
Citation: Lee, T.; Hwang, S.; Seo,

D.M.; Shin, H.C.; Kim, H.S.; Kim,

J.-Y.; Uh, Y. Identification of

Cardiovascular Disease-Related

Genes Based on the Co-Expression

Network Analysis of Genome-Wide

Blood Transcriptome. Cells 2022, 11,

2867. https://doi.org/10.3390/

cells11182867

Academic Editors: Anindita Das and

Arun Samidurai

Received: 19 July 2022

Accepted: 10 September 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Identification of Cardiovascular Disease-Related Genes Based
on the Co-Expression Network Analysis of Genome-Wide
Blood Transcriptome
Taesic Lee 1,2,† , Sangwon Hwang 3,† , Dong Min Seo 4, Ha Chul Shin 5, Hyun Soo Kim 5, Jang-Young Kim 6

and Young Uh 7,*

1 Division of Data Mining and Computational Biology, Institute of Global Health Care and Development,
Wonju Severance Christian Hospital, Wonju 26411, Korea

2 Department of Family Medicine, Yonsei University Wonju College of Medicine, Wonju 26411, Korea
3 Artificial Intelligence Bigdata Medical Center, Yonsei University Wonju College of Medicine,

Wonju 26411, Korea
4 Department of Medical Information, Yonsei University Wonju College of Medicine, Wonju 26411, Korea
5 Pharmicell Co., Ltd., Seongnam 13229, Korea
6 Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26411, Korea
7 Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26411, Korea
* Correspondence: u931018@yonsei.ac.kr; Tel.: +82-33-741-1592
† These authors contributed equally to this work.

Abstract: Inference of co-expression network and identification of disease-related modules and
gene sets can help us understand disease-related molecular pathophysiology. We aimed to identify
a cardiovascular disease (CVD)-related transcriptomic signature, specifically, in peripheral blood
tissue, based on differential expression (DE) and differential co-expression (DcoE) analyses. Publicly
available blood sample datasets for coronary artery disease (CAD) and acute coronary syndrome
(ACS) statuses were integrated to establish a co-expression network. A weighted gene co-expression
network analysis was used to construct modules that include genes with highly correlated expression
values. The DE criterion is a linear regression with module eigengenes for module-specific genes
calculated from principal component analysis and disease status as the dependent and independent
variables, respectively. The DcoE criterion is a paired t-test for intramodular connectivity between
disease and matched control statuses. A total of 21 and 23 modules were established from CAD status-
and ACS-related datasets, respectively, of which six modules per disease status (i.e., obstructive CAD
and ACS) were selected based on the DE and DcoE criteria. For each module, gene–gene interactions
with extremely high correlation coefficients were individually selected under the two conditions.
Genes displaying a significant change in the number of edges (gene–gene interaction) were selected. A
total of 6, 10, and 7 genes in each of the three modules were identified as potential CAD status-related
genes, and 14 and 8 genes in each of the two modules were selected as ACS-related genes. Our study
identified gene sets and genes that were dysregulated in CVD blood samples. These findings may
contribute to the understanding of CVD pathophysiology.

Keywords: cardiovascular disease-related transcriptomic signature; cardiovascular disease-related
gene; differential expression; differential co-expression; disease-related modules

1. Introduction

Cardiovascular disease (CVD) is a major cause of premature mortality that contributes
to disability [1]. Representative modifiable risk factors from accumulating clinical evidence
include high systolic blood pressure, fasting plasma glucose, and low-density lipoprotein
cholesterol [1]. Traditional prevention and treatment strategies for the cardiometabolic risk
factors [1] can effectively reduce the risk of atherosclerotic CVD [2]. Systems genetics, a new

Cells 2022, 11, 2867. https://doi.org/10.3390/cells11182867 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11182867
https://doi.org/10.3390/cells11182867
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-0706-167X
https://orcid.org/0000-0001-8666-7479
https://orcid.org/0000-0002-2879-7870
https://doi.org/10.3390/cells11182867
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11182867?type=check_update&version=1


Cells 2022, 11, 2867 2 of 21

and promising strategy, has increased our global understanding of the flow of biological
information underlying complex traits, phenotypes, and diseases [3,4].

In the last decade, genome-wide association studies (GWASs) have played a pioneer-
ing role in systems genetics research. For coronary artery disease (CAD) alone, GWASs
have revealed more than 150 CAD-related single-nucleotide polymorphisms (SNPs) [5,6].
However, most of the identified phenotype-, trait-, or disease-related loci are not located
in protein-coding regions [7]. This makes it difficult to trace or interpret their effects on
downstream genes. Moreover, the genetic determinants of complex traits, phenotypes, or
diseases cannot be explained using GWAS data alone. This limitation is not exclusive to
GWAS, as no mono-omic approach (such as transcriptome, methylome, or proteome) can
explain all the genetic signatures of complex traits [8]. Therefore, integrative analyses of
other omics, such as transcriptome and methylome, have been performed to expand our
understanding of CVD-related molecular signatures [9–12].

