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Background: Glycolysis plays significant roles in tumor progression and immune response. However, the 
exact role of glycolysis in prognosis and immune regulation has not been explored in all cancer types. This 
study first calculated a novel glycolysis score and screened out 12 glycolytic hub genes, and comprehensively 
analyzed molecular expression, clinical implications, and immune features of glycolysis among pan-cancer. 
Methods: The glycolysis score was derived by the single sample gene set enrichment analysis (ssGSEA) 
algorithm. The correlations of glycolysis with clinical parameters were analyzed using “limma” package. 
Downstream pathways of glycolysis were identified by Gene Set Enrichment Analysis (GSEA). The immune 
cell infiltration was explored and validated by three databases. The association between glycolysis and some 
immunotherapy biomarkers was explored by Pearson correlation analysis. Single-nucleotide variation (SNV), 
copy number variation (CNV), DNA methylation, and drug sensitivity analyses of 12 glycolytic hub genes 
were investigated. IMvigor210 and GSE91061 immunotherapeutic cohorts were retrieved to assess the 
ability of glycolysis score to predict immunotherapy efficacy. The expression of glycolysis key genes was 
detected in normal and endometrial cancer cell lines. 
Results: We found that glycolysis score was generally higher in tumor tissues compared to normal tissues 
and a high glycolysis score predominated as a risk prognostic factor. A high glycolysis score was associated 
with decreased immunostimulatory natural killer (NK) cells and CD8+ T cells infiltration, well increased 
immunosuppressive M2-tumor-associated macrophages (M2-TAM) cells infiltration. Tumor mutational 
burden (TMB), microsatellite instability (MSI), and immune checkpoints (ICPs) all closely interacted with 
glycolysis score and the frequency of gene mutation was confirmed to be higher in colon adenocarcinoma 
(COAD) patients with higher glycolysis score. The SNV, CNV, and DNA methylation of 12 glycolysis key 
genes occurred at different frequencies and showed different impacts on survival outcomes. The predictive 
and prognostic value of glycolysis score for immunotherapy outcomes was validated in two immunotherapy 
cohorts. The expression levels of key genes differ in normal endometrial and three endometrial cancer cell 
lines. 
Conclusions: This work indicated that glycolysis score and 12 glycolytic hub genes were correlated with 
an immunosuppressive microenvironment. They could be served as promising biomarkers aiding diagnosis, 
predicting prognosis and immunotherapy response for some tumor patients.

2874

https://crossmark.crossref.org/dialog/?doi=10.21037/tcr-23-325


Translational Cancer Research, Vol 12, No 10 October 2023 2853

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(10):2852-2874 | https://dx.doi.org/10.21037/tcr-23-325

Introduction

Background

Glycolysis is a critical pathway of glucose metabolism, 
providing intermediates for cells to generate energy under 
hypoxic conditions. Normally, mitochondrial oxidative 
phosphorylation is the main glucose metabolism pathway 
to satisfy cellular energy demands. On the other hand, 
cancer cells adjust their metabolism to meet the demand 
of biosynthetic energy for their rapid growth, metastasis, 
and proliferation (1). Even under normoxic conditions, 
glycolysis is hyperactive in cancer cells, consuming 
glucose heavily, and producing more lactic acid and less 
adenosine triphosphate (ATP), a phenomenon known as 
the “Warburg effect” (2) or aerobic glycolysis. It is well 
established that cancer is a disease with complex metabolic 
perturbations and metabolic reprogramming is one of the 
hallmarks of cancer cells, especially for aerobic glycolysis (3).  

Previous studies have shown that the transformation 
from oxidative phosphorylation to glycolysis in tumors 
could suppress apoptosis by weakening mitochondrial 
function (4-7). Aerobic glycolysis produces an acidic and 
hypoxic microenvironment that promotes tumorigenesis, 
proliferation, and survival and is positively associated with 
many types of cancer outcomes and clinical prognosis (8,9). 
In addition, increased lactate levels create a suitable acidic 
tumor microenvironment (TME) that induces extracellular 
matrix decomposition and promotes tumor invasion and 
metastasis (10). Thus, glycolysis plays a pivotal role in the 
proliferation, growth, and survival of cancer cells.

