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Abstract: The mutual solubility of epoxy oligomer with polysulfone (PSU) and polyethersulfone
(PES) was studied by optical interferometry. Additionally, phase diagrams (PDs) were plotted and
their evolution during the curing process was shown. The phase structures of modified hardened
systems, as well as their tensile strengths, elastic moduli, and crack resistance, have been studied by
scanning electron microscopy and physico-mechanical techniques. The effect of initial components’
mutual solubility on the phase structure and, subsequently, on the physico-mechanical properties of
the composite material is shown. Differences in the structure and properties of the cured modified
compositions depending on the type of PD (with Upper Critical Solution Temperature (UCST) for
PSU and Lower Critical Solution Temperature (LCST) for PES) of the initial components are shown.

Keywords: polymer; phase equilibrium; morphology; phase structure; epoxy; polysulfone; polyether-
sulfone; curing; elastic modulus; tensile strength; crack resistance

1. Introduction

The development of the aerospace, automotive, and construction industries leads to
the increase in the requirements for polymer binders for composite materials. In order
to improve physico-mechanical and thermophysical properties, epoxy binders are modi-
fied with thermoplastic rigid-chain polymers (TPs) [1–13]. Currently, a large number of
publications are devoted to the structure and properties of cured compounds with given
compositions [2–12]. However, very few studies are devoted to changes in the mutual
solubility of the components of the composition during the curing reaction. Previously, we
have shown that parameters of the critical point of a phase diagram (PD) and its distance
from the curing isotherm determine the type of the forming phase structure and sizes of
the phases [14,15]. Thus, the properties of heterogeneous systems are dependent on the
mutual solubility and translational mobility of the components and kinetics of the chemical
reaction, which affect the formation of the phase structure of the composite material and
their properties [8–12,15–21].

According to [7,12,15], mixtures of an epoxy oligomer (EO) with rigid-chain thermo-
plastics such as polysulfone and polyethersulfone (which have similar molecular structures)
are characterized by PD of amorphous separation with upper and lower critical solution
temperatures, respectively.

The current paper is devoted to studying the effect of the solubility of the components
before and during curing reactions of epoxy–TP systems on the structure of the cured
composition as well as establishing a correlation between the main physical and mechanical
properties and the phase structures of cured epoxy systems modified with polysulfone
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(PSU) and polyethersulfone (PES). The results of the study are of great importance for
technologists when selecting composition of the binder to obtain the required structure of
the cured matrix, which determines the maximum physical and mechanical characteristics
of the products used in aerospace, automotive, and construction industries.

2. Experimental

The epoxy oligomer (ED-20, Armplast, Moscow, Russia) with Mw = 0.35 × 103 g/mol,
Tg = −18 ◦C, PSU (PSK-1, Petrov Research Institute of Plastics, Moscow, Russia) with
Mw = 35 × 103 g/mol, Tg = 180 ◦C and PES (BASF Corporation, Wyandotte, MI, USA) with
Mw = 34 × 103 g/mol, Tg = 240 ◦C were chosen as objects of the study. Triethanolamine
titanate (TEAT) was used as a hardener (Tcuring = 160 ◦C, stoichiometric ratio 10 wt.%) [22].

Partially cured EO with a nonstoichiometric content of TEAT (adduct) was used to
study the evolution of PD. Adduct curing degree (α) was calculated by the ratio of thermal
effects of adducts and fully cured oligomers with the stoichiometric content of TEAT,
recorded by the differential scanning calorimetry (DSC) method (Netzsch DSC 204 F1, Selb,
Germany). Each sample was measured in inert atmosphere from 20 ◦C until 260 ◦C with
5K per minute heating rate.

The study of solubility and interdiffusion in binary (PSU–EO, PES–EO) and three-
component systems—TPs–adducts—was carried out using method of optical interferome-
try on an ODA-2 IPCE diffusiometer (IPCE, Moscow, Russia) [23]. A helium–neon laser
(λ = 632.8 nm) was used as a light source.

