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This paper is devoted to the existence and stability analysis of limit cycles in a delayedmathematical model for the economy growth.
Specifically the Solow model is further improved by inserting the time delay into the logistic population growth rate. Moreover, by
choosing the time delay as a bifurcation parameter, we prove that the system loses its stability and a Hopf bifurcation occurs when
time delay passes through critical values. Finally, numerical simulations are carried out for supporting the analytical results.

1. Introduction

Investigations on the existence of limit cycles and the
related stability analysis in nonlinear autonomous differential
equations go back to Poincaré [1], who has proved that if
differential equations admit a limit cycle then the difference
between the number of nodes, centers, and foci enclosed by a
limit cycle and the number of enclosed saddle points are equal
to one. In 1924 Ivar Otto Bendixson established a sufficient
condition for nonexistence of limit cycles [2]. Thereafter, the
existence of limit cycles in systems of nonlinear differential
equations has been of great interest in the pure and applied
mathematics; see the survey [3].

This paper is concerned with the existence and stability
analysis of a differential equations system, with time delay,
that can be proposed for the modeling of the economic
growth.

The origin of the economic growth theory goes back
to Solow [4] and Swan’s [5] neoclassical growth theory. A
standard assumption in the economic growth theory is that
population always grows at a constant and positive rate.
Recently, the idea that such a specification is unrealistic
has been arisen. Indeed this assumption implies, as in the
Malthus model [6], that the population size goes to infinity
as time goes to infinity.

Assuming a nonconstant population growth rate but
variable and bounded over time, Guerrini proposed in [7]
a generalization of the Solow model. Specifically a standard
neoclassical technology and a Verhulst [8] logistic popu-
lation growth law are assumed. The mathematical analysis
performed in [7] shows the existence of a unique globally
stable steady state to which the economy adjusts, so sharing
the technical and qualitative propertieswith the Solowmodel.

It is well known that, in the logistic law models, the time
evolution of the population density at time 𝑡 depends on
the population density at the same time. Obviously, this is a
roughly approximation of the reality, since the real process
of reproduction is not instantaneous in time and is strictly
dependent on the previous instants of time. Therefore, the
logistic law appears to be inadequate for the time description
of the population density growth; the interested reader is
referred to Hutchinson [9] for a complete description in the
case of the ecology.

Bearing all the above in mind, the logistic law has been
modified and a time delay has been inserted. The resulting
mathematicalmodel is known as the delayed logistic equation
or Hutchinson’s equation. It is worth precising that the
introduction of time delay has been carried out also in
biological systems, see paper [10], and in economics systems
(see [11–15]).
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The present paper aims at investigating how the delayed
logistic law may affect the dynamics of the Solow model and
consequently provokes the existence and the stability of limit
cycles and Hopf bifurcations. The corresponding mathemat-
ical model is a system of two first-order nonlinear delayed
differential equations, whose linear stability is discussed by
analyzing the associated characteristic transcendental equa-
tion. The analytical results show that, as the magnitude of
the time delay increases, the system loses its stability and a
Hopf bifurcation occurs when the time delay passes through
a sequence of critical values. Numerical simulations refer to a
sensitive analysis on the time delay and support the analytical
results.

It is worth stressing that the problem whether time delay
may induce cyclic behavior in the Solow economic growth
model has been already discussed in the pertinent literature;
see, among others, paper [16] and the references cited therein.

The contents of this paper are outlined as follows. After
this introduction, Section 2 is meant to be the description of
the economywhere the delayed Solowmodel is derived. Ana-
lytical investigations on the existence of steady states, stability
and Hopf bifurcation analysis are dealt with in Section 3.
Section 4 is concerned with further analysis on the Hopf
bifurcation, namely, the direction of the bifurcation (when
it is subcritical or supercritical) and the bifurcating period.
Numerical simulations obtained by sensitive analysis on the
magnitude of the time delay are performed in Section 5.
A critical analysis of the results and discussions of future
research perspectives are postponed to Section 6.

