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Abstract: The heterogeneity of the Caco-2 cell line and differences in experimental protocols for
permeability assessment using this cell-based method have resulted in the high variability of Caco-2
permeability measurements. These problems have limited the generation of large datasets to develop
accurate and applicable regression models. This study presents a QSPR approach developed on
the KNIME analytical platform and based on a structurally diverse dataset of over 4900 molecules.
Interpretable models were obtained using random forest supervised recursive algorithms for data
cleaning and feature selection. The development of a conditional consensus model based on regional
and global regression random forest produced models with RMSE values between 0.43–0.51 for all
validation sets. The potential applicability of the model as a surrogate for the in vitro Caco-2 assay
was demonstrated through blind prediction of 32 drugs recommended by the International Council
for the Harmonization of Technical Requirements for Pharmaceuticals (ICH) for validation of in vitro
permeability methods. The model was validated for the preliminary estimation of the BCS/BDDCS
class. The KNIME workflow developed to automate new drug prediction is freely available. The
results suggest that this automated prediction platform is a reliable tool for identifying the most
promising compounds with high intestinal permeability during the early stages of drug discovery.

Keywords: Caco-2; regression; quantitative structure–property relationship (QSPR); KNIME;
permeability

1. Introduction

The majority of drug discovery programs are focused on the development of new
bioactive molecules by the oral route [1]. Two of the most relevant considerations for the
successful development of new oral drug candidates are adequate intestinal absorption
and oral bioavailability values [2]. Considering that experimental in vivo determination
of intestinal absorption and oral bioavailability parameters is not feasible until the late
stages of preclinical development, in vitro cell cultures have long been used as a surrogate
alternative [3].

Among the cell cultures developed for intestinal permeability screening, the Caco-2
cell line is one of the most widely accepted biological techniques [4]. This cell line comes
from human colorectal adenocarcinoma cells and has been widely used as an in vitro
cell culture model of the human intestinal mucosa. Its usefulness for assessing human
intestinal permeability has been attributed to the spontaneous differentiation into columnar
enterocytes and the similarities in morphology (e.g., polarity, tight junctions, brush borders)
and function (e.g., various transport mechanisms) to human enterocytes [5]. The absence
of mucus, the variable expression of metabolic enzymes, and the differences in paracellular
porosity have been pointed out as major limitations for the direct extrapolation of Caco-2
cell line permeability to fraction absorbed. In addition, the long culture period (21–24
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days) and the high experimental variability have been identified as drawbacks of the
in vitro method [6]. However, the Caco-2 cell assay is considered by the industry as the
“gold standard” for in vitro prediction of intestinal drug permeability and absorption [7].
In addition, the in vitro Caco-2 assay has been recommended for the development of
provisional BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics
Drug Disposition Classification System) [8].

Currently, given the large increase in new chemical entities generated at the early stage
of drug discovery, it is quite challenging to perform high-throughput drug screening. Thus,
providing a fast, simple, and cost-effective method as a substitute for the in vitro Caco-2
system, the development of in silico Caco-2 permeability models with high-throughput
capacity for early identification of problematic drugs is essential [9]. However, the dif-
ficulties in developing a robust in silico tool to predict intestinal permeability remain,
yet without satisfactory solutions. Indeed, Caco-2 permeability is a dramatically puz-
zling process that can take place through numerous nonlinear pathways (influx and efflux
transporters) [10]. The paucity of high-quality Caco-2 permeability data has limited the
development of accurate models with a comprehensive applicability domain. It is very com-
mon to observe variations during in vitro permeability protocols among different research
groups because the cultured cells may vary depending on culture conditions, the number
of passages, age of monolayer, seeding density, differentiation stage, and the transport
buffer used [11,12]. Recently, Lee et al. found substantial differences for absolute apparent
permeability coefficients (Papp) of compounds between datasets from various laboratories
with high normalized RMSE values in the range of 0.46 to 0.58 [13]. In addition, involuntary
misprints due to erroneous transformations of values or units and the poor information
related to the assay conditions have caused a decline in the quality of the data. Consid-
ering the above factors, the collection of Caco-2 datasets for modeling purposes needs a
good balance between quality (experimental consistency) and size. If the experimental
variability in the training dataset is high, building a reliable computational quantitative
structure–property relationship (QSPR) model is likely to be difficult.

Numerous classification and QSPR models have been developed to predict Caco-2
permeability based on a variety of physicochemical and physiological descriptors [14]. Even
when regression models have shown good performance on small datasets (<500) [15–17],
most published work refers to classification algorithms that have been able to classify Caco-
2 permeability with acceptable statistics according to the cut-off value used to transform
numerical values into categorical classes. The main drawback of these classification models
is that no consensus has been reached on the best cut-off for modeling purposes and
from the perspective of the practical application of the model [14]. While there are many
studies that predict Caco-2 permeability, there are few that propose a pathway for making
predictions of new molecular entities. This issue has limited the applicability of published
models. Considering the importance of a numerical value for decision-making, more
robust and useful Caco-2 regression models are still needed, capable of covering a broad
spectrum of chemical diversity and a wide range of magnitude. It is also required to make
available automatic systems that can quickly and easily predict new molecules, to allow
the development of virtual screening procedures and to implement the FAIR principles to
make data findable, accessible, interoperable, and reusable [18–20]. Here, we present an
automated platform for predicting permeability in the Caco-2 cell line. This work shows
the potential of recursive machine learning models to perform variable and data selection
with the aim to obtain interpretable and reliable regression models. A new method for
developing a consensus model was implemented too. The model was developed on a
curated dataset of more than 4900 molecules and was validated for the early estimation
of permeability rate for BDDCS and preliminary evaluation of absorbed fraction. This
platform provides a free tool for virtual screening of Caco-2 permeability in large compound
libraries. The early evaluation of this property during the drug design and discovery stages
should facilitate decision-making, minimize the number of experiments, and promote a
rational selection of potential orally active drugs.
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2. Materials and Methods
2.1. Computational Tool

In this study, KNIME Analytics Platform version 4.4.2 [21] and its free community
extensions were used to develop an automated workflow for the transformation, analysis,
modeling, and visualization of Caco-2 permeability data.