The Stockholm Atherosclerosis Gene Expression (STAGE) study involved from 2009
performed whole-genome transcriptome analyses in five tissues and identified an atheroscle-
rosis module that included LIM domain-binding protein 2 (LDB2) as a high-hierarchy
regulator [9]. In 2016, the STAGE also collected genetic and transcriptomic data from
seven tissues and conducted integrative analyses of multi-tissue co-expression networks,
expression quantitative trait loci (eQTLs), and GWAS, and constructed 30 intercorrelated
CAD-related regulatory gene networks (RGNs) among vascular and metabolic tissues [10].
The STARNET study included a genome-wide transcriptome analysis of seven tissues and
replicated 28 RGNs proposed by the STAGE [10], which showed strong associations with
CVD variations in humans and mice [13].

Peripheral blood is readily available from both humans and mice, and recent evidence
has shown that it can reflect the transcriptomic signature of other tissues [14,15]. Lee
and Lee [16] utilized blood transcriptome data and identified several CVD-related gene
sets using statistical methods, disease-gene databases, and eQTL and GWAS summary
statistics. However, only differential expression (DE) analysis was conducted in this
study [16], and, therefore, it could not explain the co-dysregulated patterns among disease
status genes. Several studies have performed differential co-expression (DcoE) analyses to
identify altered gene–gene interactions under disease conditions [17,18]. In this study, we
integrated DE and DcoE analyses to identify CVD-related gene sets (also termed modules).
Specifically, we categorized four blood CVD datasets into obstructive CAD status- and
ACS-related datasets and separately identified the obstructive CAD- and ACS-related gene
sets based on co-expression network analysis. Additional statistical and mathematical
analyses (i.e., gene–gene interaction networks) were used to identify potential candidate
genes involved in CVD pathogenesis or progression. Finally, a replication study using
independent human blood and multi-tissue mouse datasets was performed to identify
robust CVD-related genes.

2. Materials and Methods

The four main tasks conducted in this study were as follows: first, a large dataset
was constructed by integrating blood transcriptome datasets via selecting and removing
batch effects among them (Figure 1). Second, modules, including genes exhibiting similar
expression patterns, were established using co-expression network analysis. Third, the
module information was applied to each blood dataset, not batch-normalized, and modules
related to the CVD status were selected based on the DE and DcoE criteria. Fourth, we
finalized the disease-related modules or genes common among the two blood datasets
(GSE90074-GSE20681 or GSE34198-GSE60993). All tasks, including integrating datasets,
establishing a co-expression network, and selecting CVD, were conducted using R language
(version 4.0.1, R Foundation for Statistical Computing, Vienna, Austria), and the source
code is available at our research group site (https://github.com/WCH-AI-LAB/, accessed
on 9 September 2022).

https://github.com/WCH-AI-LAB/
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Figure 1. Flow diagram of this study for identifying cardiovascular disease-related modules and
genes. GSE90074, GSE20681, GSE34198, and GSE60993 are blood transcriptomic datasets obtained
from Gene Expression Omnibus database [19]. Abbreviations: CAD, coronary artery disease; ACS,
acute coronary syndrome; GSE, gene expression data series. ** p < 0.01, *** p < 0.001.

2.1. Datasets

A previous study retrieved 11 blood CVD gene expression datasets [16] from the Gene
Expression Omnibus (GEO) database [19]. The integration of numerous transcriptomic
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datasets can cause several problems, including the loss of many transcripts (also termed as
probe or probe-set) and disease-related signatures (such as fold change (FC) between two
statuses) [18]. Therefore, Lee and Lee [16] selected the blood CVD gene expression datasets
for the final analysis because of the good quality of these datasets, as measured by MetaQC
tool [20]. In this study, four blood datasets were selected as representative CVD datasets.

The GSE90074 dataset included 93 obstructive CAD and 50 non-obstructive CAD
blood samples [21]. Blood samples were obtained from patients enrolled in the support-
ing multidisciplinary approach to research atherosclerosis (SAMARA) study [21]. The
GSE20681 dataset consisted of 99 CAD blood samples with more than 50% stenosis in one
or more major coronary vessels and 99 matched controls (CNs) with <50% stenosis in all
major vessels [22,23]. These blood samples (GSE20681) were obtained from PREDICT, a
multicenter study performed in the United States, comprising patients referred for coronary
angiography. The GSE34198 dataset comprised 45 patients with acute myocardial infarction
(AMI) and 48 matched controls [24]. The GSE60993 dataset included information obtained
from the blood samples of 26 patients with acute coronary syndrome (ACS), who under-
went coronary angiography or primary percutaneous coronary intervention at Seoul St.
Mary’s Hospital in South Korea, and seven individuals with normal coronary angiography
(CN) [25]. The overall information for the transcriptomic datasets analyzed in the present
study is summarized in the supplementary materials (Supplementary Table S1).