2. The Delayed Mathematical Model

This section deals with the derivation of the Solowmathemat-
ical model with a time delay. Specifically a closed economy
is considered, which consists of a single good 𝑌 = 𝑌(𝑡)

that is used either for consumption or investment. The good
is produced by labor 𝐿 = 𝐿(𝑡) and physical capital 𝐾 =

𝐾(𝑡) accordingly to a neoclassical production function 𝑌 =

𝐹(𝐾, 𝐿); see [17]. Each worker has a unit of time available
each period that is supplied inelastically in the labor market.
There is a full employment in the economy, so that population
size and workforce can be used interchangeably. Since the
economy is assumed to be closed, change in the capital stock
equals gross investment less depreciation, namely,

�̇� = 𝑠𝑌 − 𝛿𝐾, (1)

where 𝑠 denotes the constant fraction of the gross income
𝑌 saved and 𝛿 is the constant fraction of capital stock that
disappears as a result of depreciation. Population growth rate
evolves according to the following delayed logistic equation
[9]:

�̇� = 𝐿 (𝑎 − 𝑏𝐿𝑑) , (2)

where 𝐿𝑑 := 𝐿(𝑡 − 𝜏), 𝜏 > 0 is the time delay, and 𝑎 >

𝑏 > 0 are positive constants such that 𝑎 − 𝑏𝐿(0) > 0, with
𝐿(0) being the density of the population at the initial time.
Setting 𝑘 = 𝐾/𝐿 and writing the production function in
intensive form 𝑓(𝑘) = 𝐹(𝐾/𝐿, 1), we obtain the following

mathematical model described by two nonlinear delayed
differential equations:

�̇� = 𝑠𝑓 (𝑘) − (𝛿 + 𝑎 − 𝑏𝐿𝑑) 𝑘,

�̇� = 𝐿 (𝑎 − 𝑏𝐿𝑑) ,

(3)

for some initial function 𝐿(𝑡) = 𝜑(𝑡), for 𝑡 ∈ [−𝜏, 0]. In
contrast to classical dynamical systems with zero delay, the
definition of the initial function 𝜑, usually called history
function, is required. The domain of 𝜑 is defined over the
range of time delimited by the time delay.

It is worth stressing that with respect to the paper [18],
the mathematical model considered in this paper (to which
we refer as the Solow model with delayed-logistic population
rate) includes the time delay in the logistic term. Moreover,
the mathematical analysis will be performed with respect to
an arbitrary neoclassical production function 𝑓.

3. Asymptotic Analysis: Steady States and
Hopf Bifurcation

This section is devoted to the study of the asymptotic
behavior of the mathematical model (3). The main goal of
the present paper is to investigate the existence of equilibrium
points (steady states), their stability analysis, and the possible
existence of Hopf bifurcations.

The steady states of the mathematical model (3) coincide
with the steady states of the corresponding model with zero
delay. Hence, there exists a unique nontrivial steady state
(𝑘∗, 𝐿∗), such that 𝑠𝑓(𝑘∗) = 𝛿𝑘∗ and 𝐿∗ = 𝑎/𝑏. Let 𝑥 = 𝑘−𝑘∗

and 𝑦 = 𝐿 − 𝐿∗, so that the equilibrium in (3) is shifted to
the origin. By applying in system (3) the Taylor expansion
with center the origin, themodel (3) recasts into the following
system:

�̇� = [𝑠𝑓

(𝑘∗) − 𝛿] 𝑥 + 𝑏𝑘∗𝑦𝑑 + 𝑔1 (𝑥, 𝑦𝑑) ,

̇𝑦 = −𝑎𝑦𝑑 + 𝑔2 (𝑦, 𝑦𝑑) ,

(4)

where the nonlinear parts 𝑔1(𝑥, 𝑦𝑑), 𝑔2(𝑦, 𝑦𝑑) read:

𝑔1 (𝑥, 𝑦𝑑) =
1

2
[𝑠𝑓


(𝑘∗) 𝑥
2

+ 2𝑏𝑥𝑦𝑑]

