
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Mourad Aribi,
University of Abou Bekr Belkaïd,
Algeria

REVIEWED BY

Alessandro de Sire,
University of Magna Graecia, Italy
Malik Hamaidia,
University of Liège, Belgium

*CORRESPONDENCE

Clara Crescioli,
clara.crescioli@uniroma4.it

SPECIALTY SECTION

This article was submitted to
Nutritional Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 27 May 2022

ACCEPTED 22 August 2022

PUBLISHED 23 September 2022

CITATION

Crescioli C (2022) Vitamin D, exercise,
and immune health in athletes:
A narrative review.
Front. Immunol. 13:954994.
doi: 10.3389/fimmu.2022.954994

COPYRIGHT

© 2022 Crescioli. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 23 September 2022

DOI 10.3389/fimmu.2022.954994
Vitamin D, exercise, and
immune health in athletes:
A narrative review

Clara Crescioli*

Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”,
Rome, Italy
Vitamin D exerts important extra-skeletal effects, exhibiting an exquisite

immune regulatory ability, affecting both innate and adaptive immune

responses through the modulation of immunocyte function and signaling.

Remarkably, the immune function of working skeletal muscle, which is fully

recognized to behave as a secretory organ with immune capacity, is under the

tight control of vitamin D as well. Vitamin D status, meaning hormone

sufficiency or insufficiency, can push toward strengthening/stabilization or

decline of immune surveillance, with important consequences for health.

This aspect is particularly relevant when considering the athletic population:

while exercising is, nowadays, the recommended approach to maintain health

and counteract inflammatory processes, “too much” exercise, often

experienced by athletes, can increase inflammation, decrease immune

surveillance, and expose them to a higher risk of diseases. When

overexercise intersects with hypovitaminosis D, the overall effects on the

immune system might converge into immune depression and higher

vulnerability to diseases. This paper aims to provide an overview of how

vitamin D shapes human immune responses, acting on the immune system

and skeletal muscle cells; some aspects of exercise-related immune

modifications are addressed, focusing on athletes. The crossroad where

vitamin D and exercise meet can profile whole-body immune response

and health.
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GRAPHICAL ABSTRACT
Introduction

There is robust evidence of causative links between exercise,

improved immunity, and disease prevention. Indeed, an optimal

functioning immune system plays a central role in health

maintenance, promoting a well-balanced defense against

microorganisms or aberrant cells. In this light, exercise

training is recommended as a multifaceted intervention for

health (1, 2). Nevertheless, intense and prolonged exercise

bouts seem to produce a temporary immunodepression,

associated with a decreased host protection and, in turn, an

increased risk of diseases, particularly infections, as documented

by studies on athletes (3, 4). The human immune system is

intensely shaped by exercise and by a variety of stimuli, such as

stress, lack of sleep, general health status, environmental

extremes (altitude), competition, and nutrients. Among others,

vitamin D is a well-known regulator of the immune response,

acting on several immune cell types, including macrophages,

antigen-presenting cells (APC), dendritic cells (DCs), T cells,

and B cells, which express vitamin D receptor (VDR), either

constitutively or upon activation (5). Adequate levels of vitamin

D are recommended to maintain immunity and prevent illness.

Currently, overwhelming evidence suggests that D

hypovitaminosis is similarly widespread in the general

population and in athletes (6–9). In fact, albeit athletes are

generally healthy subjects, many of them are vitamin D

deficient, likely as a consequence of combined factors like

poor/inadequate diet and sun underexposure (10, 11). A

vitamin D-deficient athlete may be at an increased risk of

potential problems like stress, fractures, respiratory infections,

muscle injuries, and immune system depression. Remarkably,

vitamin D remodels and strengthens immunity, not only acting

directly on immune cells but also modulating the so-called

immune ability of nonproperly working immune tissues, such

as the skeletal muscle (12–14). Indeed, besides resident immune

compartments, which exert inflammatory, protective, and

reparative functions, the skeletal muscle can behave as a

proper immune secretory organ, functioning as a checkpoint

within a complex integrated network of immune-endocrine
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signals, malleable by exercise and vitamin D. Thus, the

interplay between exercise and vitamin D status seems to play

a pivotal role in immune health homeostasis.

This review aims to provide an overview of how vitamin D

shapes human immunity, acting on both the immune system

and skeletal muscle, and how it interplays with exercise to profile

whole-body immune response, focusing on athletes. In the first

part of the paper, some aspects of exercise-related modifications

in the immune system are summarized with pros and cons.
Exercise and the immune system:
Is there a limit separating health
and disease?

The importance of exercise on human health has been

clarified since 400 BCE by Hippocrates, who stated, “…if there

is any deficiency in food or exercise the body will fall sick.” It is

recognized that the immune system is intensely modified by

physical activity and exercise (15, 16).

