perform a cross calculation among all
the modules of different subtypes to evaluate the specificity of
each module. For moduleMs

i(i � 1, 2, ..., Sn), we first get the gene
intersections of Ms

i and Mt
j. (s: source subtype, Ms

i : the ith
module of subtype s, Sn: number of modules in the source
subtype, Mt

j: the jth module of subtype t, t: target subtype, t ∈
{1, 2, ..T}\s, T is the total number of subtypes). In order to avoid
the bias caused by the number of genes in each module, we will
calculate the overlap ratio between Ms

i and Mt
j as:

Overlapratio s,t,i,j( ) �
|Ms

i ∩ Mt
j|

|Ms
i |

. (4)

If for any t and j, the Overlapratio(s,t,i,j) values ofMs
i are small,

it indicates that the genes in scarcely cluster together in other
subtypes. So, for a module Ms

i , we define Maxoverlapratiosi to
represent the maximal overlap between Ms

i and all the other
modules of other subtypes. Then, we sort all modules’ Max
overlapratio of this subtype in ascending order and the
ranking of Ms

i is equal to its score 1. The lower ranking of
Max overlapratiosi , the more likely Ms

i will be identified as a
specific co-expression module.

Score 2: Correlation significance score. If co-expression
coefficients of the edges in this module are overall significantly
stronger than their coefficients in other module subtypes, then
this module is more likely to be a specific one.

For a certain module Ms
i , the mean co-expression value of its

edges is defined as edgemeansMs
i
. Meanwhile, the mean co-

expression value of these edges on other subtypes’ co-
expression networks is calculated and denoted as edgemeantMs

i

(t: target subtype, t ∈ {1, 2, ..T}\s). If some edges in Ms
i do not

appear in co-expression network of subtype t, their values in
subtype t are recorded as 0. Then the difference between
edgemeansMs

i
and is edgemeantMs

i
is defined as:

△edgemeans,tMs
i
� edgemeansMs

i
− edgemeantMs

i
. (5)

△min meanMs
i
represents the smallest △edgemeans,tMs

i
of Ms

i .
Next we sorted △min meanMs

i
(i � 1, 2, . . . Sn) in a descending

order, their ranking is defined as score 2. Similarly, the lower rank
△min meanMs

i
is, the more likely Ms

i is to be a specific co-
expression module. Taking the sum of score 1 and score 2 as final
score for each module Ms

i(i � 1, 2, . . . Sn), we rearrange all
modules of subtypes in an ascending order, and select the
module with lowest rank as the specific co-expression module
of subtype s.

2.4 Identification of Specific Edges in
Specific Modules
As the sizes of specific modules are different and there are many
edges in each specific module, it is necessary for us to select the
most specific edges that are highly co-expressed only in one
subtype to represent the character of each specific module. In
addition, selecting same number of edges for each subclass can
improve the comparability. If we want to select E specific edges
for each specific module, following steps can be taken. For a gene
pairs (i, j) in the specific co-expression module, their correlation
values on all subtypes are denoted as (cor1(i,j), cor2(i,j), . . . , corT(i,j))
(T is the number of subtypes), and max corx(i,j) is the max value of
corx(i,j)(x � 1, 2, . . . , T)\s. Then, the difference between cors(i,j)
and max corx(i,j) is defined as:

△cors
i,j( ) � cors

i,j( ) −max corx
i,j( ). (6)

The △cors(i,j) of all gene pairs are sorted in descending order,
and the top E gene pairs are specific edges.

2.5 Generation of Network Feature for Each
Cancer Sample
Although specific co-expression modules could capture the
prominent characteristics of each subtype, it is not easy to
transfer these characteristics directly to a single sample. Hence,
our method proposes learning the sample’s network feature by
calculating its perturbation effect when adding it to each specific
module. Intuitively, when a sample is added to the specific co-
expression module of its same subtype, its disturbance to this
module is not significant. Otherwise, when adding this sample to
specific modules of other subtypes, their disturbance is
relatively large.