2.2. Preprocessing

The RNA expression values of the GSE90074 and GSE20681 datasets were subjected to
quantile normalization. Expression values for mRNA in GSE34198 were scaled and normal-
ized using log-transformation and quantile methods, respectively. The gene expression in
GSE60993 was previously subjected to quantile normalization.

Probes or probe sets presenting minor variances were excluded. We calculated the
standard deviations (SDs) of the expression levels for all genes across samples and then
removed the genes with low SDs of 40% (Table S2). GSE90074, GSE20681, GSE34198,
and GSE60993 datasets measured RNA expression using Agilent and Illumina platforms,
respectively. Therefore, they had different transcript identifiers (IDs) for the probes or probe
sets. To integrate the two blood datasets into a large dataset, all probe or probe set IDs were
remapped to the Entrez IDs. For multiple probes or probe sets that were annotated with
a gene-based Entrez ID, the probe with the maximum mean expression value using the
“collapseRows” function in the weighted gene co-expression network analysis (WGCNA)
package [26] was used.

2.3. DE Analysis

DE analysis between the two statuses (CAD with high stenosis vs. CAD with low
stenosis and ACS vs. CN) was performed using the limma package [27]. In the limma
method, “lmFit” and “eBayes” functions were used to conduct the DE analysis. Summary
statistics from the limma method consisted of gene-based FC values between two statuses
and their t- and p-values. Genes with a false discovery rate (FDR)-adjusted p < 0.05 were
defined as the differentially expressed genes (DEGs). Genes exhibiting uncorrected p < 0.05
were defined as the possible DEGs.

2.4. Construction of Co-Expression Network and Modules

To systematically capture gene–gene interactions based on the whole transcriptome
and their differential signatures between disease and control states, we established modules
consisting of genes with similar gene expression patterns using the WGCNA package [26].
Raw and large gene expression datasets were processed to eliminate the batch effects
between the two datasets (GSE90074-GSE20681 or GSE34198-GSE60993) using the ComBat
method [28,29]. For the batch removal between two different datasets, the “ComBat”
function in the sva package [28] was used.
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The construction of a co-expression network began with the establishment of a pair-
wise correlation matrix between all possible genes. Biweight midcorrelation was used to
establish the correlation matrix [18,30]. The biweight midcorrelation is a median-based
correlation estimate and is, therefore, robust to outliers. The correlation matrix was con-
verted into an adjacency matrix by using a β-squared function. The parameter β was
determined when an approximate scale-free topology was achieved (R2 > 0.8). Then, the
topological overlap matrix (TOM) was calculated from the adjacency matrix to reduce
noise by setting “signed” as “TOMType” [26]. A network dendrogram was constructed
using average-based hierarchical clustering for the dissimilarity matrix (1 − TOM). The
modules were determined by applying the top-down dynamic tree-cut method to the hier-
archical dendrogram. For the construction of the module, “adjacency” and “cutreeHybrid”
functions in the WGCNA package [26] were used.

2.5. Selection of CVD-Related Modules

Two main methods are used to characterize or select disease-related modules. Gandal
et al. [30] selected several modules and characterized them based on the DE analysis be-
tween the control and disease status (Supplementary Figure S1). Zhang et al. [17] identified
modules exhibiting significant correlational differences among genes in a specific module
between two statuses. Considering these criteria, we selected the modules satisfying both
the DE and DcoE criteria as in a previous study [18]. As the initial step of the DE analysis,
we calculated the first principal component (module eigengene, ME) of a given module
(Supplementary Figure S1). Linear regression was used to identify the association between
disease-related modules based on the DE analysis, with the ME and disease status set as
the dependent and independent variables, respectively.

For the DcoE analysis, we constructed four adjacency matrices from two datasets and
two disease statuses. The intramodular connectivity among all the genes in a module
was calculated for the six matrices using the “intramodularConnectivity” function in
the WGCNA package [26]. For example, if a module consists of 500 genes, 500 values
of intramodular connectivity are separately calculated for both the control and disease
statuses. Then, the intramodular connectivity between the disease and control groups for
each dataset was compared using a paired t-test. A module with a Bonferroni-corrected
p < 0.05 was selected as the disease-related module based on the DcoE analysis.

2.6. Identification of CVD-Related Genes

Several machine-learning-based network construction methods have been used to
identify hub or upregulated genes [9,16,18]. However, they poorly explain (low inter-
pretability or explainability) the inferred edges or interactions between the two genes.
Therefore, we implemented mathematical (e.g., calculation of the correlation matrix) and
statistical methods (e.g., selection of extreme values based on Z-statistics) to improve the
interpretability of the estimated gene–gene interaction.