+
1

3!
[𝑠𝑓


(𝑘∗) 𝑥
3
] + ⋅ ⋅ ⋅ ,

𝑔2 (𝑦, 𝑦𝑑) =
1

2
(−𝑏) 𝑦𝑦𝑑,

(5)

where 𝑦𝑑 = 𝑦(𝑡 − 𝜏). Writing the linear part of system (4) in
matrix form

[
�̇�

̇𝑦
] = [

𝑠𝑓

(𝑘∗) − 𝛿 0

0 0
] [

𝑥

𝑦
] + [

0 𝑏𝑘∗

0 −𝑎
] [

𝑥𝑑

𝑦𝑑

] , (6)

it is immediately seen that the resulting characteristic equa-
tion is



𝑠𝑓

(𝑘∗) − 𝛿 − 𝜆 𝑏𝑘∗𝑒

−𝜆𝜏

0 −𝜆 − 𝑎𝑒
−𝜆𝜏



= [𝑠𝑓

(𝑘∗) − 𝛿 − 𝜆] (−𝜆 − 𝑎𝑒

−𝜆𝜏
) = 0.

(7)
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Equation (7) is a quasi-polynomial equation, which has, in
general, an infinite number of (complex) roots. When there
is no time delay, that is, 𝜏 = 0, the characteristic equation
reduces to a simple quadratic equation with two negative
real characteristic roots, 𝜆 = −𝑎 and 𝜆 = 𝑠𝑓


(𝑘∗) − 𝛿 =

−𝑠[𝑓(𝑘∗)−𝑘∗𝑓

(𝑘∗)]/𝑘∗ < 0. Thus, the steady state of system

(4) is locally asymptotically stable.
Let 𝜏 > 0 be fixed. Taking the time delay as a bifurcation

parameter, we investigate the effects of the time delay on the
dynamics of the model (3). Accordingly, we look for values of
𝜏 so that the steady state changes its asymptotic stability from
local stability to instability.

It is well known that the steady state of system (4) is locally
asymptotically stable if each of the characteristic roots of (7)
has negative real part. Since 𝜆 = 0 is not a zero of (7), we need
to examine only when this equation has pure imaginary roots
𝜆 = ±𝑖𝜔, where 𝜔 is a positive real number.

Lemma 1. The characteristic equation (7) has a pair of simple
conjugate pure imaginary roots 𝜆 = ±𝑖𝜔0 (𝜔0 > 0) at 𝜏 = 𝜏𝑗,
where

𝜔0 = 𝑎, 𝜏𝑗 =
1

𝜔0

(
𝜋

2
+ 2𝑗𝜋) , 𝑗 = 0, 1, 2, . . . . (8)

Furthermore, the following transversality condition:

𝑑 [Re 𝜆 (𝜏)]

𝑑𝜏

𝜏=𝜏𝑗

> 0 (9)

holds true.

Proof. Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of the characteristic
equation (7). Then 𝜆 must be a root of

𝐷 (𝜆, 𝜏) = −𝜆 − 𝑎𝑒
−𝜆𝜏

= 0. (10)

Substituting 𝜆 = 𝑖𝜔 into (10), we have

𝑖𝜔 + 𝑎 (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) = 0. (11)

Separating the real and imaginary parts yields

𝜔 = 𝑎 sin𝜔𝜏, cos𝜔𝜏 = 0. (12)

Since 𝜔 and 𝑎 are positive constants, 𝜔𝜏 = 𝜋/2 + 2𝑗𝜋, 𝑗 =

0, 1, 2, . . ., and 𝜔 = 𝑎 = 𝜔0. To ensure that the roots 𝜆 = ±𝑖𝜔0

are simple roots, we differentiate (10) with respect to 𝜆 and
we obtain 𝑑𝐷(𝜆, 𝜏)/𝑑𝜆 = −1+𝑎𝜏𝑒

−𝜆𝜏. It is easy to see that the
conditions

𝐷 (±𝑖𝜔0, 𝜏) = 0,
𝑑𝐷 (±𝑖𝜔0, 𝜏)

𝑑𝜆
= 0, (13)

hold true only if −1 ± 𝑖𝜔0𝜏 = 0. This concludes the first part
of the statement.