2.2. Permeability Data Collection

Experimental values of Caco-2 permeability were collected from three publicly avail-
able datasets [22–24]. Three criteria were followed for this selection: to have more than
1000 instances, to have been used for regression tasks, and to have been published within
the last 5 years. The first dataset (Set A) was published by Wang et al. in 2016 [22]. They
used a relatively large dataset consisting of 1272 compounds to develop several mod-
els for the prediction of Caco-2 permeability using different machine learning methods
in combination with a genetic algorithm for variable selection. The second dataset of
1827 compounds (Set B) was collected by Wang and Cheng [23] to develop several QSPR
models based on neural networks and other machine learning approaches. The third
dataset of 4464 compounds (Set C) was reported by Wang et al. in 2020 to model the Caco-2
permeability using neural networks approaches [24]. All permeability measurements were
converted to cm/s × 10−6 and were transformed to a base 10 logarithmic scale to form a
Caco-2 permeability dataset for modeling. Missing entries for permeability values were
removed. To minimize the uncertainty and evaluate the experimental variability, the mean
value and the standard deviation (STD) were calculated for the repeated entries. Consider-
ing that the validation dataset should have the highest possible quality, the MERGED data
were split according to the standard deviation computed from molecules with multiple
measurements. Samples with standard deviation known (STD 6= 0) and equal to or less than
0.5 formed the reliable validation set. The rest of the molecules were tagged as UNCLEAN
and used as part of the training set. To validate the model performance, an additional list
of 100 commercial drugs was included as the external set [25].

2.3. Chemical and Experimental Data Curation

Recommended good practices for data curation were followed to ensure a correct
molecular representation and eliminate unreliable samples [26]. The curation workflow was
split into three main steps: cleaning of chemical structures, standardization of the molecular
representation, and treatment of duplicates. The final goal was to obtain a curated set made
of unique molecules, ensuring the correctness of chemical representations before duplicate
filtering and considering the variability of the target property during duplicate analysis
(see Figure A1 in the Appendix A).

2.4. Physicochemical and Structural Descriptors

The calculation scheme was based only on the 2D structure; therefore, stereoisomers
of the same molecule were considered duplicates and removed in the previous steps.
Physicochemical properties, MOE-type and Kappa descriptors, and Morgan fingerprints
(1024 bits) were calculated using the “RDKit Descriptor” and “RDKit Fingerprint” nodes
available in the RDKit plugin of KNIME [27].

2.5. Variable Selection

A variant of the recursive variable selection algorithm published in a previous study
was followed to simplify the model complexity, determine the most relevant variables, and
minimize the number of correlated and uninformative features [28]. Firstly, a 10% cut-off
for missing values was fixed for each molecular feature. Descriptors with constant values
were excluded using a low variance cut-off of 0.1. Then, a random forest feature selection
based on variable permutation and a correlation analysis was performed. Figure A2 in the
Appendix A shows a schematic description of this procedure. Duplicates of every numerical
descriptor (Xj) were shuffled before training a regression random forest (RRF) model with
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shuffled (Xj shuffled) and non-shuffled original variables (Xj). Individual regression trees
were extracted from the model and the number of occurrences of each shuffled and non-
shuffled variable was determined by computing the total number of nodes that used Xj
for splitting. Until this point, variables were kept if the ratio between the number of
occurrences of the original variable and the number of occurrences of the counterpart
shuffled variable was twice or more. The number of variables was recursively reduced
by initially computing the Pearson correlation coefficient between them. If this linear
correlation between two variables exceeded the threshold established (Pearson correlation
coefficient ≥ 0.85), only the variable with the highest number of occurrences was kept to
avoid the inclusion of redundant information in the model. Among correlated variables,
continuous variables were privileged against discrete variables since they showed higher
r2 and lower RMSE statistics in this study.

2.6. Data Cleaning

A threshold of 0.5 standard deviation (STD) between experimental log Papp values was
set for splitting the modeling data into two sets: the reliable set (STD ≤ 0.5 AND STD > 0)
and UNCLEAN set (unknown STD, STD = 0.0 or STD > 0.5). For the UNCLEAN set, a
recursive clean-up approach was developed. The algorithm begins by randomly splitting
the unreliable set into two sets of 50%. Two regression random forest (RRF) models were
trained in parallel for each set. Alternatively, the other set was used as a test set. For
each test set, the percentage difference between the experimental and predicted value was
calculated as follows:

Recursive Prediction Error Percentage (RPE) =

∣∣∣log P observed
app − log P calculated

app

∣∣∣
log P range

app
∗ 100% (1)

If the percentage error computed was higher than 30% (RMSE > 1.5 log units) and the
prediction variance of the random forest model was lower than 0.1, the molecules were
finally classified as failed samples. Through a recursive procedure, initially started from the
first random partition, molecules were classified as passed or failed samples and assigned
to the cleaned set or definitely tagged as failed data, respectively. The procedure finished
when no more failed samples were detected.

2.7. Modeling Algorithm

To provide an unbiased estimate of prediction accuracy, a 10-fold cross-validation
procedure was followed for model tuning. The optimization included the choice of thresh-
olds used for variable selection, data cleaning, and applicability domain approaches. The
modeling algorithm consisted of a conditional consensus model (CCM) made of individual
regression random forests. First, the cleaned data were used to train a global regression
random forest model (ntree = 51). The training samples were then grouped according to four
permeability ranges (PR)—“low (L)” log Papp < 6; “low–moderate (L-M)” 6 ≤ log Papp < 5;
“moderate–high (M-H)” 5 ≤ log Papp < 4.7; “high (H)” 4.7 ≤ log Papp to build four regional
random forest models (ntree = 51)). The selection of these cut-off points is based on the
literature review [29]. Metoprolol permeability (20 × 10−6 cm/s; log Papp = −4.7) was se-
lected to separate molecules with high permeability from the rest. The cut-off point −5 log
units (10 × 10−6 cm/s) was chosen as a reasonable midpoint to separate molecules with
moderate–high permeability, whereas the log Papp cut-off point, 6 log units (1 × 10−6 cm/s)
separated low-permeability molecules. To predict a new molecule, a similarity search
found the five nearest neighbors in the training set above a Tanimoto coefficient of 0.7.
The new molecule was assigned to the corresponding regional models based on the class
of its nearest neighbors (NN). In this way, molecule permeability can be estimated by a
combination of values coming from one to all four regional models. Up to this point, if the
molecule was predicted by more than one regional model, the eligible predictions were
averaged. To minimize the boundary effect of setting a “hard” cut-off after dividing the
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data into four training regions, the new samples were predicted by the global random
forest regression too.

2.8. Model Evaluation

The coefficient of determination (r2
validation), root mean squared error (RMSE validation),

mean absolute error (MAE), and the percentage of molecules within the range of 0–0.5 (log
units) of the absolute difference between experimental and predicted log Papp (% 0.5 log)
were used for model evaluation [30].