A sedentary lifestyle is associated with an increased risk of

comorbidities, including cardiovascular and metabolic diseases,

cancer, neurodegeneration, and depression. These clustering

diseases, reported as “diseasome of physical inactivity” (17),

are essentially ascribable to immunity polarization toward T

helper (Th)1/Th17-dominance and chronic inflammation,

mediated by a plethora of immune/inflammatory active

biomolecules, arising from immunocytes and adipocytes in

consequence of inactivity-derived visceral fat accumulation

(often accompanied by muscle mass decline) (18–20). The

expanded adipose tissue, along with infiltrated resident

macrophages, is recognized to be the main source of

prototypic inflammatory Th1 cytokines, such as tumor

necrosis factor (TNF)-a (21). Exercise-induced anti-

inflammatory effects keep under control immune/

inflammatory signaling with acknowledged benefits for health

maintenance (22, 23). However, “too much” exercise, as much as

experienced by athletes, likely does not support immunity, as

addressed hereafter.
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Pros: An example from the elderly

In addition to restoring an optimal muscle/fat ratio,

exercising is currently recognized to significantly decrease

inflammation, protect against several immune/inflammatory

diseases (24, 25), and the reduce morbidity or mortality rate in

adulthood and older age by counteracting frailty and cognitive

decline (26–29). Those positive effects are promoted by

improvements in immune function and opposition to immune

senescence, a biological age-related decline of immune

surveillance, leading to higher susceptibility to infections,

lower efficacy of vaccination, and higher risk of cancer (30–

32). In the elderly, physical activity is associated with better

immune response and better protection of the influenza vaccine

(33, 34). In addition to the benefits of some age-related

alterations, excellently summarized in a recent review (35),

studies on young subjects document that exercise boosts the

immune system by acting on circulating inflammatory cytokines

and decreasing the secretion of several inflammatory cytokines,

including TNF-a, interferon (IFN)-g, interleukin (IL)-1b, IL-2,
IL-6, and IL-8 (36, 37).

In early investigations, the anti-inflammatory effect was

associated with an increased risk of infections due to exercise-

induced immunodepression, as addressed hereafter.

Nowadays, regularly exercising is a well-recognized adjuvant

of immune surveillance by balancing the Th1/Th2 ratio and

opposing the interplay between inflammatory and oxidant

processes, recently referred to as “oxinflammation” (38).

The decrease of reactive oxygen and nitrogen species (ROS

and RNS, respectively) and the simultaneous increase of

antioxidant defense—by potentiating enzymatic activity of

catalase, superoxide dismutase, glutathione peroxidase—are

examples of the multiple mechanisms involved in exercise-

induced support to the immune system (38, 39). A recent

meta-analysis on oxidative stress parameters concludes that

training improves health-related outcomes, reducing the pro-

oxidants/antioxidants ratio, regardless of the studied population,

and independently of intensity/volume/type of exercise (40).

Exercise significantly supports immune response by promoting

immune cell recirculation from lymphoid tissues and their

interchange with blood: intensity-dependent leukocytosis is

followed by an increase in the number and redistribution of

effector cells to peripheral tissues. Leukocyte recirculation

following exercise likely depends on cell mobilization and

demargination of previously circulating cells, driven by surface

modifications of adhesion molecules, rather than de novo bone

marrow release (41).

Even a single bout of exercise can promote the redistribution

of natural killer (NK) and viral-specific T cells—thus limiting

latent viral reactivation and reducing the antigenic load on T

cells—and can prevent exhausted/senescent T-cell accumulation

via apoptosis (35).
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It has been suggested that the modifications to natural killer

(NK) and T-cell trafficking promoted by exercise might

potentially have important implications for health, i.e., by

isolating mobilized lymphocytes for immune cell therapeutics

(35, 41).

Acute exercising for less than 1 h transiently promotes the

recirculation of B cells, NK cells, and CD8+ T cytotoxic

lymphocytes exhibiting effector-memory phenotype, highly

active in immune host defense (16, 42–44). Furthermore,

during moderate exercise (lasting less than 1 h), stress

hormones do not reach the high concentration needed to act

as a suppressor of immunocyte activity (45). This transient effect

results in immune surveillance boosting.

Conversely, intense/prolonged exercise is known for quite a

long to increase circulating stress hormones, such as cortisol or

catecholamines, which alter leukocyte trafficking and

redistribution; in particular, catecholamines exert a greater

impact on NK than T or B cells, in keeping with the density

gradient of cell b receptors (41, 46, 47). Stress hormone-induced

modifications to cell number, surface molecule expression, and

cell deformation, found in different cell subsets, are greater with

prolonged intense exercise, as exhaustively reported

elsewhere (41).