Next, let 𝜆(𝜏) = 𝜇(𝜏) + 𝑖𝜔(𝜏) be the root of (7) such that
𝜇(𝜏𝑗) = 0 and 𝜔(𝜏𝑗) = 𝜔0. Differentiating (10) with respect to
𝜏 and using (10), one has

(1 + 𝜆𝜏)
𝑑𝜆

𝑑𝜏
= −𝜆
2
. (14)

On the other hand,

sign{
𝑑 [Re 𝜆 (𝜏)]

𝑑𝜏

𝜏=𝜏𝑗

} = sign{Re(
𝑑𝜆

𝑑𝜏
)

−1𝜏=𝜏𝑗

}

= sign{Re (−
1

𝜆
2

−
𝜏

𝜆
)

𝜏=𝜏𝑗

}

= sign{
1

𝜔
2

0

} .

(15)

Then the proof of the theorem has been gained.

Since the sign of 𝑑[Re 𝜆(𝜏𝑗)]/𝑑𝜏 is positive, then each
crossing of the real part of the characteristic roots at 𝜏𝑗 must
be from left to right.With being the crossing direction, always
toward instability, the following result on the distribution of
roots of (7) is obtained.

Proposition 2. If 𝜏 ∈ [0, 𝜏0), all roots of (7) have negative real
parts. If 𝜏 = 𝜏0, all roots of (7), except for ±𝑖𝜔0, have negative
real parts. If 𝜏 ∈ (𝜏𝑗, 𝜏𝑗+1), for 𝑗 = 0, 1, 2, . . ., (7) has 2(𝑗 + 1)

roots with positive real parts.

Bearing all the above inmind,we have that the hypotheses
for Hopf bifurcation are satisfied at 𝜏𝑗.These allow us to prove
the following theorem.

Theorem 3. The positive steady state (𝑘∗, 𝐿∗) of system (3) is
locally asymptotically stable for 𝜏 ∈ [0, 𝜏0) and unstable for
𝜏 > 𝜏0. Moreover, system (3) undergoes a Hopf bifurcation at
(𝑘∗, 𝐿∗), when 𝜏 = 𝜏𝑗, for 𝑗 = 0, 1, 2, . . ..

Proof. Spectral properties stated in Proposition 2 lead imme-
diately to stability properties of the zero equilibriumof system
(4) and of the positive equilibrium (𝑘∗, 𝐿∗) of system (3).
Hence, we have the proof.

4. Analysis of the Hopf Bifurcations

This section is meant to the study of the direction of the Hopf
bifurcation and the stability of bifurcating periodic solutions.
The results are obtained by applying the normal form theory
and the center manifold theorem stated in [19].

As already shown, the system (3) undergoes a Hopf
bifurcation at the positive equilibrium point (𝑘∗, 𝐿∗) when
𝜏 = 𝜏𝑗 and𝜆 = 𝑖𝜔0 is the corresponding purely imaginary root
of the characteristic equation at this point. Setting 𝜏 = 𝜏𝑗 + 𝜇,
𝜇 ∈ R, then 𝜇 = 0 is the Hopf bifurcation value of system (3)
for the new bifurcation parameter 𝜇.

Let 𝐶 = 𝐶([−𝜏𝑗, 0],R2) be the space of continuous real-
valued functions. For any 𝜑 = (𝜑1, 𝜑2) ∈ 𝐶, let

𝐿𝜇 (𝜑) = [
𝑠𝑓

(𝑘∗) − 𝛿 0

0 0
] [

𝜑1 (0)

𝜑2 (0)
]

+ [
0 𝑏𝑘∗

0 −𝑎
] [

[

𝜑1 (−𝜏𝑗)

𝜑2 (−𝜏𝑗)

]

]

,

(16)
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𝑔 (𝜏𝑗, 𝜑) = [

𝑔1 (𝜏𝑗, 𝜑)

𝑔2 (𝜏𝑗, 𝜑)

] , (17)

where

𝑔1 (𝜏𝑗, 𝜑) =
1

2
[𝑠𝑓


(𝑘∗) 𝜑1(0)
2

+ 2𝑏𝜑1 (0) 𝜑2 (−𝜏𝑗)]

+
1

3!
[𝑠𝑓


(𝑘∗) 𝜑1(0)
3
] + ⋅ ⋅ ⋅ ,

𝑔2 (𝜏𝑗, 𝜑) =
1

2
(−𝑏) 𝜑2 (0) 𝜑2 (−𝜏𝑗) .

