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ABSTRACT

Rainforest conversion into monoculture plantations results in species loss and
community shifts across animal taxa. The effect of such conversion on the role of
ecophysiological properties influencing communities, and conversion effects on
phylogenetic diversity and community assembly mechanisms, however, are rarely
studied in the same context. Here, we compare salticid spider (Araneae: Salticidae)
communities between canopies of lowland rainforest, rubber agroforest (“jungle
rubber”) and monoculture plantations of rubber or oil palm, sampled in a replicated
plot design in Jambi Province, Sumatra, Indonesia. Overall, we collected 912 salticid
spider individuals and sorted them to 70 morphospecies from 21 genera. Salticid
richness was highest in jungle rubber, followed by rainforest, oil palm and rubber, but
abundance of salticids did not differ between land-use systems. Community
composition was similar in jungle rubber and rainforest but different from oil palm
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INTRODUCTION

Tropical rainforests are exceptionally species rich, contain much of the world’s biodiversity
and are one of the biggest carbon sinks in the world (Lowman ¢ Nadkarni, 1995; Sodhi
et al., 2004; Soepadmo, 1993). Rainforest conversion is one of the main reasons for
worldwide biodiversity loss (Brooks et al., 2002; Pimm & Raven, 2000; Sala, 2000), and in
Southeast Asia, deforestation rates of natural habitats such as lowland rainforests are
among the highest of all tropical regions (Achard et al., 2014; Hansen et al., 2013; Sodhi
et al., 2004; Sala, 2000). Since the 1950s, commercial timber extraction as well as
cultivation of rubber (Hevea brasiliensis) and oil palm (Elaeis guineensis) continue to be
the main drivers of deforestation in Southeast Asia (Austin et al., 2017; Laumonier et al.,
2010). By 2010, about 70% of the original lowland rainforest of Sundaland, comprising the
Malay Peninsula, Borneo, Sumatra and Java, were lost to deforestation (Wilcove et al.,
2013). Ongoing rainforest conversion could result in the loss of up to 42% of the region’s
biodiversity by 2100 (Sodhi et al., 2004).

Arthropods constitute the majority of animal biomass and biodiversity in tropical
ecosystems (Fittkau ¢ Klinge, 1973; Samways, 2005), and arguably most arthropods
colonize tree canopies (Hamilton et al., 2010). Arboreal arthropods are thus a crucial part
of global diversity (Floren et al., 2011) and contribute significantly to overall ecosystem
functioning as herbivores, predators, parasites and parasitoids, seed dispersers and
pollinators (Samways, 2005; Schowalter, 2011). Spiders (Araneae) are one of the most
abundant generalist predator groups in rainforests (Benitez-Malvido, Martinez-Falcon &
Durdn-Barron, 2020), agroecosystems (Birkhofer, Entling ¢ Lubin, 2013) and other
terrestrial ecosystems (Nyffeler ¢» Birkhofer, 2017). As high-level predators in arthropod
food chains, they are crucial for natural pest control and ecosystem functions (Birkhofer
et al., 2008; Birkhofer, Entling ¢ Lubin, 2013; Lefebvre et al., 2017; Schmitz, 2007).

Their predatory function and efficacy in pest control is particularly high in the tropics
(Michalko et al., 2019). However, rainforest conversion may threaten these services, as
re-colonization of disturbed areas likely depends on natural rainforest as a source of high
spider richness (Benitez-Malvido, Martinez-Falcon ¢ Durdn-Barron, 2020; Floren ¢
Deeleman-Reinhold, 2005). Recently, it has been demonstrated that the complexity of
ground-spider communities decreases following rainforest conversion to rubber and oil
palm plantations (Potapov et al., 2020). Similarly, among the limited literature available on
this topic, Floren & Deeleman-Reinhold (2005), Floren et al. (2011), Zheng, Li ¢ Yang
(2015) and Zheng et al. (2017) found less complex spider communities in degraded forest
or tree plantations than in undisturbed forests in Sabah, Malaysia and Xishuangbanna Dai,
China. Overall, however, the effects of tropical rainforest conversion to cash-crop
monocultures on spiders in tree and palm canopies have been little studied.

In addition, the mechanisms governing community assembly of spiders are little
understood. We are aware of only two studies on this topic. They found that adaptive
radiation and harsh environmental conditions shaped the assembly of spider communities
in Hawaii (Gillespie, 2004) and the Iberian Peninsula (Cardoso, 2012). Despite the
prevalence of spiders in tropical canopies, we are unaware of any studies that have
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quantified the mechanisms influencing canopy-spider community assembly after
rainforest conversion into cash-crop monoculture plantations. However, it has been
demonstrated that tree canopy openness and vegetation complexity, for example, coverage
by herbs, shrubs and epiphytes, affect local spider communities (Méndez-Castro et al.,
2020; Méndez-Castro et al., 2018; Stenchly et al., 2011; Zheng, Li & Yang, 2015).