Exercise-induced positive regulation of the immune system

involves several mechanisms, including the qualitative shift from

a Th1 to a Th2 response, the enhancement of mitochondrial

function in peripheral blood mononuclear cells, and the

regulation of immunometabolism toward more oxidative

phenotypes (48–54). Thus far, albeit research in exercise

immunology is still emergent and gaps in the knowledge exist,

the summation of the effects induced by each bout of moderate

exercise repeated over time significantly strengthens immune

surveillance against pathogens, inflammatory disorders, and

cancer cells by several mechanisms, collectively supporting the

therapeutic potential of exercising (55, 56), as summarized

in Table 1.

Nevertheless, it is undeniable that heavy exertion as

practiced by athletes may be associated with increased

inflammation, oxidative stress, and increased risk of illness.
Cons: An example from the athletes

The attention on immune response in athletes is currently

high since heavy training workloads might turn to an immune

dysfunctional response and increased risk of illness.

This phenomenon gives rise to questions on a possible edge

separating the immune-depressive from the immune-boosting

effect of exercise, particularly in athletes (57, 58).

The pioneering studies on changes in basic immune cell

counts and function evidenced profound perturbations of

leukocyte subsets linked to endeavor-related stress (57, 59–62).
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Indeed, after prolonged/intensive endurance exercise,

critical alterations in immunity biomarkers—salivary

immunoglobulin (Ig) A output (suppressed), the function of

NK cells, neutrophils, T cells, and B cells (reduced), expression

of major histocompatibility complex II (MHC-II) in

macrophages (downregulated), just to mention some—

persist for hours to days, expose the athletes to illness higher

risk (16, 63–68), in primis to an increased risk of upper

respiratory tract infections (URTI) (61, 62, 69–76). Table 1

summarizes the effects induced by prolonged/strenuous

exercise. Indeed, overexercise suppresses MHC-II expression

and negatively impacts macrophages’ ability to present the

antigen to T lymphocytes, further impairing immune

surveillance (77).

The relationship between the risk of URTI and exercise

intensity in humans mostly emerged from self-reported sickness

logs and was substantially confirmed in animals, albeit

mechanistic experimental studies are often not immediately

translated to humans, considering the difficult comparison

across species due to the high variability of exercise protocols

or adaptation (78–80).

The drastic reduction in lymphocyte number and function is

observed within 1-2 h after exercise, a timeframe known as an

“open window” similar to a break in immune surveillance as

represented by a J-curve model (81). To date, this hypothesis has

been argued and it is still under debate (68).

Over time, exercise immunology has received growing

attention, and investigators have clarified that exercise-

dependent immunity modulation specifically mirrors intensity,

duration, and type of the effort, with different responses to acute/

chronic, and moderate/vigorous regimens (differentiation

criteria: 60% intensity threshold of oxygen and heart rate

reserve, 60 min duration threshold).
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In fact, exercise in a moderate regimen on a regular basis can

decrease illness incidence by dampening inflammation and

infections, as previously addressed (57, 82). Accordingly,

consistent results from several randomized clinical trials show

exercise-reduced URTI incidence and duration: summarizing, at

least 5 days/week of aerobic exercise (from 20 min) can decrease

by 43% the number of days with URTI vs. sedentary habits

(exercising less than 1 day/week), as recently reviewed in an

exhaustive paper on this topic (56, 83, 84). This result persists

after adjustment of confounders, such as age, gender, education

level, marital status, and mental stress (56, 57). The comparison

between heavy and moderate exertion, such as marathon races

and 30/45 min walking, respectively, supports the hypothesis

that the perturbation of immune function specifically reflects the

extent of stress experienced by the exerciser (56).

Athletes undergoing repeated heavy exertion cycles, i.e., in

proximity to competitions, often experience concomitant

stressors such as traveling, nutrition changes, sleep

deprivation, and mental stress, all together merging in reduced

immune surveillance, which, in turn, associated with the higher

illness of respiratory tract, skin, digestive and genitourinary tract

(58, 85). Albeit pure cause–effect relationships between heavy

exertion and risk of diseases (either infective or not) have not yet

been clarified, some chief organizations, such as the

International Olympic Committee and the International

Association of Athletic Federation, have introduced

surveillance programs to prevent and manage this important

problem (58, 86–88).

Thus, consensus statements with the ultimate goals of

achieving performance and maintaining athlete’s health

provided some key guidelines (4, 58, 89).

Remarkably, exercise stress represents such a challenge for

the immune system, requiring biosynthetic and oxygen
TABLE 1 The effect of effort intensity on immunity.