The method is based on the principle of in situ registration of optical density distri-
bution in the area of conjugation of components and recording its change in time under
the isobaric–isothermal conditions of the process [24]. The measurement method consisted
in fixation of a TP sample of 5 mm × 5 mm in size and about 150 µm thick (obtained by
pressing) between the diffusion cell glasses, the inner surfaces of which are covered with a
layer of translucent metal (Ni-Cr alloy) with a high reflection index. A small wedge angle
of 2◦ was established between the glasses. After assembly, the cell was thermostated at a
set temperature for at least 30 min. Then, the space between the glasses was filled with EO
or adduct.

All measurements were carried out in the temperature range from 20 to 260 ◦C.
The experiments was carried out in the heating–cooling mode with a step of 5 ◦C and
thermostated at each stage for at least 30 min.

Methods of processing of the interferograms, interdiffusion zones, and phase diagrams
construction did not differ from those described earlier [25,26].

The phase structure and physico-mechanical properties of epoxy–TP systems PSU–
adduct and PES–adduct with TP content from 5 to 20 wt.% were studied using standard
mixed samples, hardened for 8 h at 160 ◦C. The choice of such a concentration range is
related to the manufacturability of epoxy composite materials. Epoxy binders with contents
of rigid-chain thermoplastics of more than 20 wt.% have high viscosity and cannot be used
to impregnate fibers and fabrics.

The crack morphology and elemental composition of phases were examined on a
scanning electron microscope (Philips SEM-500, Eindhoven, The Netherlands) with X-ray
energy spectrometer (Kevex-Ray, Burlingame, CA, USA).

Phase structure was elicited by plasma etching of a low-frequency oxygen discharge
with the vacuum universal station (Edwards Coating System E306A, UK).

Physico-mechanical properties of the samples—elastic modulus (E), tensile strength (σ)
and crack resistance (GIR)—were assessed using the universal testing machine (Zwick/Roell
Z010, Ulm, Germany) under tension at a constant rate of 1 mm/min.

For elastic modulus (E) and tensile strength measurements, the specimens shown in
Figure 1a were used. In the tests, applied force (P) and strain (ε) were registered. The strain
was measured with the MultiXtens extensometer. Tensile strength and elastic modulus
were calculated from obtained stress–strain curves.
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Figure 1. The specimens used for the tensile strength (a) and the crack resistance (b) measurements.

The samples shown in Figure 1b were used for the crack resistance measurements.
Thickness of the groove used for directing the crack did not exceed 2 mm. Initial notch
for crack initiation with the 0.1 mm thickness was made by the razor blade and situated
8–10 mm away from the through holes for the sample fixation in the universal testing
machine (UMT) grips. Under loading, the force increased until a certain critical value
when the crack started to propagate. After the crack propagation stopped, the sample
was unloaded and the loading cycles were repeated until the final cracking of the sample.
The technique used for the crack resistance measurements was described in [27].

3. Results and Discussion
3.1. Phase Equillibrium

The typical interferograms of interdiffusion zones for systems PSU–EO and PES–EO
are presented in Figure 2. It was established that EO mixtures with PSU are fully compatible
in the temperature range 20–260 ◦C, since the refractive index (n) continuously changes
from nTP to noligomer (Figure 2a,b).
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the basis of structural and morphological studies of cured compositions. Arrows (Figure 
4) indicate the shift direction of critical point and binodal dome, which occurs due to the 
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coexisting phases change and the diffusion coefficient decreases due to the chemical reac-
tions of crosslinking and network formation, which leads to the effect of concentration 
supersaturation, creating conditions for secondary phase structure formation. 
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In contrast to the mixtures of EO with PSU, the EO systems with PES have phase
boundaries in the area of dilute solutions, which indicates partial compatibility of PES–EO.
It was established that, at low temperatures (below 90 ◦C), mixture of EO with PES is
characterized by a complete solubility (Figure 2c) and, at higher temperatures (above
90 ◦C), there is a partial compatibility (Figure 2d). Thus, the PES–EO system belongs
to the class of systems with amorphous phase separation with Lower Critical Solution
Temperature (LCST).

