
Academic Editor: José María Amigó

Received: 14 March 2025

Revised: 28 April 2025

Accepted: 29 April 2025

Published: 6 May 2025

Citation: Mangalam, M.; Likens, A.D.

Precision in Brief: The Bayesian

Hurst–Kolmogorov Method for the

Assessment of Long-Range Temporal

Correlations in Short Behavioral Time

Series. Entropy 2025, 27, 500.

https://doi.org/10.3390/e27050500

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Precision in Brief: The Bayesian Hurst–Kolmogorov Method for
the Assessment of Long-Range Temporal Correlations in Short
Behavioral Time Series
Madhur Mangalam * and Aaron D. Likens

Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in
Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA
* Correspondence: mmangalam@unomaha.edu

Abstract: Various fields within biological and psychological inquiry recognize the sig-
nificance of exploring long-range temporal correlations to study phenomena. However,
these fields face challenges during this transition, primarily stemming from the impracti-
cality of acquiring the considerably longer time series demanded by canonical methods.
The Bayesian Hurst–Kolmogorov (HK) method estimates the Hurst exponents of time
series—quantifying the strength of long-range temporal correlations or “fractality”—more
accurately than the canonical detrended fluctuation analysis (DFA), especially when the
time series is short. Therefore, the systematic application of the HK method has been
encouraged to assess the strength of long-range temporal correlations in empirical time
series in behavioral sciences. However, the Bayesian foundation of the HK method fuels
reservations about its performance when artifacts corrupt time series. Here, we compare
the HK method’s and DFA’s performance in estimating the Hurst exponents of synthetic
long-range correlated time series in the presence of additive white Gaussian noise, frac-
tional Gaussian noise, short-range correlations, and various periodic and non-periodic
trends. These artifacts can affect the accuracy and variability of the Hurst exponent and,
therefore, the interpretation and generalizability of behavioral research findings. We show
that the HK method outperforms DFA in most contexts—while both processes break down
for anti-persistent time series, the HK method continues to provide reasonably accurate
H values for persistent time series as short as N = 64 samples. Not only can the HK method
detect long-range temporal correlations accurately, show minimal dispersion around the
central tendency, and not be affected by the time series length, but it is also more immune to
artifacts than DFA. This information becomes particularly valuable in favor of choosing the
HK method over DFA, especially when acquiring a longer time series proves challenging
due to methodological constraints, such as in studies involving psychological phenomena
that rely on self-reports. Moreover, it holds significance when the researcher foreknows
that the empirical time series may be susceptible to contamination from these processes.

Keywords: detrended fluctuation analysis; fractal fluctuation; fractional; Hurst–Kolmogorov
process; long-range correlation; physiology; variability

1. Introduction
The fractal Hurst exponent, H—named by Mandelbrot in honor of Edwin Hurst’s

pioneering work in hydrology [1]—is a robust measure quantifying the strength of long-
range temporal correlations in time series [2]. Specifically, H quantifies how the variations in
measurements change across progressively longer timescales, showing how the correlation
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among sequential measurements might change over longer timescales. The Hurst exponent
is a fractal-scaling estimate of power-law decay in autocorrelation, represented by

ρk =
|k + 1|2H − 2|k|2H + |k − 1|2H

2
≃ H(2H − 1)

k2−2H , k = 0, 1, . . . . (1)

The Hurst exponent indicates the degree of persistence (typically between 0.5 and 1.0) or
anti-persistence (typically between 0 and 0.5) in the time series. The Hurst exponent has
gained popularity in various fields, such as meteorology [3–5], economics [6–10], ethol-
ogy [11,12], bioinformatics [13–15], and physiology [16–19]. In the behavioral sciences,
it has been effectively employed in making inferences in various topics, like postural
control [20–22], coordination [23,24], cognition [25–29], and perception–action [30–32]. It
has also been used to distinguish between healthy and pathological cardiovascular func-
tioning [33–35] and in the examination of movement systems [36–41]. Furthermore, it is
becoming a standard statistic in creating and assessing rehabilitative interventions [42–44].

While Equation (1) describes the autocorrelation function of fractional Gaussian
noise (fGn)—a widely accepted model for fractal time series with long-range temporal
correlations—it is important to emphasize that fGn is not the only type of process with
this property. 1/ f β noise, often referred to as 1/ f noise or pink noise, is among the most
commonly used models for fractal time series exhibiting power-law correlations. These
processes also possess a well-defined Hurst exponent H and display asymptotic power-law
decay in their autocorrelation functions [45]. Computational simplicity is a key reason for
their popularity: generating 1/ f noise is often more straightforward than generating fGn,
making it a practical surrogate in the modeling and simulation of complex biological or
psychological time series. By acknowledging this broader class of fractal processes, we
highlight that the Hurst exponent and long-range dependence extend well beyond the
specific case of fGn.

Biological and psychological work acknowledges the importance of investigating
long-range temporal correlations to study phenomena [46–53]. Although recent studies
have demonstrated the fractal properties of several psychological or behavioral variables,
such as mood [54], self-esteem [55], and self-control [56], when examined over time, the
transition towards exploring these correlations encounters challenges, primarily due to
the impracticality of obtaining the significantly longer time series required by canonical
methods. The divide between researchers’ theoretical aspirations and the practical reality
of experimentation underscores the need for a method capable of accurately estimating
the fractal exponent using short time series. This challenge becomes even more critical in
the behavioral sciences, given that measurements of behavioral processes are often much
noisier than strictly physical quantities. Bridging this gap necessitates a methodology to
navigate these complexities and reasonably estimate the fractal exponent.