Effort intensity Immune-related
modification

Summation of effects

Moderate-to-vigorous regular exercise (less than 1 )
Stress hormones do not reach the concentration to
suppress immune activity

+ macrophage antipathogen activity
+ immunosurveillance against cancer
cells
+ immunoglobulins
+ anti-inflammatory cytokines
+ neutrophils
+ NK cells
+ T cells (particularly cytotoxic CD4+ T
cells)

Immune defense activity enhancement, systemic inflammation
decrease, diminished risk of illness

Prolonged and intensive endurance exercise
Stress hormones reach the concentration to suppress
immune activity

− macrophage function (altered
MHC-II)
− immunosurveillance against pathogens
and cancer cells
− neutrophil function
− NK cell activity
− salivary IgA output

Prolonged immune system alteration, systemic inflammation increase,
increased risk of illness
The effects induced by moderate/vigorous exercise and prolonged/intensive endurance exercise on different immune components and cell types are compared, and the summation of the
effect on immunity is depicted. The signs “+” and “−” indicate up- and downregulation, respectively.
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bioavailability to promptly reprogram and support effector cell

metabolism and production of specific mediators, like cytokines,

involved in the inflammatory response.

Indeed, intensely trained athletes show important alterations

in the bioactive lipidome and proteome, like metabolites from

lipid super pathways (oxylipins) or immune-related proteins,

largely involved in immune cell chemotaxis and migration,

mediating organ cross-talk during inflammatory responses

(90–92).

With the development of high-resolution omics

technologies, the recent hypothesis is that the transient

immune dysfunction in the “open window” is due to a

significant decrease in cell metabolic capacity during recovery

immediately after intense exercise bouts, rather than being a

general immune depressing response (93–95).

In this scenario, the multiomics approach highlights the

importance of nutritional interaction on immune modifications

in response to exercise. Of several factors, vitamin D status is

highly critical, considering that this molecule can control whole-

body immunity, affecting the immune system and the immune

activity of skeletal muscle.
Vitamin D and athletes: Dialoguing
with the immune system

The diet of athletes should provide sufficient nutrients and

micronutrients—proteins, carbohydrates, minerals, and

vitamins—to meet their energy needs and maintain at best

their immune health (4).

Even short-term deficiencies from dietary restrictions, often

aimed to rapidly reduce athlete’s weight while continuing hard

training, immediately turn into impaired immune surveillance

(96–99). Furthermore, larger increases in circulating stress

hormones and greater immune perturbation have been

reported in athletes exercising in a carbohydrate-depleted

state (96).

Vitamin D is a well-recognized upregulator of immunity,

and matters arise from the observation that D insufficiency/

deficiency is a common feature in athletes from different sports

disciplines, including dancing, taekwondo, running, jockeying,

and weightlifting (100–106).

The explanation for this widespread D inadequacy is likely

due to different factors. First, ultraviolet (UV)B sunrays

insufficient exposure, which is the main source of vitamin D,

in addition to the diet (few foods naturally contain it) or vitamin

D-fortified foods, as previously reported (107). The effectiveness

of vitamin D endogenous synthesis seems to be affected by

several factors, including latitude, season, atmospheric pollution,

type of sport, indoor/outdoor training, lifestyle, sunscreen use,

skin pigmentation (dark-skinned people need about 10-time

longer sun exposure due to melanin concentration), albeit
Frontiers in Immunology 05
contradictory data are reported on this topic (108). Regardless

of the cause, vitamin D hypovitaminosis is acknowledged in the

global athletic population and attracts growing attention.

Studies on vitamin D inadequacy among athletes often are

focused only on performance, as this molecule seems to act as a

“performance enhancer, although conclusive data on this topic

are still missing (109).

Instead, concerns should be addressed about general health

rather than limited to performance, considering the tight control

exerted by vitamin D on some important functions, broadly

affecting health in all individuals, including athletes.

Vitamin D, behaving as a typical steroid hormone or as a

micronutrient with rapid mechanisms, exerts pleiotropic effects

via interaction with vitamin D receptor (VDR), virtually

expressed by every human tissue (110, 111).

In addition to homeostasis regulation in bone, which is the

classical tissue target of this molecule, it is well recognized that

vitamin D significantly impacts the inflammatory status, which,

in turn, is acknowledged as the common link in several noxious

conditions, including infections, joint degenerative diseases, and

disturbance of metabolism, to mention some (112–115).

Unfortunately, the ability of vitamin D to modulate the

immune response can be listed among the main mechanisms

underlying its anti-inflammatory effects.

Albeit immunocytes are considered nonclassical target cells

of vitamin D, almost all types of immune cells, including CD4+

and CD8+ T cells, B cells, neutrophils, APCs, like macrophages,

and dendritic cells (DCs), express vitamin VDR, which upon

ligand binding modulates cell number and function (116). The

multifaceted effects on the different immune cell types are

extensively reported in the literature; essentially, they converge

in promoting a shift from the Th1/Th17 inflammatory subset to

protolerogenic dominance, in association with enhancement of

T regulatory (Treg) cells and impairment of APC. Vitamin D

signaling, indeed, ensures the suppression of proinflammatory

status, downregulating T cells and cytokines like IL-2, IL-6, IL-8,

IL-12, tumor growth factor (TGF)-b, IFN-g, IL-17, and IL-21,

simultaneously enabling Treg subset expansion with increased

production of protolerogenic mediators, such as IL-4, IL-5, IL-

13, IL-10, and CCL2 (117–121).