3. Results and Discussion
3.1. Permeability Data

Permeability data were collected from three public data sources, which have been
used independently to build QSPR models in previous studies [22–24]. Rigorous chemical
and experimental data curation steps were performed before modeling to ensure the
development of reliable models (see Methods for chemical and experimental data curation).
This issue is of particular interest in this study, due to the combination of different data
sources. After the chemical data curation procedure, the three original datasets A, B, and C
consisted of 1267, 1863, and 4462 molecules, respectively (see Figure 1a). Before the removal
of duplicates, the grade of agreement between the datasets was evaluated by comparing
the log Papp values reported for the same molecules. Figure 1a shows the intra- and interset
RMSE statistics based only on molecules with different values reported in the same or
different data sources (results are shown in the RMSE matrix). This comparison provides
us with an estimation of the expected lower limit of root mean squared error prediction
(RMSEP), since experimental errors should be always lower than computational errors
from in silico models. Set B showed the best degree of agreement with the others, with
RMSE values below 0.35 for all cases. The most critical value reported corresponds to the
RMSE analysis between duplicate pairs in set C (RMSE intraset = 0.49). Note that the RMSE
values obtained from the comparison of the three main datasets versus the external set
ranged from 0.23 to 0.52.
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Figure 1. Exploration of MERGED Caco-2 permeability dataset: (a) Analysis of inter and intra overlap-
ping of the individual curated Caco-2 permeability datasets with associated RMSE; (b) distribution
with standard deviation (STD) of number of measures per molecule in the MERGED dataset;
(c) distribution of extended rule-of-five number (Ro5) of failures in the MERGED data.
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To analyze the predictive limits of the QSPR model on the whole dataset (excluding
the external set), we added a random error to the target property by sampling from a
Gaussian distribution of zero mean and standard deviation σ:

log P noise
app = log P true

app + N(0,σ) (2)

Two levels of standard deviation were evaluated in correspondence with the mean and
maximum values of RMSE reported in the matrix depicted in Figure 1a. After 10 replicates
for each level, the coefficient of determination (r2) for the whole set ranged from 0.55 to
0.82. The same procedure was applied to the external set. For this set, the r2 values ranged
from 0.42 to 0.84.

To reduce experimental uncertainty, only those molecules with the same chemical
structure and standard deviation ≤0.5 were considered as duplicates. Manual inspection
confirmed that the pairs corresponded to truly duplicate structures. Among 1836 molecules
with more than one experimental value, only 9 pairs corresponded to stereoisomers. From
this list, only one pair presented a significant difference in the log Papp values with a
standard deviation of 0.79 (Pravastatin). This molecule was excluded from the modeling
dataset. The rest of the stereoisomers were in the 0.0–0.5 standard deviation range.

Finally, the analysis of 2D duplicates identified 5000 unique molecules. Before model-
ing, it was ensured that there was not any overlap between this set and the external set.
This way, 87 molecules were eliminated from the modeling dataset, herein called MERGED
data (4913 molecules).

3.2. Molecular Properties and Caco-2 MERGED Data

Figure 1c shows the distribution of the count of failures of the extended rule-of-five
(Ro5) on the MERGED data. Following this rule of thumb, more than 60% of the MERGED
data satisfied the extended Ro5 guidelines for oral bioavailability and the rest failed in
at least one condition [31,32]. The ranking of molecular properties by increasing number
of failures was as follows: number of hydrogen bond donors (HBD), calculated parti-
tion coefficient (slogP), number of hydrogen bond acceptors (HBA), number of rotatable
bonds (RBN), and molecular weight (MW). Supplementary Figure S1 shows the frequency
distribution histograms of all these properties on the MERGED dataset.

The analysis of the dataset showed a slight trend of increasing permeability when de-
creasing HBD, HBA, MW, and RBN. The opposite effect occurred with the slogP lipophilicity
descriptor. Although the correlations of all these properties with the log Papp values in
our data were not very strong (Pearson correlation coefficient <0.4), their impact on the
permeation rate has been widely described [10,25,33].

Lipophilicity measured as logP is a structural parameter encoding intermolecular
forces (electrostatic and hydrophobic) and intramolecular interactions. This metric rep-
resents the ratio at the equilibrium of the concentration of two phases (oil and aqueous
phases) [34]. High values are associated with more lipophilic compounds that are more
capable to cross lipidic layers via a passive diffusion [35].

The impact of the hydrogen bonds’ acceptor/donor count on the interaction between
the molecule and potential targets as the glycoprotein P has been widely recognized [36].
Indeed, HBA and HBD counts have been used to estimate P-gp substrate recognition [37].
Regarding passive diffusion, the functions of hydrogen bonding in solute–solvent inter-
actions explain its influence during molecule permeation. Several studies have proposed
that when the number of solute–solvent H-bonds increased, permeability decreased. This
observation has lead to chemical transformations by N-methylation to increase drug perme-
ability. In addition, other studies have demonstrated that the introduction of intramolecular
hydrogen bonds has yielded to a permeability increase since it reduces the exposed HBD
count [10,36].

A tendency of poor permeability for molecules with molecular weight higher than
500 g/mol (75% of the molecules in this group had Caco-2 permeability values below
10 × 10−6 cm/s cut-off) was observed. However, the opposite effect was not observed in
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the molecules with low molecular weight. This reinforces the idea suggested by other
authors that the influence of molecular weight on oral absorption needs to be evaluated
together with a flexibility metric as the number of rotatable bonds. The number of rotatable
bonds is related to molecular size and flexibility. Both properties can affect passive diffusion,
active transport, and P-gp interaction. Since molecular size measures the area occupied by
the molecule in its 3D space, it is obvious to expect a considerable influence of this property
on drug transport by paracellular and transcellular routes. Veber et al. studied the effect of
molecular flexibility, measured as RBN, but in the context of molecular weight [31] This
analysis was applied to our data and showed that the influence of the rotatable bond count
on Caco-2 permeability depends on molecular weight. We split the dataset at 500 g/mol
and then, we divided it into four RBN ranges: [0,5], (5,10], (10,15], and (15,62]. The choice
of this molecular weight threshold follows the Lipinski threshold recommendation for
drug-likeness. Molecular weight equal to or less than 500 g/mol and RBN ≤ 5 appears to
be a better indicator of high permeability. More than 60% of the molecules in this group
showed permeability values above 10 × 10−6 cm/s (cut-off associated with good oral
absorption), in contrast to 14% of molecules in this RBN range but with a molecular weight
above 500 g/mol. Similar behavior was observed in the following range of RBN: molecules
with lower molecular weight are more likely to exhibit high permeation rates in the Caco-2
cell line when RBN is higher than 5 or equal to or lower than 10. In the last range of RBN, it
was observed that, for high molecular weight molecules, the presence of a high number
of rotatable bonds can enhance drug permeability since the free rotation of atoms around
single bonds allows the molecule to adjust its conformation during permeation. These
relationships are reasonable considering that different transport mechanisms govern drug
permeability and are expressed in the Caco-2 cell line.