The phase boundary (Figure 3), separating the dissolution areas of oligomers in the
TP (I) and the TP in the partially hardened EO (II), appears in the interdiffusion zone of the
PSU–adduct system, compared to original linear systems. The systems are characterized
by a PD of amorphous phase separation with Upper Critical Solution Temperature (UCST)
(Figure 4a). It was established that after the system has overcome the gel-point, the
phase boundary presents under all temperature and temporal conditions to the point of
polymer decomposition. Equilibrium state of the system is confirmed in the reversed
heating–cooling mode.
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Interference patterns were analyzed using the standard technique [25]. The composi-
tions of coexisting phases were determined and PDs were constructed at different stages
of EO crosslinking. Phase inversion areas on the PD are indicated by the dashed lines on
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the basis of structural and morphological studies of cured compositions. Arrows (Figure 4)
indicate the shift direction of critical point and binodal dome, which occurs due to the
formation of spatial network of chemical bonds. It was established that an increase in
the network density leads to a decrease in the solubility of components, an increase in
UCST for PSU–EO systems and a decrease in the LCST for PES–EO systems. Compositions
of coexisting phases change and the diffusion coefficient decreases due to the chemical
reactions of crosslinking and network formation, which leads to the effect of concentration
supersaturation, creating conditions for secondary phase structure formation.

3.2. Phase Structure

The phase structure of cured epoxy–TP compositions with UCST and LCST was
studied on the mixtures with TPs at a concentration range of 5–20 wt.%. The figurative
points (FPs) of the studied mixtures are plotted on a PD (Figure 4).

The SEM micrographs of phase structures of cured systems with UCST and LCST are
represented in Figures 5–9. All compositions have heterogeneous structures. Their specifics
are manifested in various types of phase structure organizations, particle size distributions
and presence of secondary phase transition particles.
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Phase structure formation in systems with PSU and PES occurs at 160 ◦C. However, in
systems with LCST, the phase separation begins at the stage of temperature increase, since
the path of the FP movement crosses the binodal curve at the point of 90 ◦C.

The binodal dome intersects the FPs of systems with PSU at a conversion degree
of 0.25. Thus, considering nearly equal molecular weights of TPs, phase separation in
the system with PSU occurs at lower interdiffusion coefficients than in systems with PES,
which directly affects the size of the dispersed phase. It was established that in systems
with 5 wt.% TP, the phase distribution is unimodal. The average size of dispersion particles
in the system with PES is 3.3 µm, and with PSU it is 1.5 µm (Figure 10). Thereby, the sizes of
dispersed structures are mostly determined by the conversion rate, at which the formation
of heterogeneous structures begins when the FP enters the labile area of PD.
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of TP. RPSU and RPES are the average sizes of heterogeneous particles in the PSU–EO and PES–EO
systems, respectively.

It is important that the formation of bicontinuous “salami” type structures occurs with
different molecular mobilities of the system components, in the case of systems with PSU at
α = 0.25, and, for PES, when the temperature rises from 90 to 160 ◦C (before the start of the
curing reaction). Therefore, the dispersed structures formed at secondary phase separation
are larger in the case of systems with PES. Oligomer-rich phases in systems with PES have
a grain size approximately 20 µm (Figure 8), and in the systems with PSU grain size does
not exceed 10 µm (Figure 6) in the 2 region.

The micrograph (Figures 7b and 11) shows that the dispersed phase is smaller in size
compared to the well region. In our opinion, this effect is associated with an interfacial
adhesion contact failure, which is caused by shrinkage stresses and change in dispersed
phase composition of cured system cooled from curing temperature to the room tempera-
ture at ∆ϕ (left binodal 2 in Figure 11) while the matrix composition changes slightly (right
binodal 2 in Figure 11). It should be noted that the PSU–EO system with UCST does not
have the same phenomenon due to an increase in TP concentration in the dispersed phase
as a result of cooling.

Thus, the type of phase structure formed during curing of the mixture is influenced by
the critical concentration—the intersection point of the binodal curve with curing isotherm.
If composition of the mixture under the curing equals to the critical concentration, complex
bicontinuous structures (salami type) will be formed in the system. If critical concentration
shifts by more than 5 wt.% in either direction, the morphology of a cured composition will
correspond to a matrix-dispersion type of structure (sea-island) with a dispersed phase
enriched with one of the components. The critical concentration value can be adjusted by
varying the molecular weights of the initial system components, according to the equation
ϕkp2 =

√
r1√

r1+
√

r2
following from the theory of Flory–Huggins–Scott of polymer solutions for

amorphous systems [28], where r1 and r2 are the degrees of polymerization of components
1 and 2.