The most widely used method of estimating H is detrended fluctuation analysis
(DFA) [57,58]. DFA has been widely used due to its ability to detect long-range temporal
correlations in non-stationary time series and prevent the false detection of long-range tem-
poral correlations [59,60]. However, it has several limitations, such as not accurately assess-
ing the strength of long-range temporal correlations when the time series is short [61–64],
producing a positive bias in its central tendency, and large dispersion [65–70]. DFA also
requires at least 500 measurements to estimate H, which limits its applicability when a
longer time series is not practical or feasible [67]. Additionally, DFA is sensitive to the time
series length, which can result in overestimating H, mainly when used with short time
series [66,71].

A less common method of estimating H is the Bayesian approach, which builds from
the Hurst–Kolmogorov (HK) process, initially developed for hydrology [72]. With this
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method, Tyralis and [72] proposed a Bayesian-inspired technique that defines the posterior
distribution from which the H value is sampled. The ways in which the HK and DFA
methods perform calculations are quite different, with the HK method based on Bayes’
theorem and DFA determining the Hurst exponent directly from the time series data. In a
previous study, we compared the performance of the two methods using simulated and
real-world time series [73]. We found that the HK method outperformed the DFA in several
ways, including its ability to detect long-range temporal correlations accurately, minimal
dispersion around the central tendency, and a point estimate unaffected by the length of
the measurement time series or its underlying Hurst exponent. We also found that the HK
method balanced the risks of type I and type II errors in downstream statistical testing,
making it a better choice overall for experimental work. Therefore, we encouraged the
systematic application of the HK method to assess the strength of long-range temporal
correlations in empirical time series in the behavioral sciences.

However, detecting and quantifying long-range temporal correlations in empirical
time series is often challenging due to the presence of “artifacts”. The most common types
of contaminants in empirical data that corrupt the long-range temporal correlations include
the following.
• Additive white Gaussian noise (awGn). awGn is the most common contaminant

in physiological records. Sometimes, awGn might occur due to inaccuracies in the
measurement equipment—for instance, when recording electromyography [74,75]
or an electrocardiogram in an intensive care unit [76]. At other times, awGn can be
inherent in the measured system itself—for instance, the cardiac system [77,78], in
which case the presence of awGn can be informative about the system’s condition, e.g.,
to detect arterial fibrillation [78,79].

• Fractional Gaussian noise (fGn). Although a less common contaminant than awGn,
fGn often corrupts physiological signals. Sources of this contaminant often include
similar systems; for instance, speech recordings of one person often become corrupted
by fGn from surrounding speakers or echo from the same person’s speech [80,81].

• Short-range correlations. Temperature records constitute the most prominent and
intuitive examples of measurements contaminated with short-range correlations char-
acterized by strong persistence at the timescale of a few (usually <10) days super-
imposed on the long-range temporal correlations inherent in variability in weather
conditions [82–84]. In the behavioral sciences, fractal fluctuations rarely appear in
isolation in empirical time series and could be contaminated with various short-range
correlated processes [85–87].

• Trends. Again, temperature records provide a convenient example of measurements
contaminated with trends [88]. Due to experimental constraints, fatigue, etc., trends
also ubiquitously contaminate behavioral measurements [89]. For instance, the stride
length gradually increases or decreases along with long-range temporal correlations
when a person starts or stops, respectively, walking on a treadmill, and the reaction
time might increase due to increasing cognitive fatigue.
These artifacts can affect the accuracy and variability of the Hurst exponent and,

therefore, the interpretation and generalizability of behavioral research findings. As a
result, multiple methods have been developed to adapt the DFA algorithm to handle
these issues more effectively when present in empirical data [90–96]. While we know that
the HK method outperforms DFA when time series are uncontaminated [73], how these
contaminants affect the estimation of H when using the HK method is still unclear.

In this paper, we study the performance of the HK and DFA methods in estimating the
Hurst exponents of synthetic long-range correlated time series in the presence of additive



Entropy 2025, 27, 500 4 of 26

white Gaussian noise, fractional Gaussian noise, short-range correlations, and various
periodic and non-periodic trends.

2. Theoretical Background
2.1. Estimating the Hurst Exponent Using the HK Method

As noted above, a recently introduced Bayesian approach to estimating H [72] shows
remarkable promise in addressing fundamental limitations with DFA. Previous work
demonstrated that the HK method outperforms DFA in several contexts [73]. Below, we
provide a brief overview of the HK method, while referring the reader to the foundational
work for additional mathematical details and proofs [72]. Our notation generally follows
the original work.

The foundation for the method originates in the definition of fGn as an instance of a
process with Hurst–Kolmogorov (HK) properties [97] defined as

ρk =
|k + 1|2H − 2|k|2H + |k − 1|2H

2
≃ H(2H − 1)

k2−2H , k = 0, 1, . . . , (2)

where H is the Hurst exponent, k is the time lag, and ρk is the autocorrelation. This
asymptotic expression reveals that the sign of the autocorrelation is determined by the term
H(2H − 1): ρk is negative for H < 0.5, zero for H = 0.5, and positive for H > 0.5. That
is, when H = 0.5, ρk = 0 for all k > 0, corresponding to uncorrelated white noise; when
0 < H < 0.5, the series is anti-persistent with short-term reversals; and, when 0.5 < H < 1,
the series is positively correlated, with ρk decaying slowly as k increases.