In addition to lipophilicity and molecular size, the impact of molecular polarity on
passive diffusion has been described [32,38]. TPSA has been frequently used as a descriptor
in Caco-2 permeability models to describe its effect on passive diffusion, and its relationship
with the strong H-bond interactions between the Caco-2 cell line and drugs [39]. Molecules
with high TPSA may exhibit poor in vivo permeability due to the influence of polarity on
the interaction of the drug with glycoprotein P (P-gp) [25].

3.3. Model Development

Figure 2 provides a schematic description of model development. Considering the
need to contextualize the model performance against the experimental variability, the
reliable samples (n = 728) formed the first validation set. The UNCLEAN data (n = 4185)
were used to select the minimum number of features capable of correlating chemical
structure with permeability (see Methods for variable selection). The SMILES codes and the
RDKit descriptors of each structure are available as Supplementary Information. Initially,
more than 20 uninformative variables with variance lower than 0.1 were excluded, and
no missing values were reported for any RDKit descriptor. The first part of the recursive
selection algorithm consisted of retaining variables whose number of occurrences in the
random forest model was twice the number of occurrences of the corresponding permuted
variable. Until this point, 34 variables were pre-selected. The Pearson correlation matrix
for all these variables was computed and the number of variables was recursively reduced
by eliminating the correlated variables with a lower ratio of occurrences. An average of
15 shortlisted variables were selected using this algorithm.

Then, a supervised recursive clean-up algorithm was developed to discard unreliable
samples and to form a cleaned training set (see Methods for recursive data cleaning). Once
the failed samples were discarded (50± 10 molecules), the resulting cleaned data were used
as the training set. Comparisons of the molecular descriptor space in the first two principal
components indicate that the reliable validation set and cleaned (passed samples used as
training set) occupied a similar space (see Supplementary Figure S2). This fact reinforces
the idea that the reliable validation set prediction could provide a realistic estimation of
model performance.
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Five regression random forest (RRF) models were trained using different training
spaces to build a conditional consensus model (CCM). The first model consisted of a global
RRF model trained on all cleaned samples and thus covering all the PR. Then, cleaned
samples were clustered according to four classes of PR: “low (L)”, “low–moderate (L-M)”,
“moderate–high (M-H)”, and “high (H)”. One regional RRF was trained on each cluster.
We define a regional RRF as an RRF only trained within one of the previously defined
permeability clusters. Thus, a regional RRF is not a local model in terms of molecular
description but a local model in terms of the property to be predicted. A new molecule
was predicted first by the global RRF and then by the corresponding regional models if the
Tanimoto coefficient (similarity metric) to its nearest neighbors was equal to or greater than
0.7. The algorithm employs Tanimoto distance to find the five training instances closest to
the new molecule.

The percentage improvement of the RMSE-CV for the conditional consensus model
(CCM) over the global random forest model ranged from 6% to 22%, showing that the use
of regional models can reduce the prediction error of test samples with high similarity to
the training samples. Validation metrics for the cross-validation, reliable, and external sets
are depicted in Table 1. The results are reported as the mean with standard deviation.

Table 1. Validation metrics of conditional consensus model. Statistics: r2, r-squared of validation;
RMSE, root mean squared error; MAE, mean absolute error; and % 0.5 log, percentage of molecules
within the 0.5 log of prediction error.

Validation Set N
Mean (SD)

r2
(validation)

Mean (SD)
RMSE (validation)

Mean (SD)
MAE

Mean (SD)
% 0.5 log

Mean (SD)
N (Variables)
Mean (SD)

Cross Validation 4166 (10) 0.54 (0.01) 0.51 (0.01) 0.39 (0.01) 70 (0.5) 15 (3)

Reliable Set 728 0.61 (0.01) 0.43 (0.01) 0.33 (0.01) 77 (0.6) 15 (3)

External Set 100 0.57 (0 03) 0.51 (0 03) 0.40 (0 01) 69 (3) 15 (3)

Different statistical results were computed after data and attribute randomization
using different seeds in the setup of the regression random forest during 11 independent
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runs. Regression plots for the reliable set and external set are shown in Supplementary
Figure S3.

After completing the 11 training runs of this model, a complementary variable selection
was performed on the previously selected variables. A recursive feature elimination was
performed by starting with the training of an RRF model with all the features previously
selected and successively removing the features in decreasing order of importance until the
degradation of the model in terms of the mean absolute error of the out-of-bag samples
was observed. During this recursive process, it was observed that discrete variables were
less performant than their equivalent correlated continuous variables, if any. Based on
this observation, the most correlated continuous variables with the higher number of
occurrences were always taken rather than their correlated discrete counterpart variables.
Thus, the algorithm favors the selection of uncorrelated variables with a high number of
occurrences and prefers continuous variables over discrete variables. From the initial list of
the most important variables, the features slogP (octanol-water partition coefficient), TPSA
(topological polar surface area), SMR (molecular refractivity), Halkier Alpha (Hall–Kier
alpha value), and Kappa 3 were selected. The influence of the descriptors slogP and TPSA
have been previously described. The SMR descriptor, as a metric of the molar refractivity,
is related to the volume of the molecule and the London dispersive forces. Both parameters
can affect the size, the polarizability [40], and the passive diffusion through the lipid barrier.
The Halkier Alpha value quantifies the molecular shape and encodes the effects of the
covalent radius and hybridization stage [41]. This molecular descriptor and its related
approaches have been identified in previous Caco-2 computational studies [16,29]. Kappa
3 (molecular shape descriptor) appears as a surrogate of the discrete variable number
of rotatable bonds (RBN) because it is the most correlated continuous variable with the
higher number of occurrences in the random forest model trained for variable selection.
Regarding the use of RBN as a metric of molecule flexibility, it has been described that
the discrete nature of this variable and the exclusion of cyclic moieties from the count
can be problematic [42]. We note that using Kappa indices as descriptors of molecular
flexibility instead of the count of rotatable bonds improved the permeability prediction.
Supplementary Table S1 and Supplementary Figure S4 show the importance of these
variables measured in terms of occurrences in the RRF model and the correlation matrix
between all of them, respectively. These five variables were used to construct a new lower-
dimensional model. This time, RMSE values ranged from 0.46–0.53, and r2 values were
0.5 (0.01), 0.56 (0.01), and 0.56 (0.02) for the cross-validation, reliable, and external sets,
respectively. These results highlight the consistency of the model and demonstrate that
the recursive variable selection algorithm is useful in identifying the minimum number of
variables good enough to predict the target property.