(18)

ByRiesz’s representation theorem, there exists amatrixwhose
components are bounded variation functions 𝜂(𝜃, 𝜇) in 𝜃 ∈

[−𝜏𝑗, 0] such that

𝐿𝜇𝜑 = ∫

0

−𝜏𝑗

[𝑑𝜂 (𝜃, 𝜇)] 𝜑 (𝜃) , for 𝜑 ∈ 𝐶. (19)

In fact, we can choose

𝜂 (𝜃, 𝜇) = [
𝑠𝑓

(𝑘∗) − 𝛿 0

0 0
] Γ (𝜃) + [

0 𝑏𝑘∗

0 −𝑎
] Γ (𝜃 + 𝜏𝑗) ,

(20)

where Γ(𝜃) is the Dirac delta function. For 𝜑 ∈ 𝐶, we define

𝐴 (𝜇) (𝜑) =

{{{{

{{{{

{

𝑑𝜑 (𝜃)

𝑑𝜃
, 𝜃 ∈ [−𝜏𝑗, 0) ,

∫

0

−𝜏𝑗

[𝑑𝜂 (𝑟, 𝜇)] 𝜑 (𝑟) , 𝜃 = 0,

𝑅 (𝜇) (𝜑) = {
0, 𝜃 ∈ [−𝜏𝑗, 0) ,

𝑔 (𝜇, 𝜑) , 𝜃 = 0.

(21)

Then system (4) can be rewritten in the following form:

�̇�𝑡 = 𝐴 (𝜇) 𝑢𝑡 + 𝑅 (𝜇) 𝑢𝑡, (22)

where 𝑢𝑡 = 𝑢(𝑡 + 𝜃), for 𝜃 ∈ [−𝜏𝑗, 0]. For 𝜓 ∈ 𝐶 =

𝐶([0, 𝜏𝑗],R
2
), we define

𝐴
∗

(𝜇) 𝜓 (𝑟) =

{{{

{{{

{

−
𝑑𝜓 (𝑟)

𝑑𝑟
, 𝑟 ∈ (0, 𝜏𝑗] ,

∫

0

−𝜏𝑗

𝑑𝜂 (𝜁, 𝜇) 𝜓 (−𝜁) , 𝑟 = 0.

(23)

For 𝜑 ∈ 𝐶 and 𝜓 ∈ 𝐶, we define the following bilinear form:

⟨𝜓 (𝑟) , 𝜑 (𝜃)⟩ = 𝜓 (0) 𝜑 (0)

− ∫

0

𝜃=−𝜏𝑗

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃, 0) 𝜑 (𝜉) 𝑑𝜉.

(24)

Therefore, 𝐴(0) and 𝐴
∗
(0) are adjoint operators. Let 𝑞(𝜃) and

𝑞
∗
(𝑟) be the eigenvectors of 𝐴(0) and 𝐴

∗
(0) corresponding

to the eigenvalues 𝑖𝜔0 and −𝑖𝜔0, respectively, and normalized

so that ⟨𝑞
∗
(𝑟), 𝑞(𝜃)⟩ = 1. It is well known that 𝑞(𝜃) can be

computed from 𝐴(0)𝑞(𝜃) = 𝑖𝜔0𝑞(𝜃), where 𝑞(𝜃) = 𝑞(0)𝑒
𝑖𝜔0𝜃,

similarly for 𝑞
∗
(𝑟). For a solution 𝑢𝑡 of (17) at 𝜇 = 0, we define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑢𝑡⟩ ,

𝑊 (𝑡, 𝜃) = 𝑢𝑡 (𝜃) − 2Re [𝑧 (𝑡) 𝑞 (𝜃)] ,

(25)

where

𝑊 (𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

= 𝑊20 (𝜃)
𝑧
2

2
+ 𝑊11 (𝜃) 𝑧𝑧 + 𝑊02 (𝜃)

𝑧
2

2
+ ⋅ ⋅ ⋅ .