The HK method is a Bayesian approach to estimating H [72]. In the foundational work,
Tyralis and Koutsoyiannis [72] derived a method to sample from the posterior distribution
of H given by

π(φ|xn) ∝ |Rn|−1/2
[
eT

n R−1
n enxT

n R−1
n xn − (eT

n R−1
n en)

2
]−(n−1)/2

(eT
n R−1

n en)
n/2−1. (3)

The natural logarithm of Equation (3) is then given by

ln π(φ|xn) ∝
1
2

ln |Rn| −
n − 1

2
ln

[
eT

n R−1
n enxT

n R−1
n xn − (eT

n R−1
n en)

2
]
+

n − 2
2

ln
(

eT
n R−1

n en

)
, (4)

where Rn is the autocorrelation matrix with elements ri,j, where i, j = 1, 2, 3, . . . , n;
en = (1, 1, 1, . . . , 1)T is a vector of ones with n elements; | . . . | denotes a determinant; the
superscript of −1 in R−1

n is a matrix inverse; and the superscript T is a matrix transpose.
For a given xt and ρk, the quadratic forms of the symmetric, positive definite autocorrela-
tion matrix are used to derive the matrix products on the right-hand side of Equation (4)
(Levinson Algorithm; Algorithm 4.7.2, Golub and Van Loan [98], p. 235).

Accept–reject algorithms are standard tools for sampling from posterior distributions
and serve as the backbone when implementing the HK method [99]. Let f (x) be a prob-
ability density function (PDF) from which it is difficult to sample. f (x) is the “target
distribution” and can be sampled using Monte Carlo methods. First, we sample a simpler
“proposal distribution” Mg(x) that has the same domain as f (x), and M is a constant that
is large enough to ensure that g(x) ≥ f (x). Theoretically, the proposal distribution, g(x),
can be any number of distributions, such as uniform, truncated Gaussian, exponential, etc.
However, the algorithm gains computational efficiency when the overall shape of g(x) is
similar to f . Second, f (x) is evaluated at the value obtained by sampling g(x), the proposal
distribution. Third, a sample is drawn from U(x) ∼ Uni f orm(0, Mg(x)). If U(x) ≤ f (x),
then the value proposed by sampling g(x) is accepted as a valid sample. Otherwise, the
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proposal is rejected, and the algorithm is re-initialized. This process repeats until n samples
are obtained, where n is the number of samples desired from the posterior distribution.

In the simulations reported in the following section, we employ this accept–reject
algorithm to sample H from its posterior distribution (Algorithm A.5, Robert et al. [99],
p. 49). The target distribution f (x) is Equation (4) and g(x) ∼ Uniform(0, 1). The uniform
distribution makes sense for g(x) because it shares the same domain of H and hence
Equation (4), namely (0, 1) [72]. A numerical optimization routine determines M by finding
the maximum of Equation (4) as a function of H. The point estimate of H is then taken as
the median of the posterior distribution of H (see Appendix A).

2.2. Estimating the Hurst Exponent Using DFA

DFA computes the Hurst exponent, H, quantifying the strength of long-range temporal
correlations in series [57,58] using the first-order integration of T-length time series x(t):

y(i) =
i

∑
k=1

(
x(k)− x(t)

)
, i = 1, 2, 3, . . . , T. (5)

DFA computes the root mean square (RMS, i.e., averaging the residuals) for each kth-order
trend yn,k(t) fit to Nn non-overlapping n-length bins to build a fluctuation function:

f (v, n) =

√√√√ 1
Nn

Nn

∑
v=1

(
1
n

n

∑
i=1

(
y
(
(v − 1)n + i

)
− yv,k(i)

)2
)

, n = {4, 8, 12, . . . } <
T
2

. (6)

f (n) is a power law,
f (n) ∼ nH , (7)

where H is the scaling exponent estimable using logarithmic transformation:

log f (n) = H log n. (8)

We used the Davies–Harte algorithm [100] to generate fractional Gaussian noise (fGn),
which can be tuned to exhibit varying degrees and directions of autocorrelation consistent
with Equation (2). We generated fGn time series in the R [101] programming environment
using the function fGn_sim() as part of the package “fractalRegression” [102]. The function
fGn_sim() has two inputs: the time series length, N, and the Hurst exponent, H. We
generated 1000 synthetic fGn time series for each combination of six different time series
lengths (N = 32, 64, 128, 256, 512, 1024) and nine different a priori known values of H
(H = 0.1, 0.2, . . . , 0.9). We submitted the time series to the HK methods in the R [101]
programming environment using the inferH() function as part of the package “HKpro-
cess” [103]. The function inferH() has two inputs: the time series, xN , and the simulated
sample size from the posterior distribution of H, n. We used n of 100; previous simu-
lations have shown that n = 100 provides an excellent trade-off between accuracy and
computational efficiency, and n >> 50 provides no further accuracy-related benefits [104].
We submitted the time series to the DFA in the R [101] programming environment using
the function dfa() as part of the package “fractalRegression” [102]. A bin size range of
[4, N/2] was used for the DFA in the present study, which is standard practice when using
DFA [105–109].