It is important that the effective molecular weight of the oligomer continuously
changes at the curing process, which leads to expansion of heterogeneous region of PD
and, as a result, the continuous change in the composition of coexisting phases.

Therefore, due to the low diffusion coefficients in the final stages of the curing reaction,
concentration supersaturation appears. This provokes secondary phase transformations
and, as a result, nanoscale structure formation. It is the molecular mobility of system
components during the curing reaction that determines the size of the final phase structures.
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Figure 11. Evolution of the PD of the PES–EO system during the curing reaction. The arrow α

indicates the direction of the critical temperature shift with increasing α. Other arrows indicate the
change in the composition of the phases with decreasing temperature of the cured system. ∆ϕ is the
composition shift of the dispersed phase in the cured mixture at room temperature. The micrograph
shows the phase structure of the mixture at 10 wt.% of PES.

3.3. Physico-Mechanical Properties

As it was shown above, regardless of the type of original PD, characterized by UCST or
LCST, the main factors affecting the final phase structure of composition are the molecular
weights of the mixture components and the differences between the critical parameters
(concentration, temperature) and the curable mixture composition and the curing tempera-
ture, respectively. Their variation allows the obtention of compositions with the necessary
structural parameters that determine the set of physico-mechanical and other operational
characteristics of the sample.

Figure 12 shows that modification of systems with PSU induces changes in the elastic
modulus and tensile strength within the error range, when there is a decrease in tensile
strength by two times in the area of phase inversion (ϕPES 15 and 20 wt.%) for systems
with PES. An increase in the size of PES-rich dispersed phase leads to a 25% increase in the
modulus of elasticity. This effect is not observed for systems with PSU. Growth of elastic
modulus of compositions modified with PES at concentrations up to 10 wt.% is due to a
formation of heterogeneous dispersion of larger particles in the structure. It is important
that, at low modifier concentrations, the dispersed phase is enriched with TP with a higher
Tg (240 ◦C), and hence higher elastic modulus, than the cured EO, whose Tg is comparable
to the curing temperature (160 ◦C). The tensile strength loss occurring in EO–PES systems
(ϕPES 15 and 20 wt.%) with “salami” type structures is associated with a phase composition
change (∆ϕ) resulting from the composition being cooled to room temperature (Figure 11).
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The crack resistance is improved for “salami” type structures. It was found that
addition of 10 wt.% of PSU and 15% of PES increased the crack resistance (Figure 13). This
effect can be explained by appearance of a continuous phase enriched with a thermoplastic
component. For TP concentration of 20 wt.%, crack resistance of the PES–EO composition
was 20% lower than of the PSU–EO one. This is due to the lower values of PSU elastic
modulus compared to PES one, which facilitates a decrease in the crack growth energy.
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4. Conclusions

A number of important observations from the present work shed more light on the
processes occurring during the curing of modified binders. The correlation between the
phase equilibria, structure and physico-mechanical properties of epoxy systems modified
by PSF and PES was determined.

Information on the phase state of the systems under study in the entire concentration
and wide temperature (20–260 ◦C) ranges has been obtained. It is shown that mixtures
of EO with PSF and PES are characterized by PD with upper and lower critical solution
temperatures, respectively. The influence of the thermal prehistory on the phase struc-
ture regulation depending on the position of the figurative point on the PD was traced
(concentrations of components).
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The formation of bicontinuous “salami” phase structures leads to increases in the
crack resistance. It was determined that in order to obtain this type of structure in the
cured TP–EO system, the TP concentration should be equal to the critical concentration,
when the binodal intersects the curing isotherm on the PD. It was found that in epoxy
systems modified with PES (PD with LCST) and the matrix-dispersion type of structure
with interfacial adhesion, contact failure occurs.

The obtained information is of great importance in the engineering of products from
composite materials based on epoxy binders modified PSF and PES and allows one to
predict the matrix structure and, as a consequence, the physical and mechanical properties
when choosing the binder composition.
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