The predictive ability of a QSPR model must be evaluated according to the experimen-
tal variability of the in vitro test. Note that the validation metric of the reliable set presents
the best coefficient of determination and the lowest root mean squared error. However, if
we select a 15% random set of molecules (size of the reliable set) from the whole MERGED
Caco-2 dataset, the statistics are very close to the results of the cross-validation set. Al-
though r2 is a popular metric for regression, a measure of dispersion such as the RMSE is
a more useful indicator of model accuracy than r2 [30]. Indeed, r2 compares the variance
of the residuals to the observations themselves, whereas the RMSE is not influenced by
the size or distribution of the data and provides a quantitative measure of the standard
deviation of the residuals. In terms of root mean squared error, the predictive ability of
the model is acceptable according to the experimental uncertainty of the data sources,
demonstrated by the RMSE calculated among the purely experimental values during the
data exploration. Following the rule that the RMSE of the test set should be less than
10% of the range of the target property [30], and considering that more than 69% of the
molecules of all validation sets fall within the 0.5 log range of the prediction error, the
model is suitable for predicting the log Papp.
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Table 2 compares the results achieved by the conditional consensus model (CCM)
with previous studies. To avoid the impact of data size on the comparison of models, this
table only shows QSPR studies based on more than 1000 samples. Regarding data size, our
model is ranked second only surpassed by the Sherer et al. study, which included more
than 15,000 samples (non-public data) [43]. It is well known that final model quality is
strongly dependent on training set quality, diversity, and size. Consequently, it is usually at
risk to compare numerical results based on datasets of different compositions and sizes. In
terms of RMSE, our model achieved comparable results to previous models, considering the
data size, the range of permeability, and the wide experimental variability demonstrated in
the data exploration.

Table 2. Comparison between the current model and previous QSPR studies.

Study Method Data Size Test
Set Size RMSE NMAE * r2 Units Range

Wang et al.
[24] MESN 4464 1340 - 0.08 0.55

log Papp

(10−6 cm/s)
[−2.78; 2.48]

Wang et al.
[22] Boosting 1272 255 0.31 - 0.83 log Papp [−7.76; −3.51]

Wang and
Shen [23]

HQPSO
+ dual RBF NN 1863 369 0.39 - 0.77 log Papp [−7.9; −3.72]

Sherer et al.
[43] RRF 15,791 - 0.2 - 0.52 log Papp −

Fredlund et al.
[44] PLS, RRF, SVM 2842 284 0.45 - - log Papp −

Current study Recursive
selection + RRF 5013 **

728 0.43 0.07 0.61 log Papp [−8.32; −3.51]100 0.51 0.08 0.57

MESN: Multi-embedding-based synthetic network; NSGA: Non-dominated sorting genetic algorithm; HQPSO:
Hybrid quantum particle swarm optimization; RBF: Radial basis function; NN: Neural networks; PLS: Partial
least squared; SVM: Support vector machine; RRF: Regression random forest; NMAE: Normalized mean absolute
error. * (Min, Max normalization). ** (This number includes the external validation set).

The functionality of the model can also be described in terms of classification metrics.
Based on the cut-off point associated with complete absorption (Papp = 10 × 10−6 cm/s),
the results of the model predictions showed high accuracy for all validation sets (accuracy:
0.77–0.82; sensitivity: 0.61–0.77; specificity: 0.87–0.91) These results are comparable to
those achieved in other studies [22,29,45,46]. Although the cut-off point for establishing an
acceptable rank–order relationship between permeability values in Caco-2 and the human
absorption of drugs is still under debate, the selected Papp value represents a reasonable
midpoint between very stringent or very soft cut-off values (e.g., 20 × 10−6 cm/s and
2 × 10−6 cm/s) [46].

3.4. Applicability Domain

The reliability of the model predictions was evaluated by the combination of two
approaches. The first approach consisted of estimating the prediction error of new sam-
ples through the five nearest neighbors (5-NN) algorithm based on the Euclidean dis-
tance. The estimated prediction error of the new samples was computed as follows:

Estimated Prediction Error (%) = (∑5
1 RPENN

5 ), where RPENN is the recursive prediction
error percentage computed for the nearest neighbors during the recursive data cleaning
algorithm. The second approach consisted of comparing the prediction variance computed
from random forest individual predictions with a predefined optimized threshold of 0.3.
New samples with highly variable predictions (prediction variance >0.3) and with an
estimated prediction error greater than 10% (RMSE > 0.5) were considered low confidence.
Figure 3 shows the comparison between the error metrics for the high and low confidence
levels. This method proved its suitability for identifying unreliable samples. The percent of
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decreasing of the RMSE values for the high confidence level ranged between 25% and 29%
for the validation sets.
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3.5. Model Validation with Reference Drugs and Potential Application to BCS/BDDCS

Recently, according to the Food and Drug Administration (FDA) and the Interna-
tional Council for the Harmonization of Technical Requirements for Pharmaceuticals (ICH)
guidelines [47], the suitability of a cell-based model to estimate drug permeability for
BCS-based biowaiver must be experimentally confirmed based on reference drugs within a
wide range of oral absorption and different transport mechanisms [47,48]. In this sense, an
additional external set made of 32 reference drugs recommended by the ICH was assembled
to evaluate the model performance.