Although a common implementation of DFA uses a fitting range between s = 4 and
s = N/2, there is increasing recognition that this choice may not always capture the true
asymptotic behavior of long-range correlations. As discussed in Ref. [110], narrower inter-
vals such as s ∈ [8, N/10] may provide more reliable estimates of H by avoiding small scales
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where the power-law regime may not yet be established. Indeed, as Ref. [111] emphasizes,
the scaling behavior that DFA seeks to detect is asymptotic, and reliable estimates of H
require the exclusion of small window sizes that may be affected by non-scaling dynamics,
nonstationarities, or filtering artifacts. We acknowledge this important consideration and
note that the sensitivity of H estimation to the choice of fitting range remains an open
methodological challenge in analyzing finite, noisy time series. A systematic investigation
of the fitting range sensitivity would help to determine robust intervals across applications
and data types in future studies.

2.3. The Effects of Additive White Gaussian Noise

We examine the performance of the HK method and DFA in assessing the Hurst
exponent for long-range correlated time series contaminated with additive white Gaussian
noise (awGn), such that

yN = xN + AuN , (9)

where xN is a long-range correlated time series, uN is an awGn time series characterized by
zero mean and unit variance, and A defines the amplitude of the awGn time series added
to xN and is allowed to vary from 0 to 1 with an increment of 0.1 (i.e., A = 0, 0.1, 0.2, . . . , 1).

Both the HK method and the first-order DFA overestimate Ĥ for anti-persistent time
series (i.e., H < 0.5) contaminated with awGn and underestimate H for persistent time
series contaminated with awGn (0.5 < H ≤ 1; blue and yellow circles, respectively, in
Figure 1). These effects are accentuated with the magnitude of the added awGn. Adding
awGn to an anti-persistent time series will render it less anti-persistent, and adding awGn
to a persistent time series will render it less persistent, which is quite intuitive. Nonetheless,
the HK method yields more accurate Ĥ values for anti-persistent time series contaminated
with awGn. In contrast, the first-order DFA yields more accurate Ĥ values for persistent
time series highly contaminated with awGn. This contrast highlights the typical tendency
of the first-order DFA to overestimate long-range temporal correlations [66,71], which does
not seem to be the case with the HK method, as noted previously [73]. Notably, these effects
do not seem to depend on the time series length, reflecting the length-independent effect
of added awGn on long-range temporal correlations in synthetic time series. The second-
order DFA consistently overestimates Ĥ in short time series, regardless of their persistence
characteristics. However, it produces a more accurate estimation of Ĥ for persistent time
series, particularly when they are both sufficiently long and heavily contaminated with
awGn (red circles in Figure 1).

Note that awGn is a particular case of fGn with H = 0.5. So, in principle, Ĥ can be
roughly anticipated to be an average of the “pure” H corresponding to the long-range
correlated time series xN and the awGn time series uN with H = 0.5, with this latter value
weighted with the employed amplitude A, i.e., Ĥ ∝ (1 − A)H + A × 0.5. This is roughly
what is observed in most of the results in Figure 1, where increasing contamination by
awGn gradually shifts the estimated Ĥ values closer to 0.5, consistent with the attenuated
influence of the original long-range correlations.
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Figure 1. Fractal data contaminated with awGn. Each panel plots the mean estimated Ĥ using the HK
method (blue circles) and DFA1 (yellow circles) and DFA2 (red circles) for 1000 synthetic time series of
length N = 32, 64, 128, 256, 512, 1024 with a priori known values of H to which Gaussian white noise
of unit standard deviation was added with different weights ranging from 0 to 1 with an increment
of 0.1. The size of the solid circles indicates the weight of the contaminant. The gray line indicates the
ideal case when Ĥ = H. Error bars indicate 95% CI.
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2.4. The Effects of fGn

We examine the performance of the HK method and DFA in assessing the Hurst
exponent for long-range correlated time series contaminated with fGn, such that

yN = xN + ApN , (10)

where xN is a long-range correlated time series, pN is an fGn time series with H = 0.9 and
characterized by zero mean and unit variance, and A defines the amplitude of the fGn added
to xN and is allowed to vary from 0 to 1 with an increment of 0.1 (i.e., A = 0, 0.1, 0.2, . . . , 1).

Both the HK method and the first-order DFA overestimate Ĥ for both anti-persistent
and persistent time series contaminated with fGn, independently of the time series length
(blue and yellow circles, respectively, in Figure 2), confirming the theoretical expectation that
adding fGn—which is long-range correlated—will increase the strength of the long-range
temporal correlations in the original time series. Likewise, the extent of overestimation is
accentuated with the magnitude of the added fGn. The overestimation of H is particularly
problematic for anti-persistent time series, for which both methods yield Ĥ values indicat-
ing persistence. Although of no practical use in this situation, the HK method is marginally
better than the first-order DFA in providing substantially larger but comparatively less bi-
ased estimates of Ĥ, highlighting the typical tendency of the first-order DFA to overestimate
long-range temporal correlations [66,71]. Furthermore, the HK method yields a marginally
overestimated yet more accurate Ĥ than the first-order DFA for highly persistent time
series (H > 0.7). The second-order DFA significantly amplifies the overestimation of Ĥ
in extremely brief time series (N = 32), irrespective of their persistence characteristics.
Nevertheless, it results in a milder overestimation of Ĥ for anti-persistent time series with
N ≥ 64 and an underestimation of Ĥ for persistent time series, especially in cases where
they are heavily contaminated with fGn (red circles in Figure 2).