Vitamin D-dependent inhibition of DC differentiation from

monocytes, antigen processing, and antigen presentation

decrease—due to the downregulation of costimulatory

molecules/major histocompatibility complex (MHC)-II-

complexed antigen—and IL-10 upregulation, further

supporting protolerogenic signals (122).

In particular, vitamin D can modify DC morphology to a

more adherent spindle shape, and surface markers drive the cells

to a less mature/more tolerogenic phenotype, in association with

a decrease in cluster of differentiation (CD) 80, CD86

(costimulatory molecules), and CD54 (adhesion molecule), in

addition to MHC-II downregulation, whereas the expression

of CCR5 (chemokine receptor), DEC205 (antigen-uptake
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receptor), F4/80 (macrophage marker), and CD40 increases,

resulting in a general downregulation of antigen presentation

function (123, 124).

The overall effect likely acts as a “balance” of the

inflammatory response evoked by long/high-intensity exercise

(above 80% VO2max, 120 min) characte r ized by

proinflammatory cytokine rise, i.e., IL-6, IL-1, IL-8, and TNF-

a, as reported, whereas it seems to merge with the effect of short-

term/moderate exercise (50%–75% VO2max, 45–60 min),

associated with an expansion in T-cell-derived Th2 mediators,

as IL-4 and IL-10.

Interestingly, IL-10 promotes long-lasting antigen-specific

T-cell anergy and plays a driving role for type 1 T regulatory

(Tr1) cells, the cell subset known to be critical for maintaining

tolerance to self and nonself antigens in humans and animals, in

the presence of APC, as emerged from in vitro experiments

(125–128).

In line with previous in vitro investigations reporting IL-10

increase and IFN-g reduction in peripheral blood mononuclear

cells after vitamin D, recent in vivo experimental studies on

atheroprotection document that vitamin D added to

dexamethasone significantly promotes IL-10 by DC as well as

other APC, thus establishing IL-10 network of lymphoid and

myeloid immune cells, and simultaneously reduces Th1

response by inhibiting IFNg-producing CD4+ and CD8+ T

cells (129).

Noticeably, vitamin D-induced mechanisms underlying the

transition from proinflammatory IFN-g+ Th1 cells to
Frontiers in Immunology 06
suppressive IL-10+ cells seem primed by wide-epigenetic T-

cell remodeling, which promotes VDR expression and enzyme

cytochrome P450 family 27 subfamily B member 1 (CYP27B1)

activation by autocrine/paracrine mode, leading to Th1/Th17

program repression (via STAT3, c-JUN, and BACH2) and IL-10

enhancement (via IL-6–STAT3 signaling), as recently shown by

elegant research in coronavirus disease 2019 (COVID-19)

patients (130).

Subsequent studies are encouraged to verify whether similar/

different vitamin D-dependent mechanisms occur in immune

adaptation to exercise.

As already addressed, regular short-term/moderate-intensity

exercise strengthens the immune system by increasing

macrophage activity, which is further potentiated by the

vitamin D effect on monocytes. Of note, vitamin D induces

macrophage and epithelial cells to produce cathelicidin, a

protein with marked antimicrobial activity, able to improve

macrophage bacterial capacity involved in host-first-line

defense (131–134). Furthermore, vitamin D impairs

macrophage inflammatory cascade by targeting cyclooxygenase

2 (COX-2) and inducible nitric oxide synthase (iNOS) and,

therefore, reducing nitric oxide (NO) and prostaglandin (PG)E2

(135). Figure 1 summarizes the main effects induced by vitamin

D in different types of immunocytes.

The higher production of cathelicidin and defensin

(another host-defense peptide) induced by vitamin D along

with its anti-inflammatory action would promptly reduce the

cytokine storm during infection by COVID-19 (136). Indeed,
FIGURE 1

Vitamin D-induced immune regulation of the immune system and skeletal muscle. Vitamin D controls inflammation and promotes tolerogenic
status, acting on several types of circulating immune cells, skeletal muscle cells, and intraorgan immune cells. Some cell types, biomediators,
and signaling paths/molecules mainly involved in this process are indicated. Similar immune regulatory mechanisms are promoted by moderate
exercise, while intense/prolonged exercise leads to a decline in immune surveillance, recalling the immunodepression allowed by sedentary
status. Adequate vitamin D levels can downtone exercise-induced inflammatory-like response and converge to exercise-induced immunosurveillance
boosting, with protective effects on whole-body health. Overtraining athletes in hypovitaminosis D can be at higher risk of infectious and noninfectious
diseases. The signs “+” and “−” indicate up- and downregulation, respectively. AMPK, 5′ adenosine monophosphate-activated protein kinase; ERK1/2,
extracellular signal-regulated kinase 1/2; Tr1, type 1 T regulatory cells; MHC-II, major histocompatibility complex II; STAT3, signal transducer and
activator of transcription 3; c-JUN, transcription factor Jun; BACH2, transcription regulator protein broad complex-tramtrack-bric a brac and
Cap'n'collar homology 2; COX-2, cyclooxygenase 2; iNOS, inducible nitric oxide synthase; NO, nitric oxide; PGE2, prostaglandin E2.
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recent investigations in COVID-19 patients document the

usefulness of vitamin D administration due to the protective

effects against mortality and intensive care unit admission

(137, 138).