To select genes with significantly increased or decreased connectivity in the disease
status, we constructed disease- and control-dissimilarity matrices (1 − TOM) using CVD
and matched CN samples, respectively. For each matrix, gene–gene pairs with less than
average minus three SDs of dissimilarity values were regarded as the presence of an inter-
action. We then calculated the number of gene interactions and compared the differences
between the edges of the genes in the disease and matched controls. Based on Z-scores of
±2, genes with increased or decreased interactions with other genes in a disease module
compared with those in the matched CN module were selected.
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2.7. Pathway Analysis

The degree of similarity between candidate gene sets curated from our study and
known gene sets obtained from the pathway database was measured using a hypergeomet-
ric test as follows:

p−value (hypergeometric test) =
min(c, p)

∑
k=i

(
c
k

)(
N − c
p − k

)
(

N
p

) ,

where N represents the total number of genes (referred to as the number of background
genes) in the gene expression dataset, p represents the number of genes in a known gene
set, c represents the number of genes in a candidate gene set, and i represents the number
of genes common between the candidate gene set and known gene set.

Known gene sets (called pathways) with an FDR-corrected p < 0.05 were determined
as significantly enriched pathways. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) [31] and Gene Ontology (GO) [32] databases were used as the pathway databases,
which were downloaded from the Molecular Signature Database (MSigDB) [33].

2.8. Validation of the Candidate Genes

Validation studies for candidate genes obtained from transcriptome data are typically
conducted using several methods, such as in vitro and in vivo experiments, quantitative
real-time polymerase chain reaction (real time-qPCR), and replication studies using an
independent dataset. Through statistical analyses, Soh et al. [34] identified cancer-related
miRNAs associated with somatic copy number alterations and validated them in vitro by
measuring the viability and proliferation rates of cells transfected with their inhibitors. Oh
et al. [35] identified aging-related genes in the kidney tissue using a regression method
and validated them in vivo using mouse and zebrafish models. Joehanes et al. [36] selected
genes related to coronary heart disease based on DE analysis and conducted a validation
study using real time-qPCR. Lee and Lee [18] conducted a replication study using indepen-
dent public datasets to validate the candidate genes. Among the aforementioned validation
methods, we conducted a replication study using independent human and mouse datasets.

For human transcriptome datasets independent of GSE90074, GSE20681, GSE34198,
and GSE60993, we selected the blood CVD dataset GSE59867. For mouse gene expression
datasets used to validate candidate genes, the heart (GSE4648, GSE49937, GSE153485,
and GSE775), liver (GSE153485), muscle (GSE153485), and white adipose tissue (WAT,
GSE153485) CVD datasets were selected. All probe or probe set IDs of the human and
mouse datasets (external validation sets) were remapped to the human Entrez IDs. For
multiple probes or probe sets matched with an Entrez ID, the probe with the maximum
average expression value is selected as described in Section 2.2.

3. Results
3.1. Comparisons of Disease-Related Signatures among the Four Blood CVD Datasets

Obstructive CAD- or ACS-related signatures (i.e., FCs between the two statuses for all
genes) were compared based on Pearson’s and Spearman’s correlation coefficients (PCC and
SCC). A blood dataset (GSE90074) exhibited a high correlation between CAD obstruction-
related signatures and those from GSE20681 (PCC:0.307, SCC:0.339, Figure 2A). The highest
correlation coefficient was obtained in the comparison of disease-related signatures between
GSE20681 and GSE60993 (Figure 2A). Two comparative pairs (GSE90074–GSE20681 and
GSE34198–GSE60993) exhibited significantly high correlations (Figure 2A).

In four derivation datasets (GSE90074, GSE20681, GSE34198, and GSE60993), no DEG
satisfying multiple comparison tests were identified. Therefore, based on uncorrected
p-values, possible DEGs between the two conditions were identified (Figure 2B). GSE90074,
the blood CAD obstruction dataset, provided 689 possible DEGs between CAD with high
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and low stenosis (Figure 2B). The 689 DEGs from GSE90074 significantly overlapped
with those from GSE20681 and GSE60993 based on the hypergeometric test. Most of the
comparative pairs among the possible DEGs in the four blood datasets were significantly
correlated (Figure 2B). Most pathways enriched by the four lists of possible DEGs from
the four blood datasets were immune- and inflammation-related KEGG or GO pathways
(Figure 2C).
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Figure 2. Comparison of disease-related transcriptomic signature among four blood CVD datasets.
(A) Correlation matrix among four gene expression datasets. Distributions located on the diagonal
are expression values for all genes. Each point indicates a gene Y and X axes are logFC between
the two statuses described in the form of (A/B). A scatter plot in the xth row and yth column
indicates the correlation between xth and yth datasets of diagonal datasets. Its correlation coefficient
is described on the xth column and yth row. (B) Numbers in upper triangle matrix indicate the
number of common genes between each of the four sets of DEGs between two conditions. Their
matched p-values measured by hypergeometric test are located in lower triangle matrix. (C) Biological
pathways were based on hypergeometric test described in Materials and Methods. Numbers within
rectangles indicate numbers of DEGs or possible DEGs in each pathway. Abbreviations: CVD,
cardiovascular disease; FC, fold change; PCC, Pearson’s correlation coefficient; SCC, Spearman’s
correlation coefficient; DEG, differentially expressed gene.
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3.2. Establishment of Modules