For each subtype, we randomly select 90% of the samples as
the training set and the remaining 10% as the test set. In order to
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avoid the classification bias due to imbalanced sample sizes of
different subtypes, we generate and amplify new samples by
adding one sample to multiple reference network sets and
ensuring the sample sizes of each subtype are similar for training.

First, we generate a series of reference network sets covering
the specific co-expression edges of each subtype. Reference
network of one subtype is generated by genes in its specific
module, naturally, specific co-expression edges are covered. The
size of samples used for constructing reference networks is
uniformly assigned as P (P is smaller than the sample size of
any subtype). For each subsampling, a reference network set is
generated, including T reference networks corresponding to T
subtypes, and we randomly select P samples from each subtype
several times and generate several reference network sets, shown
in Figure 2.

Then, one cancer sample is added to a reference set, which is T
reference networks, to construct T new co-expression networks,
called expanded networks. The perturbation value of a specific
edge is obtained by calculating the difference between an
expanded network and a reference network.

△corxi � |corx′i − corxi |. (7)
Here, i is the ith specific edge of subtype x, corx′i and corxi are

the correlation value of ith specific edge of subtype x in the
expanded network and reference network, respectively. △corxi
when a sample is added to the reference network, is perturbation
value to ith specific edge. Then, for one cancer sample, it’s T *E
perturbation values are merged into a vector, where E is the
number of specific edges selected for each subtype, generating a
piece of network feature data.

One piece of network feature data shows the characteristics
of a sample at the co-expression network level. In order to
augment the sample size, we add each training sample to
several reference network sets. Hence, we can obtain
enough network feature data for model training even
though there are few cancer samples, which guarantees the
classifiers are able to learn sufficient information for each
subtype. For each test sample, it is also randomly added to
the reference network sets to generate its corresponding new
sample(s). It is worth noting that all the reference networks are
constructed from samples of training sets.

2.6 Construction of Cancer Subtype
Multi-Classifier
We build a fully connected feed forward neural network classifier
with cross-entropy loss function.

L � − 1
N

∑
i

∑T
c�1

yic log pic( ). (8)

Here, the value of y depends on the true label of data i. Let h be
a neural network, in which the activation function of hidden
layers and output layer are ReLu and softmax, respectively. pic is
the probability of the data i belonging to subtype c. N is the size of
the data. The optimization algorithm is stochastic gradient
descent. We apply an early stop strategy to avoid over-fitting

in the training process and take 10-fold cross validation to verify
the performance of the classification method. In prediction, when
adding each testing sample into different reference networks, it
generates several new samples and then gets multiple prediction
labels, voting strategy are used to obtain final prediction label of
this sample.

2.7 Baseline Methods
We compared our method, SCM-DNN with three traditional
filter feature selection methods (Chi-square test, Analysis of
Variance, and Mutual Information), and one state-of-the-art
wrapper feature selection method, (HSIC-Lasso) following
with DNN. In addition, we also compared our method with
one of the few co-expression-based cancer subtyping
methods. Moreover, we compared our method with one of
the few co-expression-based cancer subtyping methods (SCP),
which predicted a sample’s label through calculating its
perturbation on the most specific edges of each subclass-
representing network. In addition, we also compared our
method with DeepCC, which is a deep learning-based
framework integrating functional spectra quantifying
activities of biological pathways for molecular subtyping of
cancer (Gao et al., 2019).

3 RESULTS

3.1 Statistic of Distinguishing
Co-Expression Modules of Each Cancer
Subtype
14439 and 7761 genes were used for the construction of co-
expression networks for BRCA and STAD, respectively. We
decompose the co-expression network into several modules for
each cancer subtype. The number of co-expression modules for
each cancer subtype, and the number of genes and edges in each
specific co-expression module are shown in Table 1.

3.2 Evaluation of the Discerning Power of
the Co-Expression Module for Each
Subtype
To evaluate the discerning power and stability of each co-
expression module between each subtype and the samples of
the other subtypes of a cancer, we have used accuracy, macro-
average recall and macro-average F1-score to avoid possible
issues created by imbalanced sample sizes among the subtypes,
defined as follow.