Immune evasion is also regarded as an important hallmark 
of cancer, and emerging reports indicate that it is closely 
related to tumor metabolism (11,12). The accumulation of 
lactic acid produced by glycolysis leads to the acidic state of 
the tumor immune microenvironment (TIM), which plays 
an immune suppressive role (12). Meanwhile, the growth of 
tumor cells requires a large amount of energy, which can also 
lead to the low oxygen and low energy state of TIM (13).  
This microenvironment has a great impact on the human 
immune system, which can affect the infiltration and 
functions of immune cells, and promote the immune escape 
of tumor cells (14,15). Currently, tumor immunotherapy 
has become a trending topic. Immune-checkpoint therapy 
is being used for the treatment of diverse cancers, such as 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), 
and programmed cell death protein 1 (PD-1). Nevertheless, 
a large number of patients still have limited or no response 
to current immunotherapy. Moreover, certain genetic 
heterogeneities, such as tumor mutation burden (TMB), 
microsatellite instability (MSI), or single-nucleotide variation 
(SNV) and DNA copy number variation (CNV), have been 
found to be associated with the response to immunotherapy.

Rationale and knowledge gap

An effective cancer therapeutic approach should consider 
multiple factors, including integrate targeting more than 
one hallmark of cancer and genetic alterations. Although 
it is known that glycolysis affects the development of some 
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Highlight box

Key findings
• The abnormal glycolysis score in tumor correlates with clinical 

stage and prognosis. High glycolysis score is strongly associated 
with tumor mutation burden, microsatellite instability, immune 
checkpoints and an immunosuppressive microenvironment 
especially in colon adenocarcinoma. The single-nucleotide 
variation, copy number variation, and DNA methylation of 12 
glycolytic key genes affect their expression level and patients’ 
prognosis. Glycolysis score might predict clinical response to 
immunotherapy. Twelve key genes are aberrantly expressed in 
endometrial cancer cells.

What is known and what is new?
• Glycolysis plays significant roles in tumor survival and progression.
• We comprehensively analyzed molecular expression, clinical 

implications, and immune features of glycolysis score and 12 hub 
genes among pan-cancer.

What is the implication, and what should change now?
• Glycolysis score and glycolytic key genes could be served as 

promising biomarkers aiding diagnosis, predicting prognosis 
and immunotherapy response for some tumor patients. More 
experiments and clinical trials are needed to verify this result.
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tumors, most previous studies have focused on a single 
gene in a certain tumor type. The mechanisms underlying 
the impacts of glycolysis on the progression of tumors, 
prognosis of patients, as well as the association of glycolytic 
genes with tumor immunity have not been systematically 
investigated for all cancer types.

Objective

In this study, we aim to evaluate the glycolysis process in 
33 human cancer types in the form of glycolysis score, and 
to explore the role of glycolysis score in prognosis and 
immune regulation based on multi-omics data. In addition, 
we comprehensively evaluate the genetics and epigenetics 
alterations of 12 glycolysis key genes, and their potential 
impact on prognosis among 33 tumor types, providing an 
overall picture of glycolysis in cancer for future reference. 
We present this study in accordance with the REMARK 
reporting checklist (16) (available at https://tcr.amegroups.
com/article/view/10.21037/tcr-23-325/rc).

Methods

Datasets acquisition and processing

This study was conducted in accordance with the Declaration 
of Helsinki (as revise in 2013). Gene expression data and 
associated clinical data from a total of 11,160 patients for 
33 kinds of tumors, and 712 corresponding normal samples 
were collected from the UCSC XENA database (http://xena.
ucsc.edu/). The RNAseq data from The Cancer Genome 
Atlas (TCGA) were normalized and log2 transformed. 
UCSC XENA database was also available to examine gene 
copy number, methylation, and somatic mutation. The 
glycolysis gene set was defined based on hallmark gene 
sets from MSigDB (http://www.gsea-msigdb.org/gsea/
downloads.jsp). According to the expression of each gene 
in the glycolysis gene set in each sample, the single sample 
gene set enrichment analysis (ssGSEA) was performed 
using the R Gene Set Variation Analysis (GSVA) package 
by calling the gsva function with parameter method =  
“ssgsea”. The ssGSEA score of each sample was then used as 
its glycolysis score.

Differential expression and prognosis analysis

The R package “limma” was used to analyze the differences 
in glycolysis score between tumor and their corresponding 

normal tissues in each cancer type. For prognosis analysis, 
we first used the “survival” and “survminer” R packages 
to automatically calculate the optimal cutoff value of 
glycolysis score in each tumor. Next, patients with different 
tumor types who had complete survival data were divided 
into high-score and low-score groups according to the 
corresponding best cutoff value of glycolysis scores. Kaplan-
Meier (K-M) survival plots were then generated to compare 
the survival time differences. The overall survival (OS) 
time was computed from the date of diagnosis to all-cause 
death, and disease-free survival (DFS) time was defined 
as the interval from to recurrence or death. Furthermore, 
we compared the distribution of glycolysis scores between 
different clinical stages in tumor samples of all cancers.