Four blood CVD datasets (GSE90074, GSE20681, GSE34198, and GSE60993) were
categorized into obstructive CAD- and ACS-related datasets and then separately integrated
into two large blood datasets (Figure 1). Only the genes present in each of the two datasets
were retained for subsequent analyses. The overall distribution of expression for all genes
did not vary across different phenotypes (e.g., obstructive CAD vs. non-obstructive CAD)
but exhibited differential patterns among different platforms for measuring gene expression
(Supplementary Figure S2). In other words, the distribution of the whole gene expression
was intact in the obstructive CAD or ACS compared with that in matched controls and was
mainly determined by microarray platforms (Supplementary Figure S2). Therefore, we
normalized the batch effects between the two datasets (GSE90074–GSE20681 and GSE34198–
GSE60993) using the ComBat method (Supplementary Figure S2).

For the combined blood CAD status (high vs. low stenosis) gene expression dataset
(GSE90074 and GSE20681), a correlation matrix was calculated using the biweight midcorre-
lation method. Then, the 12 power values satisfying the scale-free topology R2 fitting index
> 0.8 (Supplementary Figure S3A) were selected to convert the correlation matrix to an
adjacency matrix. For the ACS dataset (GSE34198 and GSE60993), the power value was set
to 15 (Supplementary Figure S3B). From the adjacency matrix, the TOM and dissimilarity
matrices were subsequently constructed.

Four parameters (partitioning around medoids (PAM), minimal module size, deep
split, and maximum dissimilarity) were used to establish the module. In a previous study,
we found that all genes tended to be excessively assigned to more than one module when
the PAM stage was set on [18]. Therefore, the PAM stage was set off to eliminate the
genes that were not arranged in any cluster. We then obtained 60 cases from six cases of
minimal module size (50, 60, 70, 80, 90, and 100), five types of deep split (0, 1, 2, 3, and
4), and two cases of maximum dissimilarity (0.1 and 0.2). Sixty iterations were performed
wherein modules were created based on the cases (Supplementary Figures S4 and S5). The
minimal module size, deep split, and maximum dissimilarity parameter values of 80, 3,
and 0.1, respectively, were used to construct robust modules that retained more than half of
the 60 iterations (Supplementary Figure S4), yielding 21 modules in GSE90074–GSE20681
(Figure 3A). For the large dataset obtained from GSE34198 and GSE60094 (Supplementary
Figure S5), the minimal module size, deep split, and maximum dissimilarity parameter
values were set to 100, 2, and 0.2, respectively, resulting in 23 gene sets (Figure 3B).

3.3. Identification of CVD-Related Module

Module selection or identification of disease-related genes is typically performed using
integrated datasets [16,18,30,37]. Our study analyzed two blood CVD datasets, including
different comparative combinations of phenotypes, such as CAD-low and high stenosis and
ACS-CN. Lee and Lee [18] suggested that a significant amount of information in individual
datasets may be lost if the datasets are intuitively integrated without a special strategy.
Therefore, the original datasets that were not batch-removed were processed to identify
disease-related modules or genes (Figure 1).

Among the 21 modules established by GSE90074 and GSE20681, we selected CAD
status-related modules based on the DE analysis. For this analysis, we measured MEs,
which are the first principal components of all genes in a module (Supplementary Figure S1).
The association between MEs and phenotypes, including obstructive and non-obstructive
CAD, was tested using linear regression (Supplementary Figure S1). Six modules exhibited
significant obstructive CAD-related alterations compared with non-obstructive CAD in
one or more of the two blood datasets (Figures 4A and S6). Therefore, six modules were
selected in the first step of CAD obstruction status-related module selection (Supplementary
Figure S4).
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Figure 3. Establishment of modules via weighted gene co-expression network analysis (WGNCA).
(A) Use of GSE90074 and GSE20681 for construction of CAD obstruction-related modules and (B) use
of GSE34198 and GSE60993 for construction of ACS-related gene sets. Modules include genes with
high correlation based on biweight midcorrelation and are depicted with different colored planes.
Each plane consists of numerous lines of the same color, with a single line representing a gene. Color
bars in the lower part indicate fold change (FC) values (logFC) between two conditions calculated
by the limma package. Height indicates “1 − (topological overlap)”, described by the network
dendrogram. Abbreviations: FC, fold change; CAD, coronary artery disease; CADwObs, CAD with
obstruction; CADwoObs, CAD without obstruction; ACS, acute coronary syndrome; CN: matched
control.
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Figure 4. Selection of obstructive CAD- and ACS-related modules based on differential expression
analysis. Beta-coefficients were measured from linear regression by setting MEs (A) and disease status
(B) (i.e., obstructive CAD and ACS vs. matched control) as dependent and independent variables,
respectively. **, *, # denote p < 0.01, p < 0.05, and p < 0.1, respectively. ME, module eigengene; CAD,
coronary artery disease; ACS, acute coronary syndrome.