Accuracy � ∑T
i�1TPi∑T
i�1#i

. (9)

Macro − P � 1
T
∑T
i�1

TPi

TPi + FPi
. (10)

Macro − R � 1
T
∑T
i�1

TPi

TPi + FNi
. (11)
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Macro − F1 � 2*Macro − p*Macro − R

Macro − p +Macro − R
. (12)

Here, #i is the sample size of ith group; TP is for true positives,
FP for false positives, FN for false negatives, and TN for true
negatives.

For BRCA subtyping, we have conducted two experiments by
selecting the top 100 and top 200 distinguishing co-expressed
edges from each co-expression module to evaluate their
discerning power. Considering the relatively small sample size
and the number of features, a neural network with two-hidden
layers is employed to train a classifier, which has 50 and 10 nodes
on the first and the second layer, respectively. We have compared

the performance of our approach with six other published
classifiers (see Methods), each employing the same number of
features as our approach.

The subtyping performance of our method on BRCA samples
along with the performance by other five methods are shown in
Figure 3A. Our method clearly performs better across all the
metrics, especially in terms of macro-avg recall and macro-avg
f1-score. Imbalanced sample sizes tend to create problems for
classification methods, which tend to give higher weights to
subtypes with higher numbers of samples. In BRCA, the
numbers of samples for the four subtypes are 113, 437, 37,
and 115, with HER2+ having the smallest sample size. We
note that the recall values for HER2+ samples are 0.891,

TABLE 1 | Statistics of co-expression modules of each cancer subtype.

Subtypes #Edges of #Modules #Genes in #Edges inCancer
Co-expression Specific SpecificTypes

Network Co-expression Co-expression
Module Module

BRCA ER+ 18002953 37 123 7161
BRCA HER2+ 26774509 20 1834 810674
BRCA Triple 17261163 32 1334 322232

Negative
BRCA Control 54354208 65 698 241789
STAD CIN 5155648 43 124 4483
STAD EBV 12952861 52 75 2328
STAD GS 11937803 29 789 262884
STAD MSI 8714653 18 190 9780
STAD Control 17645626 50 105 5330

FIGURE 3 | Cancer subtyping performance by seven methods: our method SCM-DNN,HSIC-LASSO, ANOVA, Chi-square mutual information, SCP and DeepCC
(A) BRCA subtyping and (B) STAD subtyping with using top100 and 200 distinguishing co-expressed gene pairs.
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0.675, 0.575, 0.475, 0.650, and 0.622 by SCM-DNN, HSIC-lasso,
ANOVA, Chi-square, mutual information and DeepCC,
respectively.

For STAD subtyping, we set the same experimental
parameters, including the organization of the neural
networks as for BRCA breast cancer molecular subtyping
task. The performance by our method vs. the other six
methods is comparable to that on BRCA, with our method
performing the best as detailed in Figure 3B. It is worth
noting that the DeepCC classified cancer samples according
to a large number of genes which are not suitable for feature
selection, so we use all its features and compared it with our
method when selecting 100 features and 200 features,
respectively.

Overall, the results reveal that our method gives the best and
stable subtyping performance, particularly for the subtyping
problems with highly imbalanced sample sizes. We found that

our method always performs best specially in recall and F1-
score, the reason is: we generate sufficient network feature data
for neural network model training, and it avoids the situation
that the classifier only learns sufficient information for the
category with largest scale, instead of categories with small
scale. Hence, our method is superior to other methods when
predict the subtype with smallest scale. In addition, network
feature data can reflect the characteristics of each individual
subtypes. It also proves that specific modules with
differentiation and robustness are conducive to improving
classification performance. We display network feature data
in the form of heat map and find that the samples of the same
subtype naturally gather into one block. Details are shown in
the Supplementary Material.

TABLE 2 | Themost significantly enriched pathways by the genes belonging to top
200 specific edges of each molecular subtype in BRCA.