Gene set enrichment analysis

Pearson correlation analysis was performed to identify genes 
that were positively or negatively correlated with glycolysis 
in tumor datasets. Then, based on pathways acquired from 
the reactome database (https://www.kegg.jp/kegg/pathway.
html), we conducted Gene Set Enrichment Analysis (GSEA) 
by “clusterpofiler” R package to explore the downstream 
pathways of glycolysis.

TME and immune infiltration analysis

To explore the effects of glycolysis on the TME, three 
biological processes connected to TME, which were 
reported by Zeng et al. and utilized by Li et al. (17,18), 
were applied, including immune-related pathways, stromal-
related pathways, and DNA repair-related pathways. 
Subsequently, three diverse approaches were applied for the 
aim of exploring the abundance of infiltrating immune cells 
within 33 cancers. Firstly, immune infiltration data were 
obtained from the Tumor Immune Estimation Resource 
2.0 database (TIMER2.0, http://timer.comp-genomics.
org/) and were analyzed to estimate the relevance between 
glycolysis score and the degree of infiltrating immune cells 
in all TCGA cancers cohorts. Afterwards, we attained the 
immune infiltration data from the ImmuCellAI database 
(http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/) and 
previous published article (19) to revalidate the associations 
between the degree of glycolysis and immune-related cells.

TMB and MSI

We conducted a thorough analysis to explore the 
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connections between glycolysis score and TMB and MSI 
in 33 cancer types. The somatic mutation data (alteration 
frequency and copy number) were derived from the 
UCSC XENA database, and the MSI data were obtained 
and processed using the pipeline described by Bonneville 
et al. (20). Following that, Pearson correlation analyses 
were performed and lollipop diagrams were generated to 
summarize the correlation between glycolysis score and 
TMB and MSI.

Immune checkpoint (ICP) analysis

We obtained the expression data of five well-known ICP-
related genes, including CTLA4, LAG3, CD274, TIGIT, and 
PDCD1, in 33 tumor tissue samples from the TCGA. The 
expression levels of ICP genes and glycolysis score were 
analyzed by the Spearman correlation method. Results were 
shown as circle maps, with green representing negative 
correlation and red representing positive correlation.

Characteristics of molecular-level changes of glycolysis 
genes

SNV, CNV, and methylation data for 33 cancers among the 
studies were retrieved from the Gene Set Cancer Analysis 
(GSCA, http://bioinfo.life.hust.edu.cn/GSCA/#/) (21). 
Correlation analysis was used to explore the correlations 
between CNV and methylation and expression level of 
key genes. Paired t-test was used to identify differential 
methylation between the tumor and normal tissue. Genomic 
data and survival data were subsequently integrated to 
perform survival analysis using the survival R package.

Drug sensitivity analysis

We collected the half-maximal inhibitory concentration (IC50) 
values of small molecules from the GSCA and Genomics 
of Drug Sensitivity in Cancer (GDSC, https://www.
cancerrxgene.org) databases. Combining the drug sensitivity 
data with the mRNA expression profile, Pearson correlation 
analysis was used to examine the correlation between 
glycolysis key genes and IC50 of different drugs. The above 
results were summarized graphically as a heat map.

Predicting response to immunotherapy

Two immunotherapeutic data sets with detailed response 
data and survival information were retrieved to assess the 

ability of glycolysis score to predict immunotherapy efficacy. 
IMvigor210 cohort included patients with metastatic 
urothelial cancer who were treated with anti-programmed 
cell death ligand 1 (anti-PD-L1) agent (atezolizumab) (22). 
GSE91061 dataset acquired from the Gene Expression 
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo) is a 
database of advanced melanoma treated with PD-1 inhibitor 
(nivolumab).