The structure of communities and their changes in space and time are often analysed
using diversity metrics (Dopheide et al., 2020; Santini et al., 2017). Species richness, a
common measure of diversity and an important aspect of community composition,
represents a snapshot limited to one point in time. Combined with the branch lengths in a
phylogenetic tree (Faith, 1992), the resulting Phylogenetic Diversity (PD), Net Relatedness
Index (NRI) and Nearest Taxon Index (NTI) provide insight into the evolutionary
history of species assemblages by incorporating inferred phenotypic variation between
species (Cadotte, Cardinale & Oakley, 2008; Miller et al., 2018). The general assumption
that ecological traits show phylogenetic signal, that is, closely related species are
ecologically more similar than distantly related species, allows inferences on competitive
exclusion or habitat filtering as the main factors in community assembly, based on the
phylogenetic relationships within a community (Vamosi et al., 2009; Webb et al., 2002).
Communities structured predominantly by competitive exclusion consist of more distantly
related species than would be expected by chance, as closely related species which share
limited resources cannot coexist, resulting in overdispersal in the community phylogenetic
tree (phylogenetic overdispersion). By contrast, communities influenced by habitat
filtering are associated with phylogenetic and phenotypic clustering: the environment
functions as a filter that selects for species with similar traits, which tend to be more closely
related than random assemblies (Webb et al., 2002).

Here, we combined a community ecological approach with DNA sequence data to
understand how canopy spider communities change after rainforest conversion to cash
crop monoculture plantations, and which factors drive those changes. We investigated
salticid spiders (Araneae: Salticidae), the most speciose spider family worldwide, with a
total of 6,216 described species (World Spider Catalog, 2020). Salticids are by far the most
diverse family in Indonesia and New Guinea, with 657 described species, followed by
Araneidae (244 species; Ramos, 2020). They are one of the dominant spider families in
rainforest canopies (Floren ¢ Deeleman-Reinhold, 2005; Zheng, Li & Yang, 2015) and we
took them to represent cursorial spiders in these habitats. Specifically, we compared
abundance, richness and community composition of salticid spider communities from
lowland rainforest, rubber agroforest (“jungle rubber”; Rembold et al., 2017; Gouyon, De
Foresta & Levang, 1993), and smallholder monoculture plantations of rubber or oil palm.
We also investigated the role of selected environmental factors on canopy salticid
community composition in the four land-use systems. Further, we sequenced the 28S
rDNA and COI to compare phylogenetic diversity of salticid spiders among the studied
land-use systems, and then used the Net Relatedness Index and Nearest Taxon Index
(Webb et al., 2002) to investigate the relative influence of habitat filtering and competition
on salticid community assembly in all four land-use systems.
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Previous findings from the same study sites indicated reduced diversity and abundance
of a range of arthropod taxa with the conversion of lowland rainforest into monoculture
plantations (Barnes et al., 2014; Clough et al., 2016; Nazarreta et al., 2020; Potapov et al.,
2020). Thus, we hypothesized that (1) abundance and richness of canopy salticids decrease
continuously across the land-use gradient, with highest values in lowland rainforest,
intermediate in jungle rubber and lowest in monocultures of rubber or oil palm. Further,
we hypothesized (2) that community composition of salticid spiders differs between
the land-use systems, allowing us to explore the role of environmental factors on
community assembly. Lastly, we hypothesized that (3) rainforest conversion strengthens
the effect of habitat filtering, which would be reflected in lower phylogenetic diversity
and phylogenetic clustering in the community assembly of canopy salticids in oil palm and
rubber plantations.

MATERIALS AND METHODS

Sampling and identification

Salticid spiders were collected in the dry season 2017 (June-August) from the research
plots of the EFForTS project in Jambi Province, Sumatra, Indonesia (Collection permit:
S.710/KKH-2/2013, PHKA Jakarta, Indonesia; Research permit: 131/SIP/FRP/E5/Dit.KI/
V/2017, RISTEKDIKTT Jakarta, Indonesia). Access to field sites (plots) was granted
through more than 35 bilateral agreements of Jambi University (UNJA, EFForTS partner
University) with PT REKI (Perseroan Terbatas Restorasi Ekosistem Indonesia), which
manages Harapan Rainforest, the Bukit Duabelas National Park administration, as well as
individual smallholder farmers of rubber, jungle rubber and oil palm from Jambi Province.
Jambi Province has a tropical humid climate with two peak rainy seasons in March

and December, mean monthly rainfall above 100 mm and an average monthly temperature
of 26.7 °C throughout the year (Drescher et al., 2016; Meijide et al., 2018). In a nested,
replicated plot design, eight 50 x 50 m research plots were established in each of four
land-use systems: (A) primary degraded rainforest (selectively logged primary forest; for
terminology see Margono et al., 2014), (B) jungle rubber (extensive rubber agroforest
system with rubber trees planted into secondary or disturbed rainforest, Rembold et al.,
2017), and monoculture plantations of (C) rubber (Hevea brasiliensis) or (D) oil palm (Elaeis
guineensis) (Fig. S1; for details see Drescher et al., 2016). The resulting 32 research plots
are evenly distributed between two clusters within and adjacent to the forest reserves

(a) Bukit Duabelas National Park and (b) Harapan Rainforest. The clusters are about 70 km
apart, and henceforth referred to as the “Bukit Duabelas” and “Harapan” landscapes.