For the 23 modules constructed using GSE34198 and GSE60993, MEs summarized
from six modules exhibited ACS-related dysregulation in one or more of the two datasets
(Figures 4B and S7). Based on the DE criterion, six modules (black, pink, brown, midnight-
blue, dark red, and gray60) were identified (Figure 4B). Note that the black module related
to the CAD status included genes different from those in the black module curated from
the ACS datasets.

In the second module selection step, DcoE analysis was applied to each of the six
modules (Supplementary Figure S8A). First, the black, magenta, and brown modules were
selected because their MEs significantly increased in obstructive CAD (CAD with high
stenosis) compared with those in the non-obstructive CAD (CAD with low stenosis) in the
two blood datasets (Figure 5). In other words, the overall expression of the genes in the
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black, magenta, and brown modules tended to be upregulated in CAD with high stenosis
(Figure 5A). Correlations between genes in the black, magenta, and brown modules were
higher in the obstructive CAD group than that in the matched control status group in the
two blood datasets (Figures 5A and S8A). Collectively, genes in the black, magenta, and
brown modules were selected because they exhibited increased expression and gain of
connectivity (GOC) in CAD with high stenosis compared with that in the matched control
status (CAD with low stenosis).
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In case of ACS-related modules, the pink module was identified because the con-
stituent genes were downregulated in one of the two blood datasets (GSE34198 and
GSE60993) and exhibited loss of connectivity (LOC) in the two blood datasets in the
ACS group (Figures 5B and S8B). The dark-red module was selected because it exhibited
upregulation and GOC in ACS group.

The magenta module contained 246 genes (Supplementary Table S3). Using hypergeo-
metric tests and pathway databases such as the KEGG and GO databases, the biological
function of turquoise-specific genes was identified. The results suggested that the protea-
somal protein catabolic process (GO), vesicle organization (GO), proteasome-mediated
ubiquitin-dependent protein catabolic process (GO), and cellular response to oxygen levels
(GO) were enriched in the black-involved genes. Other obstructive CAD-related modules,
such as black and brown gene sets, contained 267 and 396 genes, respectively (Supplemen-
tary Table S3).

Among the 246 genes in the magenta module, 16 exhibited an increased number
in interactions with Z-scores ≥ 1 in the obstructive CAD status compared with that in
matched controls for one or more of the two datasets. Of the 16 genes, 10 (ATP6V1A, BASP1,
CHMP2A, GCA, HNRNPH2, HSD17B11, NRDC, SLC16A3, TKT, and ZNF281) exhibited
positive FC values in both blood datasets (Figure 6B). Based on the same criteria with the
method selecting disease-related genes in the magenta module, six genes (COG3, CUTC,
MAML1, MORF4L1, NPTN, and VTA1) and seven genes (ACSL1, AGO4, CEBPB, JPT1,
RAB5IF, RNF130, and TALDO1) were identified in black and brown modules, respectively
(Figure 6A–C).

Among the 373 genes in the pink module (Supplementary Table S4), 14 genes (CBX6,
ERI3, FAM50A, FIBP, GNL1, HGH1, PARP6, PEX26, PHGDH, POU2F2, SNRPB, SPHK2,
YIF1A, and ZNF296) exhibited decreased expression (both datasets) and loss of connectivity
patterns (one or more of the two datasets) in the ACS status (Figure 7A). The dark-red
module included 265 genes (Supplementary Table S4), among which eight genes (ALOX5AP,
APMAP, B4GALT5, CHST15, HAL, LBR, SLC22A15, and STX3) showed increased expression
and gain of connectivity in the ACS status (Figure 7B).