Cell culture and quantitative real-time polymerase chain 
reaction (qRT-PCR)

The human Ishikawa, HEC-1A, KLE endometrial cancer 
cell lines, normal endometrial epithelial cells (EECs) 
were cultured in Dulbecco’s Modified Eagle Medium 
(DMEM) containing 10% fetal bovine serum (Bio-
Channel; Shanghai, China) and 1% (vol/vol) penicillin-
streptomycin. TRIzol reagent (CWBio; Jiangsu, China) 
was used to extract RNA from cells. Then, RNA was 
reverse-transcribed into cDNA using a Hifair II 1st Strand 
cDNA Synthesis Kit (Yeason, Shanghai, China), and 
amplified by real-time PCR assays using Hieff UNICON 
qPCR SYBR Green Mix (Yeason, Shanghai, China). 
GAPDH was used as the internal reference. The primers 
used in this investigation were synthesized by TSINGKE 
Biotechnology (Beijing, China). The relative RNA 
expression level was calculated using the 2−∆∆CT method. 
Three replicate wells were run in each experiment, and the 
experiment was replicated three times.

Statistical analysis

Wilcoxon Rank Sum Test was used to analyze glycolysis 
score differences between groups. Spearman or Pearson 
correlation analysis was used to calculate the correlation 
between glycolysis score and infiltration of immune cells, 
TMB, MSI and drug sensitivity. A log-rank K-M method 
was performed to compare survival outcomes. All data were 
statistically analyzed by R software (version 4.0.3). The 
differences were considered significant at P<0.05 (*), P<0.01 
(**), P<0.001 (***), and P<0.0001 (****).

Results

Glycolysis score showed great differences in pan-cancer

We first performed ssGSEA to calculate the glycolysis score 
for each individuals using the gene expression data. Each 
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Figure 1 Distribution of glycolysis score across pan-cancers.

cancer showed a wide range of glycolysis score, and all 
have some individuals with high glycolysis score (Figure 1). 
Colon adenocarcinoma (COAD) has the highest glycolysis 
score on average across all cancers, whereas acute myeloid 
leukemia (LAML) has the lowest. The glycolysis process 
was generally more active in cancer groups with glycolysis 
score was notably increased in 15 tumor tissues when 
compared with normal tissues, including BLCA, BRCA, 
CESC, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, 
LUAD, LUSC, READ, STAD, THCA, and UCEC (please 
see Appendix 1 for the complete list of the TCGA cancer-
type abbreviations). On the contrary, a lower glycolysis 
score was found in KICH and PRAD patients (Figure 2).

Pan-cancer analysis of the prognostic value of glycolysis 
score

Patients with zero glycolysis score and incomplete survival 
data were filtered out and a total of 9,737 patients were 
included in survival analysis. Then we separated tumor cases 
into high and low glycolysis score groups to investigate 
the relationship between glycolysis score and the clinical 
fate of tumor patients. As Figure 3 demonstrated, high 
glycolysis score was identified to be linked with a poor OS 
in a wide range of tumor types. It was noteworthy that high 
level of glycolysis score did not appear to have a protective 
function in any type of cancer according to our analysis. We 
speculated that this relationship was due to the advanced 
clinical stage, so we further assessed the clinical significance 
of glycolysis score in different cancer clinical stages. The 

results confirmed that glycolysis score was associated with 
tumor stage in 10 tumor types: BLCA (Stage II =130, III 
=140, IV =133), BRCA (Stage I =182, II =617, III =248, IV 
=20), HNSC (Stage I =27, II =82, III =93, IV =316), KICH 
(Stage I =21, II =25, III =14, IV =6), KIRC (Stage I =266, II 
=57, III =123, IV =81), KIRP (Stage I =177, II =25, III =52, 
IV =16), LIHC (Stage I =169, II =86, III =85, IV =5), LUAD 
(Stage I =274, II =122, III =83, IV =26), PAAD (Stage I =21, 
II =147, III =3, IV =4), and THCA (Stage I =283, II =52, 
III =112, IV =55), in which glycolysis score was relatively 
greater as the clinical stage progressed (Figure S1).

Potential biological pathways of glycolysis in carcinogenesis

To uncover the potential  oncogenesis mechanism 
underneath the glycolysis process, we screened out the top 
50 genes that are most relevant to the glycolysis score to 
perform the GSEA. The top 20 related pathways in BLCA, 
COAD, ESCA, HNSC, LGG, and LIHC were presented 
in Figure 4. As shown, among the cancers mentioned above, 
the signaling pathways correlated with glycolysis score-
related genes included the innate immune system, signaling 
by interleukin, cytokine signaling in the immune system, 
adaptive immune system, Class I major histocompatibility 
complex  (MHC) mediated ant igen process ing & 
presentation, MAPK1/MAPK3 signaling, MAPK family 
signaling cascades, and signaling by WNT. Therefore, 
it could be inferred that glycolysis may be involved in 
pathways associated with tumor physiology and play an 
important role in immune regulation.
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Figure 2 Differential profiles of glycolysis score between tumor and normal tissue in pan-cancer based on TCGA and GTEx databases. ns, no 
significance; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression.
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Correlation of glycolysis with the TIM