The landscapes differ with respect to soil structure: the Acrisols in Bukit Duabelas are clay-
dominated, while Harapan Acrisols have a higher loam content (Allen et al., 2015; Guillaume
et al., 2018). Canopy salticids were sampled from three target canopies per plot via canopy
fogging using 50 ml DECIS 25 EC® insecticide (BayerCropScience, active ingredient
delthamethrine, 25 g/L) dissolved in 4 L petroleum white oil. Stunned or dead spiders were
collected after a 2 h drop time in eight 1 x 1 m traps beneath each target canopy (described in
more detail in Nazarreta et al., 2020), then cleaned and stored in 96% EtOH. Spiders
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were removed from the arthropod mix and determined to morphospecies; the resulting
species abundance data was pooled for each plot.

From a total amount of 912 salticid spiders (Araneae: Salticidae), 677 individuals
were identified to morphospecies; 235 juveniles, many newly hatched, were excluded
from the analysis as morphological characters for determination were not developed.
Morphological identification was supported by images and character guides in Ramos
et al. (2019) and Ecotaxonomy.org.

Statistical analysis

Statistical analyses were conducted using R v3.6.2 (R Core Team, 2019) and visualized with
ggplot2 (Wickham, 2016). Venn Diagrams were produced using a customized script based
on (limma::VennCounts, Ritchie et al., 2015). For each land-use type, we generated

rank abundance curves (Whittaker, 1965; implemented in RankAbund; Hartke, 2020) to
display relative species abundances and species accumulation curves (vegan:specaccum,
method = random; Gotelli & Colwell, 2001) to estimate sampling completeness.
Abundance (individuals/m? sum of three replicate canopies per plot divided by the total
number of traps) had a log normal distribution, and was analysed using a generalised
linear model (glm) with family Gaussian and the log link function, while species richness
(S; number of species per plot; vegan::specnumber, Oksanen et al., 2018) fit the assumption
for linear models (Im). Both initial models contained land use (four levels: rainforest,
jungle rubber, rubber, oil palm), landscape (two levels: Bukit Duabelas and Harapan), and
their interaction as fixed factors. We included landscape in the models as a fixed factor
because different soil textures may indirectly influence canopy arthropods by changing
plant characteristics. We used step-wise simplification to arrive at the final model with the
lowest AIC. Final models were subjected to one-way analysis of variance (ANOVA;
Chambers ¢ Hastie, 1992). Multiple comparison between factor levels of dependent
variables contributing significantly to the model (p < 0.05) were performed using Tukey’s
HSD (multcomp::glht, Hothorn, Bretz ¢» Westfall, 2008) with Holm’s adjustment

(Holm, 1979).

Community composition was analysed using non-metric multidimensional scaling
(NMDS; Kruskal, 1964; vegan::mds; Bray Curtis dissimilarity index; k = 5, stress = 0.098).
Multivariate analysis of variance (MANOVA; Hand ¢ Taylor, 1987) was used to test
whether land use or landscape explain the species patterns in the NMDS. We also
performed a model-based analysis of multivariate data (mvabund::many.glm; Wang et al.,
2012), as this method can outperform distance-based approaches in recovering the true
relationships between sites (Hui et al., 2015). Residual versus fitted plots (mvabund::plot.
manyglm) indicated that a negative binomial distribution fit best to our multivariate
species data. This was followed by a Bayesian ordination (boral::boral; Hui, 2016) for a
model-based approach to unconstrained ordination, fitting a pure latent variable model
(LVM). The model used a negative binomial distribution, a site-level random effect to
focus on community composition rather than abundance, and two latent variables to
create a biplot analogous to NMDS plots (Hui et al., 2015), which was visualised using
ggboral (Bedward, 2020).
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Canonical correspondence analysis (CCA; Ter Braak, 1986; Legendre ¢ Legendre,
2012; vegan::cca) was conducted to evaluate the relationship between the distribution
of salticid spiders and environmental factors, such as temperature (°C; Meijide et al.,
2018), relative humidity (%; Meijide et al., 2018), aboveground biomass (AGB, Mg/ha
Guillaume et al., 2018), stand structural complexity (SSCIL; Zemp et al., 2019a), canopy
openness (%; Kotowska et al., 2015) and the land use intensity index (LUI; Brinkmann
et al., 2019), which is calculated from the number of planted trees per hectare and the
quantities of fertilizers (kg/year) and herbicides (L/year) used. These environmental
variables were measured in the same sampling sites where we collected salticid spiders.
As indices (AGB, SSCI, LUI) or consequences (temperature, humidity) of habitat
structure, they reflect aspects of habitat complexity known to influence spider community
assembly (Floren & Deeleman-Reinhold, 2005; Oxbrough et al., 2005; Stenchly et al., 2011;
Uetz, 1991; Wise, 1993; Zheng, Li & Yang, 2015; Ziesche ¢» Roth, 2008). Relative humidity
was excluded from the analysis as the Pearson correlation coefficient indicated an almost
perfect linear relationship (0.94) with mean temperature (Fig. S2). The global model
containing all other environmental variables (Pearson correlation coefficients < 0.90) was
significant under one-way ANOVA (Chambers ¢» Hastie, 1992), so forward selection was
used to rank environmental variables according to their importance (Blanchet, Legendre ¢
Borcard, 2008). Forward selection used the alpha significance level and the adjusted
coefficient of multiple determination (R3) (vegan::ordiR2step), calculated in the global
model, as stopping criteria (Blanchet, Legendre ¢» Borcard, 2008) and ran for 999
permutations. The variance inflation factors (VIF; Akinwande, Dikko ¢ Samson, 2015)
from the final model indicated no redundancies or problematic correlations, as variables
with a VIF above 5 were eliminated during data exploration or by forward selection from
the global model.