3.4. Validation for the Candidate Genes

To identify robust differential expression and co-expression signatures in blood CVD
datasets (GSE90074, GSE20681, GSE34198, and GSE60993), we conducted a replication
study using an independent human blood dataset (GSE59867). GSE59867 includes two
groups, ACS and stable CAD patients, as the phenotypes of interest and matched controls,
respectively. The human blood CVD dataset GSE59867 contains gene expression values
for 243 of the 246 genes in the magenta module. For all possible pairs of magenta-specific
genes (243 genes), we constructed two separate Spearman correlation matrices for ACS and
stable CAD samples per dataset. Among the 10 genes, nine (ATP6V1A, BASP1, CHMP2A,
GCA, HNRNPH2, HSD17B11, NRDC, TKT, and ZNF281) exhibited GOC in ACS group of
the GSE59867 (Figure 8). Among the nine genes, five (ATP6V1A, BASP1, CHMP2A, GCA,
and TKT) were dysregulated in the ACS status (Figure 8).

In the brown module, all seven genes (ACSL1, AGO4, CEBPB, JPT1, RAB5IF, RNF130,
and TALDO1) were replicated using an independent blood dataset (GSE59867). Four of
the six genes (COG3, CUTC, MORF4L1, and VTA1) in the black module showed increased
connectivity (GOC) but downregulated expression patterns (Figure 8).

Among the 14 genes in the pink module, 10 (CBX6, ERI3, FIBP, HGH1, PARP6, PHGDH,
POU2F2, SPHK2, YIF1A, and ZNF296) exhibited LOC in the ACS status (Figure 8). Among
the eight genes selected in the dark-red module, five genes (B4GALT5, CHST15, HAL,
SLC22A15, and STX3) were upregulated and exhibited GOC in the ACS status (Figure 8).

In the mouse CVD model, among the nine genes (magenta module) replicated in the
human transcriptome dataset (GSE59867), four genes (ATP6V1A, BASP1, TKT, and ZNF281)
were significantly upregulated in the CVD group in two or more of the four mouse heart
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datasets. In the brown module, two of the seven genes (CEBPB and TALDO1) showed
increased expression in the mouse heart CVD group.
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Figure 7. Representative ACS-related genes in the pink (A) and dark-red (B) modules. FC values
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and * denote p < 0.01, and p < 0.05, respectively. Abbreviations: CAD, coronary artery disease; FC,
fold change.
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Figure 8. Replication analyses from independent human blood CVD datasets for genes in five
modules (black, magenta, brown, pink, and dark red). FC values (logFC) between two conditions were
calculated using the limma package. Connectivity was measured based on biweight midcorrelation.
In logFC columns, ***, **, and * denote p.adj < 0.001, p.adj < 0.01, and p.adj < 0.05, respectively, and
these values were measured by the limma method. In connectivity columns, ***, **, and * denote
p < 0.001, p < 0.01, and p < 0.05, respectively, and these values were measured by paired t-test between
ACS and matched CN correlation matrices. Abbreviations: CVD, cardiovascular disease; CAD,
coronary artery disease; ACS, acute coronary syndrome; FC, fold change; p.adj, p-value adjusted by
false discovery rate.

CBX6 in the pink module exhibited downregulated expression in most datasets
(Figure 9), whereas other genes showed inconsistent differential patterns (i.e., FC between
CVD and CN) among the mouse transcriptomic datasets. In case of the dark-red module,
B4GALT5 among the five genes replicated in the human blood dataset provided converged
findings (upregulation pattern in the mice heart CVD group) based on the DE analysis
(Figure 9).
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Figure 9. Replication analyses from independent mice CVD datasets for genes in five modules (black,
magenta, brown, pink, and dark red). FC values (logFC) between two conditions were calculated
using the limma package. The empty rectangles colored in white are gene expression levels that
are not included in the animal data. ***, **, *, and # denote p.adj < 0.001, p.adj < 0.01, p.adj < 0.05,
and p < 0.05, respectively. Black, magenta, and brown are obtained from CAD stenosis-related
datasets and pink and darkred modules were made from ACS-related datasets. Abbreviations: CVD,
cardiovascular disease; FC, fold change; p.adj, p-value adjusted by false discovery rate.

4. Discussion

We identified three obstructive CAD-related modules (black, magenta, and brown) and
two ACS-related gene-sets (pink and darkred) in the blood gene expression datasets based
on co-expression analysis. These modules are immune- and inflammation-related gene sets.
Based on the extreme correlation coefficients (Z-scores ≥ 2), 23 obstructive CAD-related
genes (black: COG3, CUTC, MAML1, MORF4L1, NPTN, and VTA1; magenta: ATP6V1A,
BASP1, CHMP2A, GCA, HNRNPH2, HSD17B11, NRDC, SLC16A3, TKT, and ZNF281; brown:
ACSL1, AGO4, CEBPB, JPT1, RAB5IF, RNF130, and TALDO1) and 22 ACS-related genes
(pink: CBX6, ERI3, FAM50A, FIBP, GNL1, HGH1, PARP6, PEX26, PHGDH, POU2F2, SNRPB,
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SPHK2, YIF1A, and ZNF296; darkred: ALOX5AP, APMAP, B4GALT5, CHST15, HAL, LBR,
SLC22A15, and STX3) were identified.