Together with tumor cells, a large number of immunocytes 
and stromal cells in tumor tissue form the TME, and 
continuous communications between these cells exert pivotal 
functions during the onset and progression of neoplasm 
(23,24). The association between glycolysis gene expression 
levels and the TME-related pathways were examined in 33 
TCGA tumor samples. In the majority of malignancies, the 
glycolysis score was closely associated with TME, except for 
UCS, DLBC, and SARC. The glycolysis score was mainly 
positive with stromal and mismatch repair-related pathways 
in diverse tumor types, however, both positive and negative 
correlations were observed when immune-related pathways 
were analyzed (Figure 5). It is worth noticing that the 
glycolysis score demonstrates a strong positive correlation 
with immune-related pathways, including ICPs, antigen 
processing mechanisms, and CD8+ T effectors in LGG, 
UVM, OV, KICH, LIHC, and COAD.

Considering that glycolysis might play an important 

role in the regulations of TME and immunity, we further 
explored the correlations between glycolysis score and 
the level of immune cell infiltration in the TCGA tumor 
cohorts through three different analytical methods. The 
results from the TIMER2.0 database (Figure 6) showed 
that, overall, glycolysis score was notably positively related 
to the infiltration levels of multiple immune cells including 
tumor-associated macrophages (TAM), cancer-associated 
fibroblast (CAF), and neutrophils lineages. Contrarily, 
negative associations were discovered between glycolysis 
score and B cells, CD8+ T cells, and natural killer (NK) cells 
abundance. Importantly, when other methods were used for 
verifying the above relationship, similar conclusions were 
obtained. Result from a published article and ImmuCellAI 
database was that glycolysis score has a positive association 
with TAM, well negative association with CD8+ T cells and 
NK cells for most cancer types. For instance, the glycolysis 
score was positively correlated with macrophage infiltration 
in BRCA, LGG, LUAD, and STAD in all three datasets. In 
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Figure 3 Kaplan-Meier survival curves for the high and low glycolysis score cohorts in the BLCA, BRCA, CESC, CHOL, ESCA, GBM, HNSC, 
KICH, KIRC, KIRP, LGG, LIHC, LUAD, MESO, PAAD, SARC, SKCM, THYM, UCEC, UCS and UVM.
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BRCA, KIRP, LGG, LUAD, LUSC, STAD, and UCEC, 
glycolysis score was negatively associated with CD8+ T cells 
and NK cells infiltration levels. Collectively, all the above 
results further strengthen the immunosuppressive roles of 
glycolysis in modulating TME.

Correlation of glycolysis score with TMB and MSI

As shown in Figure 7, the association between glycolysis 
score and TMB achieved a significant positive correlation 

in 10 out of 33 cancers. COAD, READ and UCEC had 
relatively high coefficients, while PRAD had the lowest 
coefficients, which indicated that higher glycolysis score 
is related to higher mutation status in COAD, READ, 
and UCEC (particularly COAD), but adversely related to 
lower mutation in PRAD. As for MSI, a highly positive 
correlation with glycolysis score was observed merely in 
KICH, COAD, STAD, and THYM. Of note, COAD 
was the single malignancy in which glycolysis score was 
closely associated with both TMB and MSI through an 
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Figure 4 GSEA enrichment analysis of pathway underneath the glycolysis based on Reactome database. (A-F) The most significant top 20 
pathways in BLCA, COAD, ESCA, HNSC, LGG, and LIHC. Highlighted in red were the pathways related to immune response. GSEA, Gene 
Set Enrichment Analysis.
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overall cohort of tumors. Considering that COAD obtained 
the highest glycolysis scores, it prompted us to make a 
deeper investigation of the mutational landscape in COAD 
patients.

Comparison of mutation frequencies between different 
glycolysis groups in COAD patients

We conducted a thorough analysis of mutation data from the 
TCGA COAD cohort. As demonstrated in Figure 8A,8B,  
the TMB of COAD patients was considerably high with 
277 (98.93%) samples possessing somatic mutations. The 
mutation frequency in the high-score group was higher 
compared to that in the low-score group: in COAD high 
glycolysis score group, the mutation frequencies for the top 
10 genes increased substantially, with all being greater than 
20%, and seven of them greater than 40%. Whereas, in the 

low score group, only four genes had mutation frequencies 
greater than 40%. The mutation of gene TTN, APC, KRAS, 
and TP53 were commonly observed in both groups. A total 
of 12 genes were identified that had significantly different 
mutation frequencies (Figure 8C) and all differentially 
mutated genes were significantly enriched in the high 
glycolysis score cohort.