Molecular analysis

DNA was extracted separately from one hind leg of up to three individuals per morphospecies
with the Agencourt DNAdvance Kit (Beckman Coulter, Krefeld, Germany). Legs were
individually transferred into 94 pl lysis buffer and manually ruptured with a sterile
plastic pestle. Then, 2 pl of 1mg/ml chitinase (Sigma-Aldrich, Taufkirchen, Germany)
was added and the tissue solution incubated, shaking for 10 minutes at 37 °C. Next, 5 pl
of Proteinase K (20 pg/ul, Genaxxon, Ulm, Germany) was added and samples shaken
at 55 °C for 5 h. The lysate was transferred, avoiding any remaining tissue to an AB-1127
plate (ThermoFisher Scientific, Dreieich, Germany) and processed on a Biomek 3000
automated workstation (Beckman Coulter, Krefeld, Germany) using the Agencourt
DNAdvance standard protocol and an elution volume of 100 pl. Two gene regions were
amplified and sequenced: (1) the nuclear-encoded large subunit ribosomal repeat

(28S rDNA) (~850 bp), using the primers 28S “O” and 28S “C” (Hedin ¢ Maddison,
2001), and (2) the ~1,000 bp mitochondrial marker cytochrome oxidase I (COI) using
the primer combination COI_C1-J-1718 (Simon et al., 1994) and COI_C1-N-2776
(Hedin ¢ Maddison, 2001) or the primer pair LCO1490 and HCO2198 (Folmer et al.,
1994). Each 25 ul polymerase chain reaction (PCR) contained 2 pl of template DNA,
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12.5 pl of SuperHot PCR mastermix (Genaxxon, Ulm, Germany), 1 ul of magnesium
chloride (25 mM) and 1 ul of each primer. PCR cycling conditions included an initial
activation step at 95 °C for 15 min, 35 amplification cycles (denaturation at 95 °C for
45 s, annealing at 55 °C for 45 s for the ribosomal repeat (28S rDNA) and 52 °C for 45 s
for cytochrome oxidase I (COI), elongation at 72 °C for 45 s) and a final elongation
step at 72 °C for 60 s. The PCR product was sent for purification and bi-directional
Sanger sequencing to Seqlab, Gottingen, Germany.

A total of 131 sequences for COI (64 of 70 morphospecies) and 125 sequences (59 of
70 morphospecies) for 28S rDNA (for GenBank accession numbers see Table S1) were
checked for quality and ambiguous positions were corrected using the electropherograms
in Geneious Prime 2019 (http://www.geneious.com, Kearse et al., 2012). 28S rtDNA
sequences were aligned using “Clustal Omega” in Geneious Prime 2019 and COI sequences
were aligned as proteins and nucleotides using ClustalW in BioEdit 7.0.5.3 (Hall, 1999).
Automatic Barcode Gap Discovery (ABGD; Pmin = 0.001, Pmax = 0.1 and the K2P model)
with alignments of both gene regions was used to verify morphospecies identification
based on genetic pairwise distances between individuals (https://bioinfo.mnhn.fr/abi/
public/abgd/abgdweb.html, Puillandre et al., 2012), resulting in a set of 55 unique
molecular species (Table 52). The results of ABGD reduced the dataset from 64 sequenced
morphospecies to 60 COI lineages and from 59 sequenced morphospecies to 55 285 rDNA
lineages by merging eight morphospecies into four unique molecular units. As COI
sequences provided no resolved phylogenetic tree, we used the Bayesian tree (MrBayes
3.2.7a; Huelsenbeck ¢» Ronquist, 2001) for 28S rDNA for further analyses (Fig. S3).

Phylogenetic Diversity (Faith, 1992), Nearest Relatedness Index and Nearest Taxon
Index (Webb et al., 2002) were evaluated using the package picante (Kembel et al., 2010)
in R v.3.6.2 (R Core Team, 2019). Phylogenetic Diversity (PD) was calculated with the
function pd. NRI and NTI were calculated as the standardized effect sizes of the mean
pairwise phylogenetic distance (MPD) and mean nearest taxon distances (MNTD) using
the functions ses.mpd and ses.mntd, respectively, each with 999 runs, 1,000 iterations
and the model of “independent swap” (Gotelli, 2000). Both metrics were tested against
random assembly for each land-use system using ¢-tests, and compared between land-use
systems using one-way ANOVAs followed by Holm’s-corrected Tukey’s HSD tests
(multcomp::glht, Hothorn, Bretz & Westfall, 2008). Mean values for NRI and NTI
are zero in random assemblies; values significantly above or below zero indicate
phylogenetic clustering (suggesting habitat filtering) or overdispersal (indicating
competitive exclusion), respectively.