2.5. The Effects of Short-Range Correlations

We examine the HK method and DFA’s performance in assessing the Hurst exponent
for long-range correlated time series contaminated with short-range correlations. We
created short-range correlations by filtering random data. We chose short-range correlations
described by the first-order autoregressive (AR1) process

(1 − B)dsN = a1sN−1 + uN−1, (11)

where B is the backshift operator and d = 0.25 is the fractional differencing parameter for
the generated AR1 process sN , a1 = 0.1 is the model parameter, and uN is an awGn time
series characterized by zero mean and unit variance. The autocorrelation function decays
with a time constant τ = − 1

ln |a1|
. The result is

yN = xN + AsN , (12)

where xN is a long-range correlated time series, sN is the vector of short-range correlations,
and A defines the amplitude of the short-range correlations added to xN and is allowed to
vary from 0 to 1 with an increment of 0.1 (i.e., A = 0, 0.1, 0.2, . . . , 1).
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Figure 2. Fractal data contaminated with fGn. Each panel plots the mean estimated Ĥ using the HK
method (blue circles) and DFA1 (yellow circles) and DFA2 (red circles) for 1000 synthetic time series of
length N = 32, 64, 128, 256, 512, 1024 with a priori known values of H to which fGn of unit standard
deviation was added with different weights ranging from 0 to 1 with an increment of 0.1. The size of
the solid circles indicates the weight of the contaminant. The gray line indicates the ideal case when
Ĥ = H. Error bars indicate 95% CI.

Contaminating time series with short-range correlations produces more nuanced
effects on the estimation accuracy of the HK method and DFA. Both the HK method
and the first-order DFA overestimate Ĥ for anti-persistent (H < 0.5) and less persistent
(0.5 < H < 0.7) time series contaminated with short-range correlations (blue and yellow
circles, respectively, in Figure 3) confirming the theoretical expectation that adding short-
range correlations will reduce the anti-persistence. The magnitude of the added short-
range correlations accentuates the extent of this overestimation. The overestimation of Ĥ
is particularly problematic for anti-persistent time series. Both methods yield Ĥ values
indicating persistence, especially when the time series is heavily contaminated. Again,
while of no practical use, the HK method is marginally better than DFA in providing
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substantially larger but comparatively less biased estimates of Ĥ. In contrast, both methods
underestimate Ĥ for highly persistent time series (H > 0.7), reflecting the fact that adding
short-range correlations to long-range correlated time series accentuates the contribution of
short-range correlations in the estimation of the Hurst exponent. Finally, the two methods
do not seem to differ when estimating Ĥ for highly persistent time series with N ≥ 128
contaminated with short-range correlations. The second-order DFA significantly amplifies
the overestimation of Ĥ except for the highly persistent time series with N ≥ 512 heavily
contaminated with short-range correlations (red circles in Figure 3). In these scenarios, the
second-order DFA seems to provide a slightly more accurate estimation of Ĥ than the
HK method.

Figure 3. Fractal data contaminated with short-range correlations. Each panel plots the mean estimated Ĥ
using the HK method (blue circles) and DFA1 (yellow circles) and DFA2 (red circles) for 1000 synthetic
time series of length N = 32, 64, 128, 256, 512, 1024 with a priori known values of H to which short-
range correlations of unit standard deviation were added with different weights ranging from 0 to 1
with an increment of 0.1. The size of the solid circles indicates the weight of the contaminant. The
gray line indicates the ideal case when Ĥ = H. Error bars indicate 95% CI.
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2.6. The Effects of Cyclical Trends

We examine the performance of the HK method and DFA in assessing the Hurst
exponent for long-range correlated time series contaminated with cyclical trends simulated
by a harmonic function

yN = xN + A sin
2πN

τ
, (13)

where xN is a long-range correlated time series and A defines the amplitude of the cycli-
cal trend added to xN and is allowed to vary from 0 to 1 with an increment of 0.1 (i.e.,
A = 0, 0.1, 0.2, . . . , 1). We used τ = 365 to simulate the short-term cyclical trend and
τ = 36,500 to simulate the long-term cyclical trend.

Consistent with previous observations [110], contaminating time series with a short-
term cyclical trend—the term comparable to the timescale of the entire time series—leads to
an overall overestimation of Ĥ, independently of persistence or the lack thereof, using both
the HK method and the first-order DFA (blue and yellow circles, respectively, in Figure 4).
Notably, while this overestimation grows with the magnitude of the cyclical trend and the
time series length for both methods, it renders the first-order DFA useless, yielding Ĥ values
exceeding 1 for anti-persistent time series (H < 0.5) of length N ≥ 512—which is longer
than the recommended length for DFA [112]. Although the HK method also deems anti-
persistent time series persistent in the presence of a short-term cyclical trend, it estimates Ĥ
for more persistent time series (H ≥ 0.7) with acceptable accuracy. The second-order DFA
markedly exacerbates the overestimation of Ĥ in time series with N ≤ 128; intriguingly, the
Ĥ estimated by the second-order DFA remains unaffected by the contamination amplitude.
In contrast, for time series with N ≥ 256, the second-order DFA yielded a less inflated Ĥ
compared to the first-order DFA, yet it still performed inferiorly to the HK method (red
circles in Figure 4).

Contaminating time series with a long-term cyclical trend—the term being orders
of magnitude longer than the timescale of the entire time series—leads to the marginal
overestimation of Ĥ for more anti-persistent time series (H ≥ 0.7) of length N ≥ 512 when
using both the HK method and the first-order DFA (blue and yellow circles, respectively,
in Figure 5). In this case, the HK method consistently outperforms the first-order DFA,
estimating Ĥ increasingly more accurately with the time series length than the first-order
DFA. The second-order DFA intensifies the overestimation of Ĥ in the time series, with
the estimated Ĥ remaining impervious to the contamination amplitude, but performs less
effectively than the HK method (red circles in Figure 5).