Since the ICH guideline does not report the quantitative permeability value for these
molecules, another 10 sources were consulted [7,25,35,49–55]. For molecules substrates of
efflux mechanisms, it was ensured to take the value corresponding to the assay without
the presence of any efflux inhibitor. In relation to the experimental conditions, assays
with extreme values of stirring rate and pH of transport buffer were not considered. The
standard deviation distribution of the experimental values collected from the literature for
the 32 reference drugs are depicted in Figure 4d. Note that the major number of molecules
is distributed in the range 0.2–0.6 standard deviation. These results are consistent with
the high variability reported in other studies. The median value of all experimental
measurements was adopted as the final value to evaluate the model performance. To
implement this task, the model was retrained on the whole MERGED dataset and only those
molecules belonging to the new external set were removed to ensure a blind prediction.
Model predictions for these drugs are shown in Table 3.
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The regression and the residual plots are depicted in Figure 4a,b, respectively. In
correspondence with the 10 × 10−6 cm/s (−5 log units) cut-off for high permeability, the
model allows us to correctly identify 100% of the molecules with moderate–low perme-
ability and 89% of the molecules with high permeability. In terms of the prediction of
the quantitative value, the model was able to predict the new molecules with an r2 mean
value of 0.55 ± 0.07, and around 72% ± 5 of the molecules were predicted within the range
of 0.5 of log units. To estimate the ideal predictive limits for this set, the mean value
of each molecule computed from multiple measurements was compared to every single
measurement value reported in the literature. This correlation analysis showed an RMSE
of 0.4 and r2 of 0.7 (Figure 4c). Theoretically, r2 = 0.7 and not r2 = 1 would be the upper
predictive limit of any computational model for this set; thus, the r2 reached by the CCM
method is completely reasonable in the context of the experimental variability. Residual
values higher than 0.5 were reported for molecules with moderate–low permeability (see
Figure 4b). There are many factors that affect model performance in this range. First,
only 35% of the data covers the experimental range of −5.5 to −8.5. In addition, a slight
tendency to increase experimental variability was observed for low permeability molecules.
Most of the drugs with larger discrepancies are substrates of transporter proteins and this
phenomenon cannot be completely covered by the physicochemical properties used by
the model.



Pharmaceutics 2022, 14, 1998 13 of 21

Table 3. Model outputs for 32 drugs included in the ICH list to validate and standardize Caco-2 permeability assay.

ICH
Group
Permeability

Drug log Papp
obs.

log Papp
calc. Drug Transport Fabs *

(%) EoM (%) BDDCS
Class

BCS
Class

BDDCS
Predicted

BCS
Predicted

High

Antipyrine −4.55 −4.58 Passive diffusion 100 95 1 1 1, 2 1, 2
Caffeine −4.47 −4.7 Passive diffusion 100 99 1 1 1, 2 1, 2
Carbamazepine −4.57 −4.75 Passive diffusion 90 98 2 2 1, 2 1, 2
Disopyramide −5.37 −5.19 Passive diffusion 83 3 1 1, 2 3, 4
Ketoprofen −4.55 −4.58 Passive diffusion 100 90 2 1 1, 2 1, 2
Metoprolol −4.65 −4.73 Passive diffusion 95 95 1 1 1, 2 1, 2
Minoxidil −4.75 −5.27 Passive diffusion 95 1 3, 4 3, 4
Naproxen −4.46 −4.62 Passive diffusion 98 95 2 2 1, 2 1, 2
Propranolol −4.65 −4.64 Passive diffusion 90 99 1 1 1, 2 1, 2
Theophylline −5.11 −5.03 Passive diffusion 96 90 1 1 1, 2 3, 4

Moderate

Amiloride −5.68 −6.23 Passive diffusion 50 0 3 1/3 3, 4 3, 4
Atenolol −6.27 −5.58 Paracellular 51 10 3 3 3, 4 3, 4
Chlorpheniramine −4.55 −4.74 Passive diffusion 85 1 1/3 1, 2 1, 2
Enalapril −5.64 −5.14 Passive diffusion 65 1 1 1, 2 3, 4
Furosemide −5.91 −5.4 Carrier-mediated 61 10 4 4 3, 4 3, 4
Hydrochlorothiazide −6.24 −5.6 Paracellular 73 0 3 3 3, 4 3, 4
Metformin −5.37 −5.64 Paracellular 53 0 3 3 3, 4 3, 4
Ranitidine −5.86 −5.11 Carrier-mediated 53 30 3 3 1, 2 3, 4
Terbutaline −5.92 −5.18 Paracellular 67 30 3 1, 2 3, 4

Low

Acyclovir −6.38 −6.16 Paracellular
Carrier-mediated 25 25 4 1/3 3, 4 3, 4

Famotidine −6.21 −5.59 Paracellular 38 45 3 3 3, 4 3, 4
Chlorothiazide −5.88 −5.44 Carrier-mediated 24 4 4 3, 4 3, 4
Enalaprilat −5.98 −6.3 Carrier-mediated 17 10 3 3, 4 3, 4
Foscarnet −6.19 −5.35 Paracellular 17 3 3, 4 3, 4
Lisinopril −6.42 −5.67 Carrier-mediated 25 0 3 3 3, 4 3, 4
Mannitol −6.09 −5.59 Carrier-mediated 20 3 3, 4 3, 4
Nadolol −5.58 −5.39 Paracellular 31 0 3 3 3, 4 3, 4
Sulpiride −6.23 −5.68 Carrier-mediated 36 0 3 3, 4 3, 4

Efflux

Digoxin −6.02 −6 Carrier-mediated 50 3 1/3 3, 4 3, 4
Paclitaxel −5.81 −5.48 Carrier-mediated 50 2 4 3, 4 3, 4
Quinidine −4.56 −4.65 Carrier-mediated 85 100 1 1 1, 2 1, 2
Vinblastine −5.69 −5.54 Carrier-mediated 30 2 3, 4 3, 4

* Fabs: fraction absorbed. EoM: extent of metabolism. The log Papp observed values refers to the mean values of the experimental values collected from the literature. Fraction absorbed
and extent of metabolism data were taken from the literature.
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The relationship of the apparent permeability coefficient with the fraction absorbed
and the extent of metabolism are displayed in Figure 5, respectively. The good correlation
between the apparent permeability calculated (expressed as Papp × 10−6 cm/s) with the
fraction absorbed (Fa) (Spearman’s rank correlation coefficient = 0.77 ± 0.01) showed that
the current in silico data (Papp estimations) could be used to give an initial evaluation of
in vivo absorption, independently of the mechanisms of transport or efflux that could
govern human permeability. Similar performance was observed for the relationship be-
tween the in silico log Papp data and the extent of metabolism (Spearman’s rank correlation
coefficient = 0.8 ± 0.01).

Pharmaceutics 2022, 14, 1998  14 of 21 
 

 

  

Figure 5. Relationship between  in silico apparent permeability coefficients and fraction absorbed 

for the 32 reference drugs of the International Council Harmonization (ICH)  list. Data points are 

classified according to BDDCS classes 1–4 or BCS 1–4. 