RESULTS

The sampled 677 canopy salticid spider individuals (excl. juveniles, see Methods) were
sorted to 70 morphospecies and 21 genera. More than half of the characterized
morphospecies (41 of 70) were found in both landscapes, while 25% of all morphospecies
(18 of 70) were found only in Harapan and 15% (11 of 70) exclusively in Bukit Duabelas
as singletons (Fig. S4A). The highest number of unique morphospecies were found in
jungle rubber and oil palm, with 11 species each. On the other hand, seven morphospecies
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Figure 1 Abundance (individuals/m?) of arboreal salticid spider communities across four land-use
systems. F = rainforest, ] = jungle rubber, R = rubber, O = oil palm. Boxplots show mean (horizontal
line), 95% confidence interval (box), density distribution (grey lines) and raw data (dots). Different letters
above boxplots mark significant differences as indicated by Holms corrected Tukey HSD, p < 0.05.
Full-size K&l DOTI: 10.7717/peerj.11012/fig-1

were exclusively found in forest, two in rubber and six species were present in all land-use
systems (Fig. S4B).

Abundance of salticid spiders did not differ significantly among land-use systems
(Fig. 1) or between the two landscapes. Species richness (S), however, was significantly
affected by land use (F;,g = 11.10, p < 0.001) but not landscape (F;,; = 0.059, p = 0.808).
Species richness was 13.00 + 2.50, mean * s.d in jungle rubber, which was significantly
higher than in all other land-use systems (Fig. 2). Species richness in rainforest was
intermediate (Sg = 10.62 + 1.92) and significantly higher than in rubber (Sg = 7.38 + 1.41),
although neither differed from oil palm (So = 9.00 + 2.51). Species accumulation curves
approached an asymptote in oil palm and rubber plantations, but suggested that salticid
communities in rainforest and particularly jungle rubber may not have been sampled
completely (Fig. S5).

Community composition of salticid spiders also varied significantly with land use
(MANOVA: F;,; = 13.98, p < 0.001, Wilks Lambda = 0.0180; mvglm: w;,; = 12.231,

p <0.001), but not landscape (F; ,; = 2.21, p = 0.087, Wilks Lambda = 0.675; w; »; = 6.575,
p = 0.204) or the interaction between land use and landscape (F;,4 = 0.702, p = 0.927,
Wilks Lambda 0.702; w; 54 = 5.665, p = 0.100). Both ordination methods recovered three
distinct groups: (1) rainforest and jungle rubber, (2) rubber and (3) oil palm (NMDS
Fig. 3; LVM Fig. S6). Overall, the majority of salticid spider morphospecies occurred in
jungle rubber and rainforest with 26 species present in one or both systems (Fig. S4B).
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Figure 2 Species richness of arboreal salticid spider communities across four land-use systems.
F = rainforest, ] = jungle rubber, R = rubber, O = oil palm. Boxplots show mean (horizontal line),
95% confidence interval (box), density distribution (grey lines) and raw data (dots). Different letters
above boxplots mark significant differences as indicated by Holms corrected Tukey HSD, p < 0.05.
Full-size k&l DOL: 10.7717/peerj.11012/fig-2
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Figure 3 Non-Metric Multi-Dimensional Scaling (NMDS) of arboreal salticid spider communities
across four land-use systems. Salticid species (+) in plots (circles = Bukit Duabelas, triangles = Har-
apan) of rainforest (green), jungle rubber (blue), rubber (yellow) and oil palm (red) based on Bray—Curtis
dissimilarity (stress = 0.098, k = 5). Ellipses represent 75% confidence intervals.

Full-size K&] DOT: 10.7717/peerj.11012/fig-3
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Figure 4 Canonical correspondence analysis (CCA) biplot of relationships between salticid spiders
and environmental constraints across four land-use systems. F = rainforest, ] = jungle rubber,
R = rubber, O = oil palm. Raw data for each plot within the two landscapes are given as circles (Bukit
Duabelas) and triangles (Harapan). Environmental variables significantly affecting canopy salticid spi-
ders according to ANOVA are shown as arrows. AGB = aboveground biomass; LUI = land use inten-
sity. Full-size k&) DOIL: 10.7717/peerj.11012/fig-4

The first axis of the CCA separated the land-use systems along a gradient of land-use
intensity and canopy openness, and accounted for 7.5% of the variance (Fig. 4). The second
axis separated land-use systems along the gradient of aboveground biomass and explained
4.5 % of the variance. Results of the forward selection procedure indicated that LUI
(F=2.39,p =0.001, R? = 0.0433 = 4.3%), AGB (F = 1.53, p = 0.013, R2 = 0.0157 = 1.57%) and
canopy openness (F = 1.46, p = 0.017, R2 = 0.0157 = 1.57%) significantly influenced the
assemblages of salticid spiders, together explaining 7.4% of the variance. Temperature
and SSCI did not significantly improve the model. Oil palm samples, which had the highest
LUI and canopy openness of all the land-use systems, clustered on the right half of the
CCA. By contrast, rainforest plots, with low LUI, dense canopies and high AGB, were
positioned in the lower left of the CCA biplot. Rubber was positioned in the upper centre of
the ordination as it has the lowest values for AGB, but lower land-use intensity and
canopy openness than oil palm. Jungle rubber was intermediate for all three environmental
variables and clustered in the upper left corner of the CCA.