Adequate vitamin D status combined with the practice of

exercise seems to promote positive outcomes in COVID-19,

albeit the research on this specific topic is still in its

infancy (139).

It has been reported that sex-dependent dimorphism in

vitamin D metabolism likely explains the greater immune

vulnerability to perinatal infections observed in male vs.

female fetuses/neonates due to the testosterone-induced

decrease of cathelicidin gene, through the inhibition of

alpha hydroxylase CYP27B1, the enzyme necessary for D

bioactive form (140). It would be interesting to extend this

kind of investigation into adulthood to verify whether

similar mechanism(s) may underlie some sex-dependent

differences in response to infections (including COVID-

19), which are also seen in athletes and are frequently

mistreated (141, 142).

In B cells, vitamin D inhibits proliferation and

immunoglobulin production similarly to heavy exertion,

whereas repeated bouts of moderate-intensity exercise enhance

B-cell proliferation.

Since B and T cells, macrophages, and DCs can self-

synthesize vitamin D, a kind of “local” anti-inflammatory

effect occurs within infiltrated target tissues (5, 143). Exercise

upregulates VDR expression in T cells regardless of exercise-

induced T-cell mobilization (144), therefore enhancing the anti-

inflammatory loop. Thus far, vitamin D can impact both innate

and adaptive immunity with a decisive anti-inflammatory

profile. While this effect was initially simplistically considered

immunosuppressive, the current concept focuses on the

exquisite modulating role of vitamin D toward tolerogenic

homeostasis (145).

Conversely, low vitamin D levels are associated with deficits

in immune surveillance, including lower salivary IgA and

increased risk of long-lasting respiratory infection, as observed

in elite athletes (11). Indeed, hypovitaminosis D-shaped

modifications in the immune system often converge on and

amplify heavy exertion-induced effects.

Furthermore, vitamin D deficiency is described in the

pathophysiology of Th2-driven allergic diseases such as

asthma, in which the lower hormone levels are associated with

IL-4, IL-5, IL-9, and IL-13 deregulation, increase in asthma

markers (IgE and eosinophil), and more severe clinical disease

manifestation, as reported (146–149).

To date, vitamin D deficit-dependent damage is not limited

to the immune system but highly impacts the function of

skeletal muscles; since this tissue exhibits important

immunocompeten t capac i ty , who le -body immune

surveillance is further compromised.
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Vitamin D and the immunity of
skeletal muscle

Skeletal muscle is a nontraditional target tissue of vitamin D

and is finely regulated by this molecule at several levels.

According to experimental and human studies, insufficient

vitamin D levels and VDR deletion cause critical muscular

dysfunctions (150–153).

In fact , ske leta l musc le deve lopment , myocyte

differentiat ion, muscular volume, tissue functional

maintenance, and physical performance are processes tightly

dependent on the intact vitamin D/VDR system, as confirmed by

studies in humans with VDR mutations or in VDR knockout

(VDRKO) mice (151–153).

Lower levels of vitamin D are associated with a significant

reduction in muscle fiber size and atrophy (mainly of type II

fiber), and overall, determine muscular defects in energy

handling (as insulin resistance), plasticity, and contraction, in

the general population and in athletes as well (154, 155).

Conversely, higher vitamin D levels are reported to be linked

with lower injury rates and improved sports performance (156).

The beneficial effects of vitamin D on skeletal muscle

function are related to the fine-tuned regulation exerted at the

cell level through VDR interaction, albeit, in the past, the

presence of this receptor in human muscle was questioned

(157). To date, VDR is mainly detected in fast-twitch muscle

fibers (committed to rapid actions) and expressed at different

levels in human isolated cells, depending on the cell fusion stage

(upregulation upon myotube formation) (150, 158–161).

Intramyonuclear VDR concentration is directly associated

with vitamin D serum level, suggesting that the circulating

vitamin D/muscular VDR system, plays a pivotal role in the

integrity of skeletal muscle, rather than hormone deficiency

alone (158). In line with this hypothesis, VDR/D deficit

promotes a series of biomolecular alterations, including

increased oxidative stress and decreased antioxidant activity,

converging in muscle deterioration and ending in atrophy

(107, 162).