Correlation of glycolysis score with ICP

ICP genes are tightly linked to immune cell infiltration 
and immunotherapy response (25,26). From the series 
of findings above, we could deduce that the glycolysis 
score was correlated with the level of immune infiltration 
and higher glycolysis score seemed to be associated with 
inhibited immune status in tumor tissues, so we further 
explored whether there was a relationship between 
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Figure 5 The relationship between glycolysis score and TME-relatedp athways. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001E. MT, 
epithelial-mesenchymal transition; TBR, transforming growth factor-β response; TME, tumor microenvironment.
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glycolysis score and the expression of five well-recognized 
checkpoint genes. As the results showed, correlation 
analysis indicated a positive connection between glycolysis 
score and expression of checkpoint genes in diverse cancer 
types, which was more obviously in LGG, OV, UVM, 
KICH, LIHC, and COAD (Figure 9). The glycolysis was 
significantly associated with ICP gene CD274 in LGG, OV, 
and COAD, with TIGIT in KIHC, with LAG3 in UVM and 
KICH, with CTLA4 in OV and KICH, and with PDCD1 
in all cancer types mentioned above. The findings provided 
further evidences that glycolysis score was involved in the 
regulation of the tumor immune response via ICP activity 
modulation.

Somatic alteration landscape of 12 glycolysis key genes 
across pan-cancer

To further investigate the possible mechanism by which 
glycolysis affects patient prognosis, the Gene Expression 
Profiling Interactive Analysis 2.0 (GEPIA2.0) database was 
used to display the correlation between 200 glycolysis genes 
and OS in pan-cancers (Figure S2). The number of tumor 
types in which a gene was regarded as a risk factor was 
subtracted from the number of tumor types in which the 

same gene was a protective factor to obtain a value. Genes 
whose values were greater than or equal to 8 were defined 
as the key genes of glycolysis and were analyzed in the next 
step. Finally, 12 key genes were screened out for following 
up in-depth studies: COL5A1, HMMR, PLOD1, P4HA1, 
GPC1, STC1, SLC16A3, B4GALT2, CDK1, AURKA, TPI1, 
and CENPA.

According to differential expression analysis based on 
the GSCA database, we found glycolysis key genes were 
expressed at a high level in various tumor tissues and 
almost all key genes were over-expressed in BRCA, HNSC, 
KIRC, LUAD, LUSC, and COAD. The SNV analysis 
demonstrated that COL5A1 was the most frequently 
mutated glycolysis gene across all types of human neoplasm, 
with the mutation rate being over 20% (22.22%) in SKCM. 
Additionally, SKCM, UCEC, COAD, and STAD were the 
most prominent hyper-mutated types across all tumor types. 
The mutation frequencies of genes COL5A1, HMMR, 
PLOD1, P4HA1, and GPC1 were relatively high in these 
tumors. According to survival analysis, it is noteworthy 
that BRCA sufferers with COL5A1 mutation seem to have 
a worse OS and STAD sufferers with B4GALT2 mutation 
seem to have a worse progress-free survival compared to 
wild-type suffers. In contrast, the PFS of SKCM suffers 

https://cdn.amegroups.cn/static/public/TCR-23-325-Supplementary.pdf
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Figure 6 Correlation analysis between glycolysis score and infiltrating immune cells. (A) Correlation analysis of glycolysis score with 22 immune 
cell types by TIMER2.0 database. (B) Correlation analysis of glycolysis score with different immune cells according to data from published article. (C) 
Correlation analysis of glycolysis score with different immune cells by ImmuCellAI database. The red squares highlight the relationship between 
glycolysis score and infiltration of macrophages, NK cells, and CD8+ T cells. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. NK, natural killer; 
DC, dendritic cell; NKT, natural killer T cell; MAIT, mucosal-associated invariant T cell; TIMER2.0, Tumor Immune Estimation Resource 2.0. 
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with CDK1 mutant and UCEC suffers with HMMR and 
COL5A1 mutant was better than that of the suffers with 
wild type (Figure 10).