Generally, PD showed similar patterns as morphological species richness as it differed
significantly among land-use systems (F;,5 = 11.98, p < 0.001) (Fig. 5), but not between
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Figure 5 Faith’s Phylogenetic Diversity (PD) of arboreal salticid spider communities across four
land-use systems. F = rainforest, ] = jungle rubber, R = rubber, O = oil palm. Boxplots show mean
(horizontal line), 95% confidence interval (box), density distribution (grey lines) and raw data (dots).
Different letters above boxplots mark significant differences as indicated by Holms corrected Tukey HSD,
p < 0.05. Full-size K&] DOT: 10.7717/peerj.11012/fig-5

landscapes (F; ,; = 2.62, p = 0.117), and was significantly higher in jungle rubber

(PDy = 1.80 + 0.24, mean * s.d.) than in all other land-use systems. However, PD in
rainforest (PDg = 1.45 + 0.28) was significantly higher than in both rubber (PDy = 1.14 +
0.21) and oil palm (PDg = 1.07 + 0.37) monocultures.

Higher NRI and NTT in oil-palm monocultures indicated a trend towards phylogenetic
clustering of salticid spider communities, which was not found in the other land-use
systems (Figs. 6A and 6B). NTI was significantly affected by land use (anova; F; 55 = 5.98,
p = 0.002) but not by landscape (anova; F; ,; = 0.481, p = 0.493). Comparison to the
null model of random assembly revealed phylogenetic clustering of salticid spiders in oil
palm (one-sided t-test; NTIo = 0.86 + 1; t = 2.43, df = 7, p = 0.045) but overdispersal in
jungle rubber (NTI; = —0.80 + 0.95; t = —2.38; df = 7, p = 0.048); rubber and rainforest
showed no significant deviation from random. In pairwise comparisons, NTI was
significantly higher in oil palm than in any of the other land-use system. Land-use was not
a significant explanatory factor for NRI (F;,; = 2.85, p = 0.055), nor was landscape
(F13=0.68, p=0.414). Similar to NTI, NRI values were highest in oil palm (NRI5 =0.72 +
0.99), but they were not significantly different from those in rubber (NRIp = -0.47 + 0.58),
jungle rubber (NRI; = 0.16 + 0.86) or rainforest (NRIz = 0.05 + 0.90). One-sided t-tests
indicated no significant difference from random assembly for any of the investigated
land-use systems (Table S3).
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Figure 6 (A) Net Relatedness Index (NRI) and (B) Nearest Taxon Index (NTI) of arboreal salticid
spider communities across four land-use systems. F = rainforest, ] = jungle rubber, R = rubber,
O = oil palm. Boxplots show mean (horizontal line), 95% confidence interval (box), density distribution
(grey lines) and raw data (dots). Different letters above boxplots mark significant differences as indicated
by Holms corrected Tukey HSD, p < 0.05. P-values for one sided t-tests against 0 (random assembly) are
shown below the boxes. Values of NRI and N'TI become positive for phylogenetic clustering, negative for
phylogenetic overdispersion and 0 in random assemblies. ~ Full-size Kal DOT: 10.7717/peerj.11012/fig-6

DISCUSSION

In contrast to our first hypothesis, salticid spider abundance was similar in all four
land-use systems studied. This was due to high frequency of several dominant species in
monoculture plantations (Fig. S7). Land-use change may increase the abundance of a few
generalist spider species (Shochat et al., 2004), resulting in similar or even higher spider
abundance in rubber plantations compared to rainforests (Zheng, Li ¢» Yang, 2015; Zheng
et al., 2017). Also, contrary to our first hypothesis, species richness was highest in jungle
rubber, not rainforest. Jungle rubber is an extensive agroforest system in which rubber
trees have been planted into degraded rainforest, and is highly heterogeneous in
management practices and plant richness (Rembold et al., 2017; Gouyon, De Foresta &
Levang, 1993). At first sight, the observed pattern in salticid spider richness might appear
to represent a scenario predicted by the Intermediate Disturbance Hypothesis (IDH;
Connell, 1978). IDH predicts maximum species richness at intermediate disturbance, as
“too little” disturbance may lead to low diversity through competitive exclusion, while
“too much” disturbance may eliminate species incapable of rapid re-colonialization
(Hoopes ¢ Harrison, 1998). IDH-like patterns have been described in other East Asian
spider communities in response to moderate agricultural management (Tsai, Huang ¢
Tso, 2006; Chen ¢~ Tso, 2004). However, in addition to rubber extraction, smallholder
farmers in Sumatra use jungle rubber as source of timber and firewood, which over time
changes jungle rubber plots from moderately disturbed, rainforest-like ecosystems into
ones that resemble rubber monocultures. Given the increasing levels of disturbance in
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older jungle rubber stands, IDH is a precarious explanation for salticid richness. Also, for a
range of other arthropod taxa investigated at the same study sites, average species richness
was highest in rainforest, intermediate in jungle rubber and lowest in the monocultures
of rubber and oil palm (beetles: Fahri, Atmowidi ¢ Noerdjito, 2016; Kasmiatun et al.,
2020; ants: Nazarreta et al., 2020; ground spiders: Potapov et al., 2020; butterflies:
Panjaitan et al., 2020).