ATP6V1A encodes a component of vacuolar ATPase (V-ATPase). V-ATPase includes
a cytosolic V1 domain and a transmembrane V0 domain, among which the V1 domain
contains an ATP catalytic site [38]. ATP6V1A is involved in the suppression of acid secretion,
growth retardation, trunk deformation, and homeostasis of calcium and sodium ion [39].
Recently, the expression of ATP6V1A was reported to be altered in senescent endothelial
cells compared with that in nonsenescent cells [40].

BASP1 interacts with YY1 and is involved in the regulation of smooth muscle cell
proliferation and migration [41]. Several studies have implicated BASP1 in the pathogenesis
of vascular disease. Tian et al. [42] suggested the involvement of BASP1 in the abdominal
aortic aneurysm pathogenesis. Other studies have also reported that BASP1 contributes to
the modulation of angiogenesis [43].

TKT encodes transketolase, a thiamine-dependent enzyme that participates in the
pentose phosphate pathway (PPP). Tkt was recently reported to be dysregulated in acti-
vated monocytes [44]. Moreover, the upregulation of nuclear Tkt promotes cardiomyocyte
apoptosis after myocardial ischemia, leading to cardiac dysfunction [45]. TALDO1 encodes
transaldolase 1, an enzyme involved in the non-oxidative phase of PPP, to restart the oxida-
tive phase [46]. The expression of glycolysis- and PPP-related genes, including TKT and
TALDO1, is reportedly upregulated in patients with CAD-origin chest pain [47].

ZNF281 is a known human transcription factor (TF) [48]. ZNF281 participates in
controlling cellular stemness and inducing epithelial–mesenchymal transition and cellular
differentiation [49,50]. ZNF281 is also involved in the enhancement of cardiac reprogram-
ming by interacting with GATA4 and regulating inflammatory signaling [50].

CEBPB is a validated human TF [48]. It is a member of the bHLH gene family of
DNA-binding TFs and participates in cell proliferation and differentiation [51]. CEBPB
is involved in exercise-induced cardiac hypertrophy and a protective pathway against
pathological cardiac remodeling [52]. Recently, CEBPB has been reported as a potential
neurodegenerative disease-related gene [16].

Genes with high variance across samples in each dataset were initially selected,
and approximately 8,000 and 13,000 genes commonly present in two integrated datasets
(GSE90074–GSE20681 and GSE34198–GSE60993) were used for the establishment of co-
expression networks and modules, respectively. It cannot be denied that the loss of infor-
mation for background genes had occurred. However, the fact that many genes were still
not assigned to a specific module (i.e., the gray module), even though we had conducted
co-expression network analysis with only high-quality genes based on variance, might
support some of the above preprocessing methods (Supplementary Table S2).

Our study presented possible biological or pathophysiological findings. However,
our study could not conduct a functional study identifying upregulators affecting the
candidate genes we proposed or the cascade pathways affected by them. Future studies,
including in vitro and in vivo experiments, are warranted to uncover the complex CVD-
related pathogenesis triggered by our candidate blood CVD-related modules or genes. The
DE-based previous [16] and DcoE-based present findings can be used for disease prediction
panels or prediction models for CVD occurrence or progression [16,53]. Moreover, the
CVD gene sets we provided were used as panels to evaluate the effect of intervention (e.g.,
mesenchymal stem cell therapy [54]) for CVD or a high degree of atherosclerosis.

5. Conclusions

In summary, we implemented co-expression network, DE, and DcoE analyses and a
mathematical method to construct a gene–gene interaction network to reveal blood CVD-
related genes. Moreover, we conducted a replication experiment using human blood and
mouse heart CVD datasets independent of the derivation datasets, resulting in several blood
CVD-related genes exhibiting robust signatures. The integrative identification framework
of the analytical pipeline is a breakthrough in understanding the molecular landscape
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associated with CVD pathogenesis, specifically in blood. The candidate genes proposed in
this study may serve as valuable diagnostic markers or therapeutic targets for CVD.
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ferential expression analysis, Figure S2: Batch normalization via ComBat method, Figure S3: Selection
of soft threshold power for the establishment of adjacency matrix, Figure S4: Selection of parameters
for the construction of module (CAD), Figure S5: Selection of parameters for the construction of
module (ACS), Figure S6: Obstructive CAD-related modules selection based on the differential
expression analysis, Figure S7: ACS-related modules selection based on the differential expression
analysis, Figure S8: Module selection based on the differential co-expression analysis, Table S1:
Summarization of human and mouse transcriptomic dataset, Table S2: Number of transcripts, probe,
or probe-sets in three blood gene expression datasets according to pre-processing steps, Table S3:
Genes in obstructive CAD-related modules (black, magenta, and brown modules), Table S4: Genes in
ACS-related modules (pink and darkred modules).
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