In the context of drug discovery, early prediction of the BCS or BDDCS class for new 

molecular entities plays a critical role [8]. Provisional classification in both systems can 

provide an early estimation of in vivo drug performance, transport mechanisms, and drug 

disposition  [56]. While  the BCS classification system uses drug permeability  to predict 

drug absorption, the BDDCS proposes the use of permeability rate (as a measure of the 

extent of metabolism) [57]. Several studies have suggested the use of in vitro permeability 

in cell lines such as PAMPA, MDCK, and Caco‐2 for estimating drug permeability or the 

extent of metabolism [58–60]. Other approaches have relied on the use of molecular de‐

scriptors of polarizability and lipophilicity [61–63], while other contributions are based on 

the use of machine learning models for predicting the permeability/extent of metabolism 

from the molecular structure for further application on BCS/BDDCS [64,65]. In this sense, 

the  potential  applicability  of  conditional  consensus model  predictions  to  Provisionals 

BCS/BDDCS was evaluated. It is important to note that this provisional classification is 

limited to drug permeability/the extent of metabolism. 

For BCS provisional classification, the cut‐off for in silico permeability was fixed to 

10 × 10−6 cm/s, as used  for other studies  [66]. For  the  ICH  list, BCS classifications were 

compiled from  the  literature [8]. Among the 21 drugs on the ICH  list with known and 

unambiguous classification, 18 were correctly predicted with an accuracy of 86%. 

For BDDCS,  the optimal  threshold  to define  the boundary between high and  low 

permeability was  selected using a dataset of 679 drugs as  reported by Brocattelli and 

coworkers [65]. The BDDCS classifications were updated according to the new classifica‐

tions provided in the latest article by Bocci et al. [8]. Permeability predictions were calcu‐

lated for this set, previously ensuring that any overlap between this set and our MERGED 

set was removed. From the initial BDDCS dataset, 70% was randomly chosen as the train‐

ing set. The remainder was used as the test set. Receiver operating characteristic (ROC) 

analysis on the BDDCS training set suggested that an in silico log Papp permeability cut‐off 

of 6.3 × 10−6 cm/s can be used to discriminate between classes 1–2 (high permeability rate) 

and 3–4 (low permeability rate). By setting this threshold, the in silico permeability data 

were able to correctly identify 80% of test set drugs in class 1–2 drugs and 70% in class 3–

4. If low confidence samples were removed, the accuracy reached 81% for 191 molecules 

(94% of the test set). In the case of the ICH list, 26 drugs out of a total of 32 were correctly 

classified in classes 1–2 or 3–4, for an accuracy of 81%. 

To compare our results with previous in silico BCS/BDDCS, the ICH list was used as 

the reference set. Only purely in silico studies in which model predictions were publicly 

available were considered for this comparison (see Table 4). 

Figure 5. Relationship between in silico apparent permeability coefficients and fraction absorbed
for the 32 reference drugs of the International Council Harmonization (ICH) list. Data points are
classified according to BDDCS classes 1–4 or BCS 1–4.

In the context of drug discovery, early prediction of the BCS or BDDCS class for new
molecular entities plays a critical role [8]. Provisional classification in both systems can
provide an early estimation of in vivo drug performance, transport mechanisms, and drug
disposition [56]. While the BCS classification system uses drug permeability to predict drug
absorption, the BDDCS proposes the use of permeability rate (as a measure of the extent of
metabolism) [57]. Several studies have suggested the use of in vitro permeability in cell
lines such as PAMPA, MDCK, and Caco-2 for estimating drug permeability or the extent
of metabolism [58–60]. Other approaches have relied on the use of molecular descriptors
of polarizability and lipophilicity [61–63], while other contributions are based on the use
of machine learning models for predicting the permeability/extent of metabolism from
the molecular structure for further application on BCS/BDDCS [64,65]. In this sense,
the potential applicability of conditional consensus model predictions to Provisionals
BCS/BDDCS was evaluated. It is important to note that this provisional classification is
limited to drug permeability/the extent of metabolism.

For BCS provisional classification, the cut-off for in silico permeability was fixed to
10 × 10−6 cm/s, as used for other studies [66]. For the ICH list, BCS classifications were
compiled from the literature [8]. Among the 21 drugs on the ICH list with known and
unambiguous classification, 18 were correctly predicted with an accuracy of 86%.

For BDDCS, the optimal threshold to define the boundary between high and low
permeability was selected using a dataset of 679 drugs as reported by Brocattelli and
coworkers [65]. The BDDCS classifications were updated according to the new classifi-
cations provided in the latest article by Bocci et al. [8]. Permeability predictions were
calculated for this set, previously ensuring that any overlap between this set and our
MERGED set was removed. From the initial BDDCS dataset, 70% was randomly chosen as
the training set. The remainder was used as the test set. Receiver operating characteristic
(ROC) analysis on the BDDCS training set suggested that an in silico log Papp permeability
cut-off of 6.3 × 10−6 cm/s can be used to discriminate between classes 1–2 (high permeabil-
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ity rate) and 3–4 (low permeability rate). By setting this threshold, the in silico permeability
data were able to correctly identify 80% of test set drugs in class 1–2 drugs and 70% in class
3–4. If low confidence samples were removed, the accuracy reached 81% for 191 molecules
(94% of the test set). In the case of the ICH list, 26 drugs out of a total of 32 were correctly
classified in classes 1–2 or 3–4, for an accuracy of 81%.

To compare our results with previous in silico BCS/BDDCS, the ICH list was used as
the reference set. Only purely in silico studies in which model predictions were publicly
available were considered for this comparison (see Table 4).

Table 4. Comparison of the performance of this study and previously published models on the ICH
drug list.

Study Permeability/Metabolism Prediction
Method for BCS/BDDCS

Number of Drugs
from the ICH List Sensitivity Specificity

Golfar et al. (2019) [67] clogP 29 0.89 0.81

Broccatelli et al. (2012) [65] logD 7.5, logD 7, logD 9, log BB, CP, 25 1 0.64

Pham-The et al. (2013) [66] logP, logD 7.5, TPSA, CACO2 (Volsurf+) 10 0.86 0.67

Kassim et al. (2004) [68] logP, clogP 15 1 0.67

In silico log Papp for BCS 21 0.73 1
This study In silico log Papp for BDDCS 32 0.78 0.83

Sensitivity: TP/TP + FN; specificity: TN/TN + FP, where: TP: true positive; TN: true negative; FP: false positive;
FN: false negative.