2.7. The Effects of Linear Trends

We examine the performance of the HK method and DFA for long-range correlated
time series contaminated with a linear trend, such that

yn = xn ± A(0.005 · n), (14)

where xn is a long-range correlated time series and A defines the amplitude of the linear
trend 0.005 · n added to or subtracted from xn and is allowed to vary from 0 to 1 with an
increment of 0.1 (i.e., A = 0, 0.1, 0.2, . . . , 1).
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Figure 4. Fractal data contaminated with a short-term cyclical trend. Each panel plots the mean estimated
Ĥ using the HK method (blue circles) and DFA1 (yellow circles) and DFA2 (red circles) for 1000 synthetic
time series of length N = 32, 64, 128, 256, 512, 1024 with a priori known values of H to which short-
term cyclical trend sin 2πN

τ with τ = 365 was added with different weights ranging from 0 to 1 with
an increment of 0.1. The size of the solid circles indicates the weight of the contaminant. Note that
the curves for different levels of contamination overlap in several instances. The gray line indicates
the ideal case when Ĥ = H. Error bars indicate 95% CI.
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Figure 5. Fractal data contaminated with a long-term cyclical trend. Each panel plots the mean estimated
Ĥ using the HK method (blue circles) and DFA1 (yellow circles) and DFA2 (red circles) for 1000 synthetic
time series of length N = 32, 64, 128, 256, 512, 1024 with a priori known values of H to which long-
term periodic trend sin 2πN

τ with τ = 36,500 was added with different weights ranging from 0 to
1 with an increment of 0.1. The size of the solid circles indicates the weight of the contaminant.
Note that the curves for different levels of contamination overlap in several instances. The gray line
indicates the ideal case when Ĥ = H. Error bars indicate 95% CI.

Consistent with previous observations [110], contaminating time series with a positive
or negative linear trend consistently results in the overall overestimation of Ĥ using both
the HK method and the first-order DFA, regardless of the presence or absence of persistence
(blue and yellow circles, respectively, in Figures 6 and 7). Although the HK method accurately
estimates Ĥ for time series with N ≤ 64, the overestimation amplifies with the linear
trend’s magnitude and the time series length for both methods. For the first-order DFA,
this overestimation renders it impractical, yielding Ĥ values reaching 0.5 for anti-persistent
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time series with N ≥ 256 and surpassing 1 for anti-persistent time series with N ≥ 512,
exceeding the recommended length for DFA [112]. Despite the HK method misclassifying
anti-persistent time series as persistent, especially for those with N ≥ 256, it demonstrates
acceptable accuracy in estimating Ĥ for more persistent time series (H ≥ 0.7). However,
even the HK method exhibits a progressively more overestimated Ĥ for these time series
with an increasing time series length. On the other hand, the second-order DFA consistently
results in an overall overestimation of Ĥ for time series with N ≤ 128. However, it
outperforms the HK method in accurately estimating Ĥ for time series with N ≥ 256,
regardless of whether the time series is contaminated with a positive or negative trend (red
circles in Figures 6 and 7).

Figure 6. Fractal data contaminated with a positive linear trend. Each panel plots the mean estimated Ĥ
using the HK method (blue circles) and DFA1 (yellow circles) and DFA2 (red circles) for 1000 synthetic
time series of length N = 32, 64, 128, 256, 512, 1024 with a priori known values of H to which positive
linear trend 0.005i (i = 1, 2, 3, . . . , N) was added with different weights ranging from 0 to 1 with an
increment of 0.1. The size of the solid circles indicates the weight of the contaminant. Note that the
curves for different levels of contamination overlap in several instances. The gray line indicates the
ideal case when Ĥ = H. Error bars indicate 95% CI.
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Figure 7. Fractal data contaminated with a negative linear trend. Each panel plots the mean estimated Ĥ
using the HK method (blue circles) and DFA1 (yellow circles) and DFA2 (red circles) for 1000 synthetic
time series of length N = 32, 64, 128, 256, 512, 1024 with a priori known values of H to which negative
linear trend −0.005i (i = 1, 2, 3, . . . , N) was added with different weights ranging from 0 to 1 with an
increment of 0.1. The size of the solid circles indicates the weight of the contaminant. Note that the
curves for different levels of contamination overlap in several instances. The gray line indicates the
ideal case when Ĥ = H. Error bars indicate 95% CI.

2.8. The Effects of Quadratic Trends

We examine the performance of the HK method and DFA for long-range correlated
time series contaminated with a quadratic trend such that

yn = xn ± A(0.000005 · n2), (15)



Entropy 2025, 27, 500 16 of 26

where xn is a long-range correlated time series and A defines the amplitude of the quadratic
trend 0.000005 · n2 added to or subtracted from xn and is allowed to vary from 0 to 1 with
an increment of 0.1 (i.e., A = 0, 0.1, 0.2, . . . , 1).