Type II fiber atrophy significantly ameliorates with vitamin

D, as documented in biopsies from vitamin D-deficient patients

before and after the treatment with the hormone (163). Vitamin

D helps faster recovery from muscle injury and inflammation

after high-intensity exercise (164, 165), whereas vitamin D-

deficient athletes show a delayed recovery. Upon VDR

expression increase, the intracellular signaling cascade involved

in repair processes—such as 5′ adenosine monophosphate-

activated protein kinase (AMPK), extracellular signal-regulated

kinase (ERK)1/2, mitogen-activated protein kinases p38—is

activated and interferes with proinflammatory molecule genes

(166). Generally, it can be stated that vitamin D affects almost all

stages of the myogenic program toward regeneration, also acting

on satellite cells. Due to myocyte’s ability to uptake vitamin D
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from the bloodstream, skeletal muscle tissue accumulates this

hormone and acts as a functional reservoir, ready to release it

upon blood-level decline. Interestingly, regularly exercising

maintains and enhances this functional feature (167).

Exercise is a well-known strategy against muscle wasting and

atrophy, not only because it counteracts mass loss but because it

exquisitely regulates the mitochondrial function and the internal

immune component, both critical for muscle integrity

maintenance during stress, as shown by multiomics analysis in

astronauts during spaceflights (168).

Of note, exercise- and vitamin D-induced signals converge

in the dynamic remodeling of mitochondria, promoting correct

genomic reprogramming and ske le ta l musc le ce l l

remodeling (169).

Beyond those beneficial effects, it is mandatory to highlight

the function of vitamin D in maintaining the immune-secretory

function of skeletal muscle, which is closely in line with the topic

of this review.

Nowadays, the renewed and proven concept is that skeletal

muscle is a proper secreting organ with immunoregulatory

function. Indeed, upon contraction the muscle releases many

trophic/immunoreactive small peptides, the myokines, which

can control the function of nearby or distant organs, acting in an

autocrine/paracrine/endocrine fashion, as recently reviewed in

an exhaustive paper (170). Those factors, before their full

identification, were referred to as the “work factors” or

“exercise factors”, to clearly state that their release occurs

exclusively upon muscular contraction and work (170).

Currently, more than 650 myokines are identified by the

proteomic analysis of the muscular secretory profile, which is

constantly updated (171). Among this plethora of biomolecules,

some myokines drew attention due to their ability to modulate

the immune response, introducing a novel view of immunity-

muscle crosstalk, which was previously considered to be a

unidirectional route, with muscle being under immune system

control (and not vice versa).

Indeed, like other tissues, skeletal muscle has its resident

immune cell population to warrant the regenerative potential

and tissue homeostasis. The CD4+FoxP3+ Treg population is

the main subset infiltrating damaged muscle upon to micro- or

macroinjuries, as well as during exercise, and drives muscle

regeneration and satellite niche fate; intraorgan monocyte to

macrophage conversion plays a pivotal role in orchestrating T

cells, mesenchymal stem cells, muscle satellite cells, myoblasts,

and endothelial cells towards muscle regeneration or pathogen

clearance (94, 162, 172).

Fiber damage due to different injuries, including contusions,

strains, hyperextensions, avulsions, or ruptures, promptly

activates neutrophils resident in skeletal muscle to release

within the microenvironment high concentrations of

inflammatory factors necessary for repair (173, 174).

Albeit several types of leukocytes, such as mast cells,

neutrophils, eosinophils, and lymphocytes, participate in the
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repair/regeneration, the monocyte/macrophage population

controls all stages of this process (175). Indeed, after

neutrophils, macrophages represent the second subpopulation

reaching the injured areas (peak at 3 to 6 days and persisting 2

weeks after extensive damage), gradually shifting from a

phagocytic to pro-myogenic phenotype, from M1 to M2

macrophages, respectively (172). The shift in macrophage

phenotype orchestrates the time of myogenic sequence,

supporting first cell proliferation and migration, while delaying

differentiation, and then facilitating alignment and fusion (176,

177). During regenerative processes, soluble molecules as growth

factors, cytokines, and prostaglandins regulate immune and

muscle cell communications, but interestingly, close cell-to-cell

contacts between myogenic cells and macrophages occur via

adhesion molecules, macrophage pseudopodial extensions, and

myogenic cell cytoplasmic protrusions (174, 178, 179). T cells

show a delayed response, roughly 4 days after the initial damage

(172, 180).

Adequate vitamin D levels support the function of the

immune intraorgan component: its role, generally considered

pro-tolerogenic, is, indeed, to dampen the damaging effects of

cell stress and immune response during excessive or chronic

reactions, and, in this view, this molecule is defined “pro-

survival” (181). Furthermore, exercise-induced production of

some myokines, in particular, IL-6, IL-7, and IL-15, by skeletal

muscle cells, gives the muscle an “immune-like feature” and the

capacity to impact leukocyte subset trafficking, immune cell

function, and inflammation (35, 182).