Table 5 reviews the main in silico contributions to the provisional BCS/BDDCS. Three
studies use the partition coefficient as a descriptor to predict the permeability class or the
degree of metabolism. However, it has been described that lipophilicity alone is not a good
indicator to characterize drugs with carrier-mediated active transport. Furthermore, the
relationship between lipophilicity and the degree of metabolism deteriorates for drugs that
are eliminated via the biliary route. Both facts lead to incorporating other characteristics
to achieve a better concordance. From Table 5, it can be observed that models that use
polarizability metrics and logD reach better results in global terms. However, the com-
parison of the models is limited by the different test sizes, chemical space representations,
and the recent updates to the BCS/BDDCS classifications. In this study, in silico log Papp
values allowed for the correct identification of 75% of drugs with active transport (see
Table 3), which proved to be a better descriptor to discriminate between classes 1–2 or
3–4. We consider that the current approach shows acceptable performance on both test
sets and provides a good and fast method for preliminary BCS/BDDSC classifications,
highlighting that the predictions are fully automated in a KNIME workflow able to classify
new molecular entities.

Table 5. Comparison of methods, variables, and model performance with previous in silico studies.

Study

Permeability Prediction
Applied on: Features Methods N (Test) Statistics *

BCS BDDCS

Broccatelli. (2012) [65] x 17 features (Volsurf+ descriptors) Bayes, SVM 379 Se: 0.7
Sp: 0.8

Golfar (2019) [67] x logP ACD BLR 99 Acc: 0.86

Takagi [63] x logP, clogP Comparison with
cut-off value 29 Acc: 0.62–0.65

Pham-The 2013 [66] x x logP, logD 7.5, TPSA,
CACO2(Volsurf+) LDA, BLR, QDA 675 Se: 0.73

Sp: 0.68

Khandelwal 2007 [69] x HBD, HBA, PSA, clogP,
VOLSURF descriptors RP, RF, SVM 56 Se: 0.86

Sp: 0.42
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Table 5. Cont.

Study

Permeability Prediction
Applied on: Features Methods N (Test) Statistics *

BCS BDDCS

Dahan 2013 [62] x clogP, AlogP, KlogP Comparison with
cut-off value

29 Acc: 0.69–0.72
14 Acc: 0.85–0.93

Newby 2014 [64] x Volsurf+ descriptors DT 127 Se: 0.63
Sp: 0.62

This study x x In silico log Papp computed from
15 molecular descriptors using CCM

Comparison with
cut-off value

204
(BDDCS)

Se: 0.8
Sp: 0.7

Acc: 0.77

32
(BDDCS)

Se: 0.78
Sp: 0.83

Acc: 0.81

22 (BCS)
Se: 0.67

Sp: 1
Acc: 0.82

* For studies where sensitivity (Se), specificity (Sp) or accuracy (Acc) values for the classification of permeabil-
ity/extent of metabolism were not explicitly stated, statistics were calculated from the confusion matrix reported
in the original articles. SVM, support vector machine; LDA, linear discriminant analysis; BLR, binary logistic
regression; QDA, quadratic discriminant analysis; RP, recursive partitioning; RF, random forest; DT, decision tree.

3.6. Automated Platform for In Silico Caco-2 Permeability Prediction, Concluding Remarks

The KNIME workflow can be downloaded free of charge from https://pikairos.eu/
download/Caco-2-permeability-prediction (accessed on 16 September 2022). The user can
directly predict the Caco-2 permeability of the new molecules from SMILES codes simply
by following the KNIME installation instructions and the workflow usage guidelines. The
workflow was designed to provide three outputs for permeability analysis: (1) the numeri-
cal value of the apparent permeability expressed as Papp × 10−6 cm/s; (2) the permeability
class according to the 10× 10−6 cm/s cut-off; (3) the preliminary BDDCS/BCS classification
into classes 1–2 or 3–4; and (4) the confidence level of the estimators. Thus, the user can
prioritize the molecules with high permeability and high confidence levels. The use of a
large and diverse dataset and the combination of regional and global regression models
allowed us to cover a broad spectrum of chemical diversity and provide a comprehensive
applicability domain. The mathematical treatment to take relevant information from this
data is novel and the results showed a good correlation in the context of experimental vari-
ability. The usefulness of this system lies in its simplicity, since no experimental properties
are used as input features, and it is only based on easily calculated 0–2D physicochemical
and structural descriptors.

4. Conclusions

A novel methodology was applied to model Caco-2 permeability on a reasonably
large dataset. This approach combines recursive algorithms for variable selection and data
cleaning with a conditional consensus model (CCM) made of regional and global random
forest models. We presented one of the most extensive and fully public datasets used
for Caco-2 modeling. Even when experimental conditions (pH, stirring rate, cell passage
number, temperature, and cell culture conditions) were not available, the methodology was
able to achieve good performance on a very heterogeneous dataset. The validation statistics
of the model improved with the quality of validation sets in terms of the standard deviation
of molecules with multiple measurements. The practical use of the model was confirmed
with the blind prediction of a reliable validation set and two commercially available drug
datasets, reaching RMSE values between 0.43 and 0.51 log units. The results obtained are
consistent with the experimental variability of the modeling dataset. The methodology
is based on a reduced number of basic molecular properties or 0–2D descriptors and
is easily reproducible and applicable. Considerable curation efforts were made before
modeling to avoid overestimation of the QSPR models and to ensure the validity of the

https://pikairos.eu/download/Caco-2-permeability-prediction
https://pikairos.eu/download/Caco-2-permeability-prediction
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structure–permeability relationship model. The model will be updated with new data to
incorporate more chemical information and provide an extensive applicability domain.
From a practical perspective of the Caco-2 regression model, the workflow for prediction
is publicly available and includes as outputs the numeric value of apparent permeability
on Caco-2 and the corresponding confidence level of the estimators to facilitate a Caco-2
prediction tool for the medicinal chemistry community. In addition, the model proves to be
useful for discriminating between classes 1–2 and 3–4 of the BCS and BDDCS. Finally, we
consider that the present in silico model is a reliable tool to identify the most promising
compounds with high intestinal permeability during the early stages of drug discovery and
could be applied in the development of further provisional BCS or BDDCS classification
systems. The performance of these new QSPR models is also expected to improve, as
more and higher-quality data with corresponding experimental conditions are released
in the future. The construction of QSPR models based on well-characterized Caco-2 data
will be a step forward in the prediction of this task since individual models could be
built for each range of experimental conditions without combining measurements from
different laboratories.
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