CNVs are the major aberrations that lead to changes in 
gene expression during tumorigenesis and tumor growth. 
Our analysis indicated that glycolysis key genes had 
relatively high CNV frequencies in most cancer types, but 
few copy number alterations occurred in LAML and THCA 
compared with other cancers (Figure 11A). The frequency 
of copy number amplification was generally higher 
than that of copy number deletion, with heterozygous 
amplification as the most common mutation among 12 
key genes, followed by heterozygous deletion. In addition, 

genes TPI1 and AURKA had higher amplification mutation 
frequencies whereas genes PLOD1, STC1, and P4HA1 were 
more likely to have deletion mutation in the pan-cancer 
analysis. The correlation analysis between CNV and mRNA 
expression revealed that CNV was positively connected 
with the expressions level of the majority of glycolysis key 
genes (Figure 11B) across 33 cancer types, especially for 
B4GALT2, TPI1, and AURKA. The exploration of the 
survival association of glycolysis key genes CNV revealed 
that ACC, KIRP, LGG, UCEC, and KICH patients with 
glycolysis genes CNV were more likely to suffer from a 
poor prognosis (Figure 11C).

The abnormal methylation of regulatory regions also 
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Figure 7 Correlation analysis between glycolysis score and TMB and MSI. (A) The glycolysis score was most relevant to TMB in COAD. (B) The 
glycolysis score in KICH, STAD, COAD, and THYM was correlated with MSI. TMB, tumor mutation burden, MSI, microsatellite instability.

contributes to the aberrant expression of tumor genes and 
has a direct impact on both the formation and progression 
of tumors (27,28). Thus, we analyzed the methylation of 
the glycolysis key gene to determine epigenetic regulation. 
The difference in methylation level of key genes between 
normal and tumor tissues was measured first. As shown in 
Figure 12A, hypermethylated genes were more common 
than hypomethylated genes in COAD, PRAD, and 
UCEC subtypes, while in KIRP and LUSC cohorts, there 

were more hypomethylated genes than hypermethylated 
genes. SLC16A3 and P4HA1 were hypomethylated in 
most cancer types, whereas GPC1 and COL5A1 were 
more likely to be hypermethylated. Correlation analysis 
demonstrated that there was a negative correlation 
between gene expression and their methylation level, 
which is more obvious in genes SLC16A3, B4GALT2, 
and COL5A1 (Figure 12B). Survival analysis showed that 
THYM suffers with CDK1 hypermethylation, DLBC 
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Figure 8 The comparison of somatic mutation between high and low glycolysis score group in COAD. (A) Landscape of somatic mutation in 
high glycolysis score COAD subpopulations. Genes are ranked by mutational frequency. (B) Landscape of somatic mutation in low glycolysis score 
COAD subpopulations. Genes are ranked by mutational frequency. (C) Top 12 significantly different mutated genes between two groups were 
displayed in a forest plot. **, P<0.01; ***, P<0.001. 
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suffers with COL5A1 hypermethylation, PCPG suffers with 
GPC1 hypermethylation and UVM suffers with B4GALT2 
hypermethylation seemed to have a shorter survival 
duration (Figure 12C).

Drug sensitivity analysis

Genomic  a l t e ra t ions  p l ay  an  impor tan t  ro le  in 
carcinogenesis, disease progression, as well as resistance, 
and response to targeted therapy. To investigate the role of 
glycolysis genes in chemo- or targeted therapy, we integrated 
drug IC50 data and gene expression profiles of cancer cell 

lines obtained from GSCA database. Correlation analysis 
results showed that the high level of B4GALT2, AURKA, 
GPC1, and PLOD1 were correlated with increasing drug 
resistance to most compounds in both GDSC and CTRP 
databases (Figure 13), indicating patients with the higher 
expression level of these glycolysis genes might exhibit drug-
resistance when treated with these drugs. On the other hand, 
increased expression of CENPA and CDK1 was negatively 
correlated with sensitivity to the majority of drugs, implying 
that patients with high CENPA and CDK1 expression may 
be more susceptible to antitumor treatment and these genes 
may serve as new targets for oncology therapy.
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Figure 9 The relationship between glycolysis score and five well known immune checkpoint genes, including PDCD1, TIGIT, CD274, LAG3, 
and CTLA4, in (A) LGG, (B) OV, (C) UVM, (D) KICH, (E) LIHC, and (F) COAD. Red represents a positive correlation and green represents a 
negative correlation.