Pathway p-Value

Controls

GO:cell-cell adhesion 1.59E-05
KEGG:Regulation of actin cytoskeleton 9.65E-05
GO:leukotriene biosynthetic process 5.71E-04
GO:ephrin receptor signaling pathway 7.36E-04
KEGG:Cyanoamino acid metabolism 1.63E-03
KEGG:T cell receptor signaling pathway 1.97E-03

ER+

GO:Wnt signaling pathway 5.94E-03
GO:negative regulation of Wnt signaling pathway 1.73E-02
GO:lens fiber cell development 2.68E-02
GO:positive regulation of DNA-templated 2.68E-02
transcription, initiation
GO:epithelial cell-cell adhesion 3.43E-02
KEGG:HTLV-I infection 4.56E-02
GO:muscle organ development 4.66E-02
GO:eyelid development in camera-type eye 4.92E-02

HER2+

GO:nitrobenzene metabolic process 1.15E-03
GO:substrate adhesion-dependent cell spreading 1.90E-03
GO:negative regulation of extrinsicapoptotic signaling pathway 1.90E-03
GO:skeletal system development 3.18E-03
GO:glutathione derivative biosynthetic process 3.42E-03
GO:outflow tract septum morphogenesis 3.90E-03
GO:xenobiotic catabolic process 3.91E-03
GO:positive regulation of cell migration 4.44E-03

Triple-negative

GO:signal transduction 8.57E-07
GO:neuron migration 1.06E-04
GO:nervous system development 1.94E-04
GO:positive regulation of signal transduction 3.60E-03
KEGG:Thyroid hormone signaling pathway 4.16E-03
GO:positive regulation of phosphatidylinositol 4.52E-03
3-kinase signaling
GO:cellular amino acid metabolic process 8.03E-03

TABLE 3 | Themost significantly enriched pathways by the genes belonging to top
200 specific edges of each molecular subtype in STAD.

Pathway p-Value

Controls

GO:protein phosphorylation 8.83E-05
KEGG:Oxytocin signaling pathway 2.67E-04
GO:apoptotic cell clearance 1.64E-03
GO:peptidyl-serine phosphorylation 1.65E-03
KEGG:Endocrine and other factor-regulated 2.51E-03
calcium reabsorption
GO:vesicle-mediated transport 3.35E-03

CIN

GO:apoptotic process 8.53E-03
GO:steroid metabolic process 1.35E-02
GO:intracellular protein transport 1.61E-02
GO:catecholamine metabolic process 3.64E-02
GO:sulfation 4.43E-02
GO:response to toxic substance 4.78E-02

EBV

KEGG:Metabolic pathways 5.84E-03
GO:response to ionizing radiation 1.16E-02
KEGG:Valine, leucine and isoleucine degradation 1.54E-02
GO:methylation 2.47E-02
GO:activation of cysteine-type endopeptidase activity 3.13E-02
involved in apoptotic process
GO:mRNA splicing, via spliceosome 3.79E-02

MSI

GO:immune response 3.05E-04
GO:response to interferon-gamma 4.37E-04
GO:type I interferon signaling pathway 6.88E-04
GO:interferon-gamma-mediated signaling pathway 1.02E-03
GO:inflammatory response 2.60E-03

GS

GO:cell division 3.48E-08
KEGG:Cell cycle 9.42E-08
GO:mitotic nuclear division 2.59E-07
GO:mitotic nuclear envelope disassembly 7.55E-07
GO:sister chromatid cohesion 3.55E-06
GO:G2/M transition of mitotic cell cycle 5.18E-06
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3.3 Functional Analyses of the Genes in
Each Specific Module
To elucidate the possibly unique biology for each cancer subtype,
a pathway enrichment analysis is conducted over edges of the
identified co-expression module for each subtype. It is worth
noting that the number of genes in specific modules of each
molecular subtype is different. Specifically, there are 171, 86, 281
and 205 genes in the specific modules of control, ER+, HER2+
and triple negative BRCA samples, respectively, with detailed
gene lists given in Supplementary Table S1. And their co-
expressed gene pairs are selected for function analyses. The
most significantly enriched biological processes and pathways
enriched by each of the four gene sets are shown in Table 2.