Interestingly, overall epiphyte richness and variability of epiphyte abundance and
richness was highest in jungle rubber as well (Bohnert et al., 2016). Epiphytic plants in trees
serve as microhabitats for a range of canopy spiders (Méndez-Castro et al., 2018) and
increased epiphyte abundance has been shown to foster the diversity of canopy spider
communities (Méndez-Castro ¢» Rao, 2014; Stuntz et al., 2002). Salticid richness may
therefore be explained by the more complex and prevalent epiphyte communities in jungle
rubber, compared to the other three land-use systems. Overall, similar to the other taxa
mentioned above, a substantial proportion of the observed salticid species were exclusively
found in rainforest and/or jungle rubber (ca. 40%, that is, 28 of 70 species), while a much
smaller proportion were exclusive to rubber and/or oil palm (20%, that is, 15 of 70 species).
This highlights the importance of both rainforest and jungle rubber for the conservation of
salticid biodiversity, a consideration for conservation policy recommendations.

Forest conversion to monoculture plantations strongly shifted the community
composition of salticid spiders, as predicted by our second hypothesis. This pattern is
mirrored in other arthropods along the same land-use gradient, including ants (Nazarreta
et al., 2020), butterflies (Panjaitan et al., 2020), or beetles, butterfly caterpillars, parasitoid
wasps, flies, springtails and true bugs (EFForTS Newsletter, 2018, 2020). The shift in salticid
community composition is mediated by environmental factors including canopy openness,
aboveground tree biomass and land use intensity. Such indicators of habitat complexity
are known determinants for the structure of spider communities, with complex and diverse
habitats promoting spider diversity (Floren ¢» Deeleman-Reinhold, 2005; Pinkus-Rendon,
Leon-Cortes & Ibarra-Nunez, 2006).

Canopies of oil palm and rubber form monotonous expanses (Zheng, Li ¢ Yang, 2015;
Zemp et al., 2019a) compared to the complex canopies of rainforest and jungle rubber
comprising different tree species. These structural differences are likely responsible for the
fundamentally different composition and species richness of salticid spider communities
in monoculture plantations. One important parameter of canopy complexity is canopy
openness, which significantly influenced salticid spider assemblages in this study. Canopy
cover of rubber and oil palm plantations was significantly lower compared to the dense
multi-layer canopies in rainforest and jungle rubber (Drescher et al., 2016). AGB, which
increases with tree age and height, was also a significant predictor of community
compositions of salticid spiders. Tree age, without consideration of biomass, has previously
been recognized as an important factor for canopy spiders in Southeast Asian rainforests
(Floren et al., 2011) and epigean spider assemblages in European spruce forests (Purchart
et al., 2013). Finally, the land use intensity index (LUI), derived from quantities of fertilizer
and herbicides applied, and the number of planted oil palms or rubber trees per hectare
(Brinkmann et al., 2019), significantly explained community composition of salticid spiders.
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It is important to note that this result could be influenced by LUT being set to 0 for rainforests
(Brinkmann et al., 2019), potentially exaggerating contrasts among land-use systems.

The overall low explanatory power of our environmental variables suggests the influence
of other factors on salticid spider community composition. Epiphytic plants, for example,
increase habitat complexity and positively affect spider abundance and diversity, thus
influencing spider community composition and ecosystem functioning (Méndez-Castro &
Rao, 2014; Méndez-Castro et al., 2018, 2020). Rainforest conversion to oil palm and rubber
monocultures entails a shift from abundant, species-rich, angiosperm dominated epiphyte
communities in rainforest and jungle rubber, to equally abundant, but species poor,
fern-dominated epiphyte communities in oil palm, while epiphytes in rubber are rare and
least diverse (Bohnert et al., 2016). Furthermore, epiphytes in oil palm support lower
overall arthropod abundance and biomass than epiphytes in rainforest (Turner ¢ Foster,
2009). It is thus reasonable to assume that epiphytes substantially influence canopy
salticid communities, but other, currently unknown, factors likely also play a role. Whatever
those factors may be, our results support the well-studied association of structural
complexity with spider diversity and its impact on spider community composition (Floren ¢
Deeleman-Reinhold, 2005; Halaj, Ross & Moldenke, 2000; Stenchly et al., 2011; Pinkus-Rendon,
Leon-Cortes & Ibarra-Nunez, 2006; Zheng, Li & Yang, 2015; Ziesche & Roth, 2008).

Generally, cash-crop plantations of rubber and oil palm are intensively managed
monocultures, but there are significant differences in management practices between
large-scale estates and various forms of smallholder cash-crop cultivation (see Dislich et al.,
2017; Bessou et al., 2017; Formaglio et al., 2020). The management practices currently in
place aim to increase yield or gross margin, typically at the expense of biodiversity
(Clough et al., 2016; Drescher et al., 2016; Grass et al., 2020). There is increasing evidence,
however, that reduced management intensity in oil palm plantations benefits spider
communities (Spear et al., 2018), but does not reduce yield (Prescott, Edwards ¢» Foster,
2015) and may even increase economic performance (Darras et al., 2019). Similarly,
experimental “biodiversity enrichment” (Teuscher et al., 2016) suggests that planting
islands of mixed tree species into an oil palm monoculture can raise levels of biodiversity
and ecosystem functioning (Zemp et al., 2019a, 2019b), while increasing oil palm yield
(Gérard et al., 2017).