(26)

Then (17) valued in the points of the center manifold C is
described by

�̇� (𝑡) = ⟨𝑞
∗
, �̇�𝑡⟩ = ⟨𝑞

∗
, 𝐴 (0) 𝑢𝑡 + 𝑅 (0) 𝑢𝑡⟩

:= 𝑖𝜔0𝑧 + 𝑞
∗

(0) 𝑔0,

(27)

where 𝑔0 = 𝑔(0, 𝑢𝑡), with 𝑔 defined by (17). Now (26) can be
written as

�̇� (𝑡) = 𝑖𝜔0𝑧 + 𝑔 (𝑧, 𝑧) , (28)

with

𝑔 (𝑧, 𝑧) = 𝑔20

𝑧
2

2
+ 𝑔11𝑧𝑧 + 𝑔02

𝑧
2

2
+ 𝑔21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ . (29)

Next, substitute 𝑢𝑡(𝜃) = 𝑊(𝑡, 𝜃) + 2Re[𝑧(𝑡)𝑞(𝜃)] into 𝑔0 and
denote

𝑔0 = 𝑔𝑧2
𝑧
2

2
+ 𝑔𝑧𝑧𝑧𝑧 + 𝑔

𝑧
2

𝑧
2

2
+ 𝑔𝑧2𝑧

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ . (30)

Hence, from 𝑔(𝑧, 𝑧) = 𝑞
∗
(0)𝑔0, we obtain

𝑔20 = 𝑞
∗

(0) 𝑔𝑧2 ,

𝑔02 = 𝑞
∗

(0) 𝑔
𝑧
2 ,

𝑔11 = 𝑞
∗

(0) 𝑔𝑧𝑧,

𝑔21 = 𝑞
∗

(0) 𝑔𝑧2𝑧.

(31)

The next step is to compute𝑊20(𝜃) and𝑊11(𝜃) since the term
𝑔21 is dependent on them. By (22) and (28) we have

�̇� = �̇�𝑡 − �̇�𝑞 − �̇�𝑞

= {
𝐴 (0) 𝑊 − 2Re [𝑞

∗
(0) 𝑔0𝑞 (𝜃)] , 𝜃 ∈ [−𝜏𝑗, 0) ,

𝐴 (0) 𝑊 − 2Re [𝑞
∗

(0) 𝑔0𝑞 (0) ,] + 𝑔0, 𝜃 = 0

:= 𝐴 (0) 𝑊 + 𝐻 (𝑧, 𝑧, 𝜃) ,

(32)

where

𝐻 (𝑧, 𝑧, 𝜃) = 𝐻20 (𝜃)
𝑧
2

2
+ 𝐻11 (𝜃) 𝑧𝑧 + 𝐻02 (𝜃)

𝑧
2

2
+ ⋅ ⋅ ⋅ .

(33)



The Scientific World Journal 5

Substituting (26) and (28) into �̇� = 𝑊𝑧�̇� + 𝑊𝑧�̇� and
comparing the coefficients of the resulting equation with
those of (32), we get

[𝐴 (0) − 2𝑖𝜔0] 𝑊20 (𝜃) = −𝐻20 (𝜃) ,

𝐴 (0) 𝑊11 (𝜃) = −𝐻11 (𝜃) ,

[𝐴 (0) + 2𝑖𝜔0] 𝑊02 (𝜃) = −𝐻02 (𝜃) .

(34)

It follows that

�̇�20 (𝜃) = 2𝑖𝜔0𝑊20 (𝜃) − 𝐻20 (𝜃) ,

�̇�11 (𝜃) = −𝐻11 (𝜃) .

(35)

Comparing the coefficients of (33) with (32), for 𝜃 ∈ [−𝜏𝑗, 0),
we obtain

𝐻20 (𝜃) = −𝑔20𝑞 (𝜃) − 𝑔
02

𝑞 (𝜃) ,

𝐻11 (𝜃) = −𝑔11𝑞 (𝜃) − 𝑔
11

𝑞 (𝜃) ,

(36)

and for 𝜃 = 0 we have

𝐻20 (0) = −𝑔20𝑞 (0) − 𝑔
02

𝑞 (0) + 𝑔𝑧2 ,

𝐻11 (0) = −𝑔11𝑞 (0) − 𝑔
11

𝑞 (0) + 𝑔𝑧𝑧.