Interleukin-6 is the prototypic myokine, the first one and

most extensively studied. Differently from systemic

proinflammatory “bad IL-6”, deriving from immune cells and

adipocytes, muscular “good IL-6” is transiently released in the

blood during exercise (up to a 100-fold increase, depending on

intensity) and exhibits an unquestionable anti-inflammatory and

metabolic profile (183).

Exercise-related pulsatile release of IL-6 promotes the anti-

inflammatory macrophage subset (M2-like), involving

suppressor of cytokine signaling 3 (SOCS3) ablation, and IL-1

receptor antagonist (IL-1ra) and IL-10, resulting in overall

downregulation of inflammatory responses (52, 184).

Interleukin-6 likely plays a central role in exercise-induced

leukocytosis and late lymphopenia mediated by cortisol, as

shown by IL-6 infusion in athletes (52).

In humans, IL-6 is known to counteract TNFa production

and signaling from monocytes (185, 186).

Furthermore, IL-6 behaves as an energy biosensor in

conditions of energy shortage/demand, such as during physical

exercise, enhancing hepatic glucose production, and promoting

fat oxidation (187).

Thus far, the myokine IL-6 likely characterizes exercise

adaptation, as it is involved in long-term beneficial effects,

related to an exercise-training reduction in abdominal fat and

anti-inflammatory actions (188). Vitamin D can enhance the
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biological effects of IL-6, as shown by the improved metabolic

function observed in vitamin D-deficient trained men after a

single intramuscular injection of vitamin D, which was

associated with a significant rise of IL-6 1 h after resistance

exercise (189). The lack of modification in inflammatory

parameters is likely due to the short duration of the treatment

and the use of a single dose.

Interleukin-6 output from human skeletal muscle cells

maintained in nutrient restriction, to mimic energy-

demanding conditions such as postexercise, was significantly

increased after the treatment with a VDR agonist (162).

Conversely, the addition of a VDR agonist to human muscle

cells challenged by a strong proinflammatory environment

significantly counteracted inflammation-induced intracellular

cascade underlying Th1-type chemokine release (190). Thus

far, vitamin D modulation seems to be beneficial with

prometabolic or anti-inflammatory effects, depending on the

microenvironmental needs of skeletal myocytes.

Muscle-derived IL-15 regulates macrophage differentiation,

B-cell proliferation, neutrophil migration, and naïve T-cell

survival (191). This myokine tightly cooperates with vitamin

D, promoting the conversion into the active hormone, the

upregulation of VDR, and the induction of cathelicidin

(192, 193).

IL-7 also plays a pivotal role in first-line immune defense;

the age-dependent decline of this myokine can be counteracted

by exercise and by vitamin D, which can help to restore aberrant

IL-7-dependent signal, i.e., occurring in immunosenescence or

autoimmune processes (194–196).

Thus far, vitamin D is a good enhancer of some exercise-

induced “immune” adaptations of the skeletal muscle. The main

immune regulatory effects of vitamin D on intraorgan

immunocytes and myocytes are depicted in Figure 1.
Conclusions

Vitamin D insufficiency/deficiency is so extensive across the

world to ideally meet the criteria for the statement “pandemic”,

and, in addition to the general population, it seems to affect the

athletic population as well.

Athletes are thought to be in good health almost by

definition, considering that many human diseases are tightly

related to sedentary behavior and inflammation; importantly,

the latter is a well-recognized bridge linking different (and

clustering) illnesses.

Nevertheless, the condition of overexercising, too often

experienced in several sports disciplines, exposes athletes to a

higher risk of inflammation and, consequently, a higher risk

of diseases.
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This phenomenon is essentially related to the modulation of

the immune system by exercise, which can enhance or decrease

human immune surveillance, essentially depending on the

athlete’s experienced effort. In this scenario, vitamin D status

plays a critical role in immune health, as possible exercise-

induced detrimental effects might merge with the poor immune

health status determined by hypovitaminosis D. Conversely,

vitamin D adequacy counteracts inflammation, enhancing the

immune defense and shaping the immune response of skeletal

muscle, which is recognized to be a proper secreting organ with

immune-like features.

Thus far, screening for vitamin D status would be mandatory

in the athletic population as well. This topic still represents a hot

topic in literature, as important issues regarding vitamin D

determination and supplementation, representing a possible

strategy to limit the “pandemic” hypovitaminosis, are still far

from being translated into practice, as thoroughly reported by

the Consensus statement from the 2nd International Conference

on Controversies in Vitamin D (197). The lack of discussion on

these aspects is among the limits of this review, which does not

include sex-dependent differences in immune response or in

vitamin D levels, or cardiovascular features. Nevertheless,

recalling the attention to the crossroad where exercise and

vitamin D are likely to meet to shape immune health

hopefully will help to bring further attention to an issue

that is highly significant for athletes and the general

population’s wellbeing.
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