Consistent with previous observations [110], contaminating time series with a positive
or negative quadratic trend yields effects akin to those induced by a linear trend, albeit with
a more gradual escalation dependent on the time series length. Specifically, introducing
a positive or negative quadratic trend results in the pervasive overestimation of Ĥ when
using both the HK method and the first-order DFA, regardless of persistence (blue and
yellow circles, respectively, in Figures 8 and 9). While this overestimation escalates with the
magnitude of the quadratic trend and the time series length for both methods, the estimate
remains reliable for a time series of length N ∼ 256. Simultaneously, the HK method
and the first-order DFA misclassify anti-persistent time series (H < 0.5) with a length of
N ≥ 512 as persistent in a positive or negative quadratic trend. However, the HK method
accurately estimates Ĥ for more persistent time series (H ≥ 0.7), indicating superior overall
performance when long-range correlated time series are contaminated with a positive or
negative quadratic trend. On the contrary, the second-order DFA consistently results in
an overall overestimation of Ĥ for time series with N ≤ 128. Nevertheless, it surpasses
the HK method in accurately estimating Ĥ for time series with N ≥ 256, regardless of
whether the contamination involves a positive or negative quadratic trend (red circles in
Figures 8 and 9).

2.9. When to Use the HK Process and First- and Second-Order DFA

Figure 10 presents a comprehensive comparison of the Bayesian HK method, first-
order DFA, and second-order DFA in the estimation of the fractal Hurst exponent, Ĥ, under
the influence of various contaminants, such as awGn, fGn, and short-range-correlations,
as well as linear and quadratic positive and negative trends. When dealing with very
short time series, i.e., N ≤ 64, the HK process consistently demonstrates more accurate
estimates of Ĥ than the first- and second-order DFA. This trend persists when the time
series is contaminated with short-range correlations, regardless of the time series length. In
cases involving other contaminants, it becomes evident that second-order DFA outperforms
the HK method and first-order DFA in accurately estimating Ĥ when the time series is
sufficiently long, i.e., N ≥ 256, and is anti-persistent or weakly persistent with significant
contamination. However, if the time series is either uncontaminated or inherently persistent
and only mildly contaminated, the HK process unequivocally surpasses both first- and
second-order DFA in performance for short and long time series alike, providing credence
to our proposal of adopting the HK method over DFA in behavioral science [73].

Nevertheless, there are instances where none of these methods may accurately estimate
Ĥ with sufficient precision—specifically, when Ĥ ∼ H ≤ 0.1. This is predominantly
observed in scenarios with exceptionally brief time series (N ≤ 64) or when the data are
heavily contaminated with short-range correlations and short-term cyclical trends (depicted
as white boxes in Figure 10). Under these circumstances, it is advisable to exercise caution
and consider abstaining from using any of these methods.
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Figure 8. Fractal data contaminated with a positive quadratic trend. Each panel plots the mean estimated
Ĥ using the HK method (blue circles) and DFA1 (yellow circles) and DFA2 (red circles) for 1000 synthetic
time series of length N = 32, 64, 128, 256, 512, 1024 with a priori known values of H to which positive
quadratic trend 0.000005i2 (i = 1, 2, 3, . . . , N) was added with different weights ranging from 0 to
1 with an increment of 0.1. The size of the solid circles indicates the weight of the contaminant.
Note that the curves for different levels of contamination overlap in several instances. The gray line
indicates the ideal case when Ĥ = H. Error bars indicate 95% CI.
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Figure 9. Fractal data contaminated with a negative quadratic trend. Each panel plots the mean estimated
Ĥ using the HK method (blue circles) and DFA1 (yellow circles) and DFA2 (red circles) for 1000 synthetic
time series of length N = 32, 64, 128, 256, 512, 1024 with a priori known values of H to which negative
quadratic trend −0.000005i2 (i = 1, 2, 3, . . . , N) was added with different weights ranging from 0
to 1 with an increment of 0.1. The size of the solid circles indicates the weight of the contaminant.
Note that the curves for different levels of contamination overlap in several instances. The gray line
indicates the ideal case when Ĥ = H. Error bars indicate 95% CI.
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Figure 10. Comparison of the Bayesian HK method, first-order DFA, and second-order DFA in estimating the
fractal Hurst exponent, Ĥ, in the presence of awGn, fGn, short-range-correlations, and linear and quadratic
positive and negative trends. Each panel indicates the method that estimates Ĥ most accurately based
on the mean estimated Ĥ for 1000 synthetic time series of length N = 32, 64, 128, 256, 512, 1024 with a
priori known values of H, to which additive noise, short-range-correlations, or trends were added
with different weights ranging from 0 to 1 with an increment of 0.1 (noise to signal ratio, N

S ). Blue,
yellow, and red squares indicate that the Bayesian HK method, DFA1, or DFA2, respectively, provides
the most accurate estimation of Ĥ. Only those cases for which the difference between the actual and
estimated values, i.e., Ĥ ∼ H ≤ 0.1, are shown; white boxes indicate Ĥ ∼ H > 0.1, suggesting that
none of these methods should be used to estimate Ĥ in these cases.