The most enriched pathways in each distinct set of samples
shown in Table 2 are quite informative. For example, pathways
enriched by the control samples revealed key features of control
vs. BRCA cancer samples in terms of their functionalities, namely
cell-cell adhesion (which is altered in all cancer samples),
interactions with immune cells (which is clearly altered in all
cancer samples vs. controls). Similar can be said about neural
functions (ephrin receptor signaling), cell polarity (which is
considerably altered in cancer, actin cytoskeleton) and
inflammation signaling (leukotriene biosynthesis). Similarly,
the most enriched pathways for ER+ samples are growth
related (Wnt signaling), muscle development (also including
eyelid development and fiber cell development), and a specific
type of immune response (HTLV-I infection). And the most
enriched pathways for HER2+ are related to xenobiotic
metabolism (including dealing with nitrobenzene), oxidative
stress (glutathione biosynthesis), and cell morphogenesis
changes. The pathways uniquely enriched by triple negative
samples involve neural systems, a general indicator for the
level of malignancy of a cancer type, and phosphatidylinositol
3-kinase signaling (a key regulator of cell polarity), also strongly
indicating the level of malignancy of the cancer subtype.

For STAD, 72, 81,67,119, and 217 genes and their co-
expressed gene pairs are selected as distinguishing features for

the control, CIN, EBV, MSI, and GS STAD samples, respectively.
The enrichment results by each gene set are shown in Table 3.

The distinct biology of each of the four subtypes of STAD
samples, as indicated by their enriched pathways, is striking. For
CIN subtype, we see strong indication of toxicity and
detoxification in their cells, e.g., by response to toxic
substance, sulfation, intracellular protein transport and steroid
metabolic process. In EBV samples, the distinct characteristics are
dealing with oxidative stress as shown by response to ionizing
radiation, valine, leucine, and isoleucine degradation, activation
of cysteine-type endopeptidase activity, and upregulation of
spliceosome. In MSI, we see that all signals are related to
inflammation and immune response in immune response,
response to interferon-gamma, type I interferon signaling
pathway, and inflammatory response. In GS, the key
distinguishing characteristic is rapid cell division, as indicated
by cell division, cell cycle, nuclear division, chromatid cohesion
and G2/M transition.

3.4 Comparison of Selected Features
Between Gene Expression Based and
Co-Expression Based Methods
We have compared the consistency and differences among the
top 100 selected features obtained by each of the five methods,
including ours, with results summarized in Figure 4. We note
that genes selected based on gene-expression levels are quite
different from the genes identified based on co-expression levels
for both BRCA and STAD. And there is considerable overlap
among the features selected by different gene-expression level-
based methods. For example, genes selected by ANOVA and the
mutual information method have a 60% overlap in both cancer
types. It should be noted that the top 100 network features
obtained by SCM-DNN are 100 gene-pairs, hence the number
of genes for SCM-DNN is larger than 100.

Through further performing differential gene expression
analyses on the genes obtained by SCM-DNN, we find their
expression have little changes among different subtypes of the

FIGURE 4 | Venn diagram for overlaps among top 100 (network) features obtained by SCM-DNN, HSIC-LASSO, ANOVA, Chi-square andmutual information in (A)
BRCA and (B) STAD.
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same cancer type. This result reveals that differential gene
expression-based methods have clear limitations in
characterizing changes in biological systems. Hence co-
expression-based analyses for cancer subtyping and possibly
many other cancer omic data analysis problems could prove to
be the way to go.

We have also analyzed the connectivity of the selected genes in
the co-expression modules. In our subtyping prediction, we used
only the top 100 and 200 co-expressed gene pairs. An interesting
observation is that all the selected genes could be connected using
at most two additional genes in the relevant module, suggesting
that the selected feature genes are strongly functionally
associated. However, regarding the genes selected by
traditional gene expression based feature selection methods,
they are generally highly dispersed across a co-expression
module.

Additionally, due to the transmissibility of information in a
network, it’s not hard to control the whole module by
managing a few nodes. Moreover, since these modules are
specific to each molecular subtype, in other words, they are
probably the most striking features of this disease. Hence, they
are expected to be the most effective drug targets for
individualized therapy.