(37)

Solving (35) for 𝑊20(𝜃) and 𝑊11(𝜃), one has

𝑊20 (𝜃) = −
𝑔20

𝑖𝜔0

𝑞 (0) 𝑒
𝑖𝜔0𝜃

−
𝑔
02

3𝑖𝜔0

𝑞 (0) 𝑒
−𝑖𝜔0𝜃

+ 𝐸1𝑒
2𝑖𝜔0𝜃

,

𝑊11 (𝜃) =
𝑔11

𝑖𝜔0

𝑞 (0) 𝑒
𝑖𝜔0𝜃

−
𝑔
11

𝑖𝜔0

𝑞 (0) 𝑒
−𝑖𝜔0𝜃

+ 𝐸2,

(38)

where 𝐸1, 𝐸2 ∈ R2 can be determined by setting 𝜃 = 0 in
𝐻(𝑧, 𝑧, 𝜃). Substituting (38) into (34), using (37), and noticing
that

[𝑖𝜔0 − ∫

0

−𝜏𝑗

𝑒
𝑖𝜔0𝜃

𝑑𝜂 (𝜃, 0)] 𝑞 (0) = 0,

[−𝑖𝜔0 − ∫

0

−𝜏𝑗

𝑒
−𝑖𝜔0𝜃

𝑑𝜂 (𝜃, 0)] 𝑞 (0) = 0,

(39)

we arrive at

[2𝑖𝜔0 − ∫

0

−𝜏𝑗

𝑒
2𝑖𝜔0𝜃

𝑑𝜂 (𝜃, 0)] 𝐸1 = 𝑔𝑧2 ,

[∫

0

−𝜏𝑗

𝑑𝜂 (𝜃, 0)] 𝐸2 = 𝑔𝑧𝑧.

(40)

As a result, 𝐸1 and 𝐸2 are calculated. Based on the foregoing
analysis, we can see that each 𝑔𝑖𝑗 is determined.Therefore, we
can compute the following quantities:

𝑐1 (0) =
𝑖

2𝜔0

[𝑔11𝑔20 − 2

𝑔11



2
−


𝑔02



2

3
] +

𝑔21

2
,

𝜇2 = −
Re {𝑐1 (0)}

Re {𝜆

(𝜏𝑗)}

,

𝛽2 = 2Re {𝑐1 (0)} ,

𝑇2 = −

Im {𝑐1 (0)} + 𝜇2 Im {𝜆

(𝜏𝑗)}

𝜔0

,

(41)

which give the properties of bifurcating periodic solutions.

Theorem 4. Let (𝑘∗, 𝐿∗) be the steady state of the model (3).
Then one has the following.

(1) The direction of the Hopf bifurcation of the system (3),
at the equilibrium (𝑘∗, 𝐿∗) for 𝜏 = 𝜏𝑗, is subcritical
(resp., supercritical) if 𝜇2 < 0 (resp., 𝜇2 > 0).

(2) Thebifurcating periodic solution on the centermanifold
is unstable (resp., locally asymptotically stable) if𝛽2 > 0

(resp., 𝛽2 < 0).
(3) Theperiod of the bifurcating periodic solution decreases

(resp., increases) if 𝑇2 < 0 (resp., 𝑇2 > 0).

5. Numerical Simulations

This section is concerned with some numerical simulations
of the mathematical model (3). Specifically we depict the
behavior of the solutions when the time delay is varied, thus
performing a sensitive analysis on the parameter 𝜏.

The mathematical model (3) is characterized by six
nonnegative parameters which have an economic meaning
and a function 𝑓. The set of simulations of this section
is obtained by choosing 𝑓 as the Cobb-Douglas function,
namely,

𝑓 (𝑘) = [𝑘 (𝑡)]
𝛼
, (42)

fixing the following magnitude of the following five parame-
ters:

𝛼 = 0.8, 𝑠 = 0.5, 𝑎 = 0.2,

𝑏 = 0.5, 𝛿 = 0.9

(43)

and performing a sensitive analysis on the time delay 𝜏.
The first set of simulations refer to 𝜏 = 9. As Figure 1

shows, oscillations of the solutions occur (Figure 1(a)) for
the all length of the simulation. A cycle limit is reached; see
Figure 1(b). Further numerical simulations show that, when
we increase the time delay, namely, for 𝜏 ≥ 9, we have a
cycle limit whose period increases; see Figure 2(b).Moreover,
looking at Figure 2(a), we can see that also the magnitude of
the oscillations is increased.
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Figure 1: The time evolution of the functions 𝑘(𝑡) (dotted line) and 𝐿(𝑡) for 𝛼 = 0.8, 𝑠 = 0.5, 𝑎 = 0.2, 𝑏 = 0.5, 𝛿 = 0.9, and 𝜏 = 9 (a). The
phase space of 𝐿(𝑡) versus 𝑘(𝑡) for 𝑡 ∈ [0, 500] (b).
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Figure 2: The time evolution of the functions 𝑘(𝑡) (dotted line) and 𝐿(𝑡) for 𝛼 = 0.8, 𝑠 = 0.5, 𝑎 = 0.2, 𝑏 = 0.5, 𝛿 = 0.9, and 𝜏 = 11 (a).

When the magnitude of the time delay decreases, also the
oscillations and the cycle limit period decrease; see Figure 3.
Finally, when the magnitude of the time delay is less than 8,
then the oscillations decrease in time and the dimension of
the cycle limit is reduced; see Figure 4.

It is worth stressing that if the time delay is less than 5 then
the cycle limit reduces to the point (0.05, 0.4) and oscillations
disappear for 𝜏 ≤ 2.

The above set of simulations support also the direction of
theHopf bifurcation. Indeed, a supercritical Hopf bifurcation
leads from a decaying oscillation to growth and saturation of
a sustained oscillation.

6. Conclusions and Research Perspectives

The mathematical model proposed in this paper is a gen-
eralization of the classical Solow model. Specifically the
population growth rate is not assumed to be constant and

a time delay is inserted in order to better approximate
the real-world economy. Analytical results have shown the
existence of a steady state and the possibility of a Hopf
bifurcation. Moreover, the existence of limit cycles has been
proved and numerical simulations, obtained by performing a
sensitive analysis on the time delay parameter, have plotted
the limit cycles in some cases.

The existence of limit cycles is an important topic in
the economic systems. Indeed, limit cycle is a trajectory for
which the economy of the system would be constant over
a cycle; namely, on an average there is no loss or gain of
economy. Limit cycle is an outcome of delicate energy balance
due to the presence of nonlinear term into the mathematical
model. Therefore, the cycles can be interpreted as economic
fluctuations.

Themathematicalmodel (3) can be further generalized by
including the time delay also into the 𝑘 function. Moreover,
the time evolution of the population density can be mod-
eled by a kinetic approach; see the review paper [20] and
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Figure 3: The time evolution of the functions 𝑘(𝑡) (dotted line) and 𝐿(𝑡) for 𝛼 = 0.8, 𝑠 = 0.5, 𝑎 = 0.2, 𝑏 = 0.5, 𝛿 = 0.9, and 𝜏 = 8 (a). The
phase space of 𝐿(𝑡) versus 𝑘(𝑡) for 𝑡 ∈ [0, 1000] (b).
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Figure 4: The time evolution of the functions 𝑘(𝑡) (b) for 𝛼 = 0.8, 𝑠 = 0.5, 𝑎 = 0.2, 𝑏 = 0.5, 𝛿 = 0.9, and 𝜏 = 7 (a). The phase space of 𝐿(𝑡)

versus 𝑘(𝑡) for 𝑡 ∈ [0, 500] (b).

the references cited therein. The kinetic approach proposed
in papers [21–24] allows taking into account the interactions
that occur among the individuals of a population. Moreover,
these models, even if they refer to nonequilibrium systems
(namely, systems subjected to external force fields), can attain
a nonequilibrium stationary state [25] and a bifurcation
analysis can be performed. Finally, by asymptotic methods
we can derive macroscopic evolution equations (see, among
others, papers [26, 27]) that are of great interest in the pure
[28] and applied mathematics.

It is worth mentioning that an important research
perspective is the comparison of the generalized model
introduced in the present paper with the experimentally

measurable quantities. This is a work in progress and results
will be presented to due course.
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competizione con il sistema immunitario, e conseguenti
suggerimenti terapeutici.
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tion différentialle. I, II,” Journal de Mathématiques Pures et
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