3. Discussion
Biological and psychological work acknowledges the importance of scrutinizing long-range

temporal correlations to study phenomena [46–53]. Despite recent demonstrations of the fractal
properties in psychological and behavioral variables like mood [54], self-esteem [55], and self-
control [56], explorations of these correlations encounter challenges over time. A comprehensive
understanding of the temporal dynamics in mood disorders bears immense potential for
the refinement of assessment methodologies and diagnostic criteria and the development
of prevention and treatment strategies. Unfortunately, analyzing such data for long-range
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temporal correlations has remained challenging. These challenges result in a large gap between
researchers’ theoretical ambitions and the pragmatic challenges of experimentation, highlighting
the necessity of a method that aids in precisely estimating the fractal exponent with short time
series. This imperative is particularly pronounced in the behavioral sciences, where the data are
often affected by various noise sources. Specifically, the difficulty in analyzing this data type
is its frequent unsuitability for traditional DFA. The data that we come across are usually of
low quality, short, and basic. Making this situation even more challenging is the fact that the
methods typically used to study short time series are known for their accuracy in the long run
but struggle with issues like measurement noise or changes in the data caused by their short
length compared to the characteristic timescales of the processes involved, as well as potential
interference from external signals. We demonstrate that the HK method effectively overcomes
these limitations by providing accurate estimates of the Hurst exponent even for short time
series containing as few as 64 samples. Our findings reveal remarkable alignment between the
Hurst exponent obtained through the HK method and the known Hurst exponent of synthetic
time series with a length as short as 64 samples. This consistency holds despite contaminants
such as awGn, fGn, short-range correlations, and various periodic and non-periodic trends,
particularly in cases where the time series exhibits inherent long-range temporal correlations.
In stark contrast, the first-order DFA consistently yields inaccurate Hurst exponents for both
short time series and those with substantial actual Hurst exponents. However, it is noteworthy
that the second-order DFA outperforms the HK method under specific conditions—namely,
when the time series is sufficiently long (N ≥ 256), characterized by anti-persistence or weak
persistence with significant contamination. Consequently, users must judiciously assess the
extent of contamination in the time series before selecting either the HK method or DFA for
Hurst exponent estimation.

The estimation of the Hurst exponent from empirical data introduces various chal-
lenges that impact accuracy and dispersion—factors such as trends [110,113,114], nonsta-
tionarity [113,115], nonlinearity [116], and instances where the Hurst exponent exceeds
one [59,111,117,118] contribute to this complexity. Consequently, multiple attempts have
been made to enhance the adaptability of the DFA algorithm for empirical data exhibiting
one or more of these challenges [90–96]. Our study bypasses this need and these develop-
ments by demonstrating that the HK method proves robust against these contaminants,
delivering a satisfactory estimation of the Hurst exponent even for time series as short as 64
values. Future investigations could delve into assessing the sensitivity of the HK method to
strong trends, nonstationarity, nonlinearity, and instances of larger-than-one H individually
or in combination. Replicating these findings across simulated and empirical datasets will
be essential, paving the way for a more comprehensive pipeline to objectively determine
whether the HK process or DFA is the preferred choice for Hurst exponent estimation.

In essence, our study brings renewed optimism for those performing complexity
analysis. The inability to effectively identify potential long-range temporal correlations in
short data sequences has constrained a significant portion of behavioral research, relying on
qualitative assessments or self-reports, despite recurring observations of these phenomena
exhibiting self-similar fractal patterns. The outcomes presented herein robustly affirm the
effectiveness of the Bayesian HK method in discerning long-range temporal correlations,
even in extremely short time series, amid the presence of contaminants and trends arising
from unwanted or contextual factors. However, it is crucial to note that the real litmus test
for the Bayesian HK method lies in its application to real-life self-report data. This critical
avenue for future research holds the promise of further cementing the credibility of the
Bayesian HK process, thus propelling its integration into behavioral sciences.
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Appendix A. Code Snippet for the Estimation of the Bayesian Hurst
Exponent Using the HK Method in R

Listing A1 provides the R snippet for the estimation of the Bayesian Hurst exponent of
simulated time series of various lengths with various Hurst values.

Listing A1. R code snippet for estimation of the Bayesian Hurst exponent of a time series.

1 ...
2 # Verify whether the necessary packages have been installed
3 # "fractalRegression" package needed for simulating time series
4 if (!require(fractalRegression)){
5 install.packages('fractalRegression')
6 }
7 # "HKprocess" package needed for computing the Bayesian Hurst exponent
8 if(!require(HKprocess)){
9 install.packages('HKprocess')

10 }
11 # Once installed, load the libraries
12 library(fractalRegression)
13 library(HKprocess)
14 # Simulate time series of various lengths with various Hurst values
15 # NOTE: This algorithm is time−consuming, so save running lots of iterations
16 # until certain about parameter settings
17 iterations = 100
18 hs = seq(0.1, 0.9, 0.1)
19 lengths = c(64, 128, 256)
20 counter = 1
21 out = expand.grid(1:100, hs, lengths)
22 names(out) = c('iteration', 'expected.hurst', 'length')
23 out$Hurst = NA
24 # Run a series of simulations for each of the above parameters. The ...

paramter n in "inferH()" is the number of posterior samples of H. See ...
Mangalam et al., 2023: https://doi.org/10.48550/arXiv.2301.12064.

25 for (i in 1:iterations){
26 for (j in 1:length(hs)){
27 for (k in 1:length(lengths)){
28 temp = fractalRegression::fgn_sim(lengths[k], hs[j])
29 out[counter,] = c(i, hs[j], lengths[k], median(HKprocess::inferH(temp, n = ...

500)))
30 counter = counter + 1
31 }
32 }
33 }
34 library(ggpubr)
35 out$expected.hurst = as.factor(out$expected.hurst)
36 out$length = as.factor(out$length)
37 g = ggpubr::ggline(out, x = 'expected.hurst', 'Hurst', add = c('mean_sd'))
38 print(g)
39 ...
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