4 DISCUSSION

In this paper, we proposed a computational classification
method for cancer molecular subtyping based on co-
expression network features of each cancer sample. It has
been recognized that the phenotypic difference in cancer
samples can hardly be fully understood by only analyzing
single molecules, and it is the relevant system or specific
network that is ultimately responsible for such a
phenomenon (Liu et al., 2016). Moreover, network-based
biomarkers, e.g. subnetwork markers (Ideker and Krogan,
2012), network biomarkers (Liu et al., 2014), and edge
biomarkers (Zhang et al., 2015), are demonstrated superior
to traditional single molecule biomarkers for accurately
characterizing disease states. However, it is generally
challenging to construct specific network and obtain
individual network feature for each sample (Liu et al.,
2016). Here, we generate a sample’s network feature by
calculating its perturbation effect on each background class-
specific module after adding it to them. Intuitively, the quality
of constructed class-specific networks will direct influence the
generation of network feature and then further guide the final
classification results. Hence, to ensure the robustness of each
subtype specific network, we construct multiple co-expression
networks for each molecular subtype by sampling and then
integrate them. Our previous study had proved that sampling-
based co-expression network construction could avoid the bias
caused by both data noise and imbalanced sample size among
different subtypes (Jiang et al., 2020). Class-specific modules
are identified by a top-down approach (i.e. decomposing the
whole co-expression network of each subtype and making
comprehensive comparison across different subtypes),

which is different from some existing specific modules
identification method based on collecting specific co-
expression gene pairs. In comparison, co-expression
modules give a relatively complete path of signal
transmission or transcriptional regulation, and provide
much more information for us to understand biological
mechanism of each subtype, and then could help
researchers to identify both actionable targets for drug
design as well as biomarkers for response prediction.

The classification performance of our method is superior to
conventional molecule biomarker-based methods, when applied
to breast and stomach cancer molecular subtyping, under several
evaluation indexes. It is a universal framework and is expected to
perform well in molecular subtyping task for other cancer types.
Besides, it is also easy to transfer to other subtyping tasks, such as
cancer sample staging and grading classification. Similarly,
through constructing co-expression networks and extracting
specific co-expression modules for each cancer stage or grade,
a sample could be accurately classified according to its network
features generated by calculating the perturbation effect of this
sample on each background class-specific module. We assume
that specific module of each cancer stage (or grade) can capture
the essential distinguishing property of its samples. And adding a
sample of a different class to the specific module will induce large
disturbance, while adding a sample of its same class will not disturb
too much. One of the advantages of this study is that it doesn’t need
toomany training samples. Prior knowledge in the basis of satisfying
the statistical significance indicates that the sample number of each
subtype reaching 15 is enough to construct co-expression networks
for each subtype. Then, a large number of new samples with a
network feature can be generated.

Omics data have enabled the unbiased characterization of the
molecular features of multiple human diseases, particularly in
cancer. Multi-omics may provide molecular insights beyond the
sum of individual omics, and it is becoming increasingly common
to characterize multiple omics layers to gain biological insights
spanning multiple types of cellular processes (Vitrinel et al.,
2019). Hence, in our further work, besides transcriptomics
data, we will introduce other omics data to construct
heterogeneous correlated networks and extract heterogeneous
specific modules for each subtype. Moreover, this study provides
a general framework with extensible and replaceable executive
function modules. Other machine learning methods could be
applied for the final multi-class classification according to specific
task and data distribution.

5 CONCLUSION

We present here a new framework, SCM-DNN, to identify each
molecular subtype’s robust, specific co-expression modules that
could efficiently and steadily predict patients’molecular subtypes
of breast and stomach cancer. Compared with traditional gene
expression based feature selection methods for multi-
classification, SCM-DNN performs better under all the metrics
even the sample size of each class is extremely imbalanced.
Additionally, these specific genes identified by SCM-DNN
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could probably represent the striking characteristics of individual
subtypes; meanwhile, they are concentrated in the co-expression
network. Hence, they are promised to assist us to better
understand the underlying mechanism of molecular subtyping
and potentially guide individualized medicine.

Multi-omics data and their integration are recognized as an
effective way to explore the biological mechanism. In future
studies, we will make full use of those data to develop a more
comprehensive and robust classification method by integrating
multi-omics data to construct subtype-specific correlation
networks for molecular subtyping of cancers, expecting a
deeper mechanism to be discovered.
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