Phylogenetic patterns

The decline of PD in monoculture plantations supports our third hypothesis, as low
phylogenetic diversity in animal and plant communities often coincides with low
phenotypic diversity, which is in turn associated with high redundancy in the functional
traits that contribute to ecosystem functioning (Diaz et al., 2013; Grab et al., 2019; Turley &
Brudvig, 2016). Along this rainforest conversion gradient, low PD of salticids in rubber
and oil-palm monocultures implies a limited ability of these communities to support
ecosystem functioning, for example, by mitigating pest outbreaks. This likely extends to
spider communities of several families, not just salticids, as overall spider richness is lower
in rubber and oil palm compared to rainforest and jungle rubber (Potapov et al., 2020;
Zheng, Li & Yang, 2015; Zheng et al., 2017). Low diversity may reduce the range of
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functional traits (e.g., body size and hunting strategy) in a community, which determines
the prey spectrum and functional effects of spiders on prey (Cardoso et al., 2011;
Schuldt et al., 2014), and ultimately weaken pest suppression by the loss of feeding niches
(Kruess & Tscharntke, 1994). Abundance also plays a role in the ability of a species or
community to exert predatory control over another species or community (Griffiths et al.,
2008), so it might be assumed that similar average salticid abundances across land uses
reflect similar biological control capabilities in rubber and oil palm as in rainforest and
jungle rubber. However, species-poor predator communities with high functional trait
overlap are universally outperformed in ecosystem services, such as biological control, by
multi-species predator communities with high levels of functional complementarity
(Birkhofer et al., 2008; Griffiths et al., 2008; Kruess & Tscharntke, 1994; Srivastava et al.,
2012). Thus, high PD in rainforest and particularly jungle rubber indicates more robust
ecosystem functioning.

The establishment of rubber amidst rainforest trees, which is associated with greater
epiphyte diversity (Bohnert et al., 2016), may have created new niche space, allowing
salticid communities in jungle rubber to exceed the PD of rainforest communities. This
could suggest jungle rubber as a sustainable alternative to monoculture plantations of
rubber and oil palm, as it is inhabited by a highly diverse salticid spider community and
simultaneously provides smallholder farmers with income through the sale of rubber.
However, jungle rubber is disproportionately less lucrative and more labour intensive
than monoculture plantations (Clough et al., 2016; Grass et al., 2020). In the absence of
monetary or other incentives, for example, by governmental bodies, jungle rubber
increasingly exists only as a transitional step when a lack of investment capital has
hampered the transformation into more lucrative monoculture systems and does not
ultimately conserve or foster biodiversity.

Phylogenetically clustered communities in oil palm, as predicted by our third
hypothesis, suggest environmental filtering as the predominant process in structuring
salticid spider communities in these monoculture plantations. Presumably, harsh and
frequently changing environmental conditions in monoculture plantations function as
filter favouring colonization by closely related, likely generalist, species (Srivastava et al.,
2012). In Contrast to oil palm plantations, NTT of salticid spider communities in jungle
rubber suggests phylogenetic overdispersion and therefore competition as the main factor
influencing community assembly. This contradicts the assumption that disturbance
reduces interspecific competition and further argues against the intermediate disturbance
hypothesis (Connell, 1978; Catford et al., 2012) as an explanation for the high species
richness in jungle rubber. In contrast to jungle rubber and oil palm, NTI suggests random
assembly of salticid spider communities in rainforest and rubber. The NRI results did
suggest phylogenetic clustering in oil palm plantations, but generally lacked statistical
power to detect non-random patterns. The difficulty in drawing consistent conclusions
on community assembly patterns based on NRI and NTI has been stressed previously
(Jarvis et al., 2017; Muscarella et al., 2014; Vamosi et al., 2009) and the categorical nature of
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their underlying assumptions has been criticized (Narwani et al., 2015). Indeed, the
interpretation that phylogenetic and phenotypic clustering infers environmental

filtering while competition is represented by phylogenetic and phenotypic (over)
dispersion may be unwarranted, as habitat filtering and competition can interact with each
other by additive or opposing effects (Gerhold et al., 2015; Mayfield ¢ Levine, 2010).

As phylogenetic evenness despite low phylogenetic diversity in rubber monoculture
plantations and the low percentage of variability explained in the CCA indicate,
community assembly is influenced by difficult to identify interacting factors and stochastic
effects (Farnon Ellwood, Manica ¢ Foster, 2009; Lepori & Malmgqvist, 2009).

CONCLUSION

This study is the first comprehensive assessment of the impacts of rainforest
transformation to rubber and oil palm plantations on the salticid spider fauna. Using a
combination of morphological and molecular sequence data, we showed that salticid
spider communities in monoculture plantations differ fundamentally from those in less
intensively managed systems, that is, rainforest and jungle rubber. We found lower species
richness in rubber plantations and substantially less phylogenetic diversity in communities
of both rubber and oil palm plantations than in rainforest and jungle rubber. Habitat
filtering was identified as the major structuring force in salticid spider community
assembly in oil palm plantations. Aboveground plant biomass, canopy openness and land-
use intensity are important predictors of salticid spider community structure. Our data
emphasises the importance of rainforest and jungle rubber for the conservation of canopy
salticid spiders and the ecosystem services they contribute to, a pattern observed in a range
of animal and plant taxa from the study region. The combined analysis of morphological
and molecular data as adopted in the present study is a promising approach for analysing
the response of other taxa to the conversion of rainforest into plantation systems and
presents a starting point for understanding the structuring forces of the largely
undescribed spider communities of tropical ecosystems.
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