HALLMARK_GLYCOLYSIS

C
TL

A
4

LAG3CD274

TIG
IT

PD

CD1

PD

CD1 HALLMARK_GLYCOLYSIS C
TLA

4

LA
G

3

CD274

TIG
IT

PDCD1 HALLMARK_GLYCOLYSIS
C

TLA
4

LA
G

3

CD274

TIG
IT

PDCD1
HALLMARK_GLYCOLYSIS

C
TLA

4

LAG3CD274

TIG
IT

PDCD1
HALLMARK_GLYCOLYSIS
CTLA

4

CD274

TIG
IT

LA
G

3

PDCD1

CTLA4

LA
G

3

CD274

TIG
IT

HALLMARK_GLYCOLYSIS

COAD

−1 1

UVM

−1 1

LIHC

−1 1

OV

−1 1

KICH

−1 1

LGG

−1 1

A

D

B

E

C

F

Glycolysis score predicts response to immunotherapy

Given that the immune checkpoint inhibitors (ICIs), 
represented by anti-PD-1/L1 agents, are the new frontier 
in anti-tumor treatment, we sought to explore whether 
glycolysis score could be used as a predictive biomarker for 
response to immunotherapy. Patients from IMvigor210 and 
GSE91061 datasets undergoing anti-PD-L1 or anti-PD-1 
therapy were used to investigate the relationship between 
the glycolysis score and immune response. As Figure 14A 
demonstrated, the K-M survival analysis revealed that 
in anti-PD-L1 (IMvigor210) cohort, patients with a low 
glycolysis score exhibited markedly clinical benefits and a 
significantly prolonged survival time. Similar OS result was 
observed in the anti-PD-1 (GSE91061) cohort (Figure 14B). 
Furthermore, in both anti-PD1 and anti-PD-L1 cohorts, 
a higher response rate was observed in patients with low 
glycolysis scores compared with those with high glycolysis 

scores (Figure 14C,14D).

Validation of glycolysis key genes mRNA expression in cell 
lines

We validated the mRNA expression level of 12 glycolysis 
key genes in human UCEC (Ishikawa, HEC-1A, KLE) and 
normal endometrial cell lines (EEC) by RT-qPCR. The 
results showed that most of these genes were differentially 
expressed between tumor cells and normal cells (Figure 15). 
Compared to normal endometrial cells, the UCEC cancer 
cell lines showed significant high expression of STC1, 
B4GALT2, B4HA1, CENPA, HMMR, and CDK1. The trend 
for high PLOD1, TPI1, and AURKA expression approached 
but did not reach statistical significance. Contrarily, 
COL5A1 gene expression was significantly downregulated 
in UCEC cell lines.
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Figure 10 SNV analysis of 12 glycolysis key genes in pan-cancer based on GSCA database. (A) Differential expression of 12 glycolysis key genes. 
(B) Landscape of SNV of 12 glycolysis key genes. (C) Survival difference between wild and mutation types. DEGs, differentially expressed genes; 
FDR, false discovery rate; FC, fold change; SNV, single nucleotide variant; freq., frequency; wt, wild type; OS, overall survival; PFS, progression 
free survival; GSCA, Gene Set Cancer Analysis.
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Figure 11 CNV analysis of 12 glycolysis key genes in pan-cancer based on GSCA database. (A) Landscape of CNVs of 12 glycolysis key genes. (B) 
The relationship between CNVs and gene mRNA expression. (C) The effects of CNVs on the prognosis of patients. CNV, copy number variation; 
Hete., heterogeneity; Amp., amplication; Homo., homogeneity; Del., deletion; cor., correlation; FDR, false discovery rate; OS, overall survival; 
PFS, progression free survival; GSCA, Gene Set Cancer Analysis.
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Figure 12 Methylation of 12 glycolysis key genes in pan-cancer based on GSCA database. (A) The difference in methylation degree in 12 glycolysis 
key genes. (B) The relationship between methylation and gene expression. (C) The effects of DNA methylation on the prognosis of patients. FDR, 
false discovery rate; Methy. diff, methylation difference; T, tumor; N, normal; cor., correlation; GSCA, Gene Set Cancer Analysis. 
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Figure 13 The relationship between expression of glycolysis key genes and drug sensitivity. (A) The correlation analysis of expression of glycolysis 
key genes and drug IC50 across cancers based on the GDSC database. (B) The correlation analysis of expression of glycolysis key genes and drug 
IC50 across cancers based on the CTRP database. GDSC, Genomics of Drug Sensitivity in Cancer; FDR, false discovery rate; CTRP, Cancer 
Therapeutics Response Portal; IC50, half-maximal inhibitory concentration.
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Figure 14 Kaplan-Meier survival analysis of the high versus low glycolysis score subgroup in the (A) anti-PD-L1 cohort (IMvigor210 cohort) and (B) 
anti-PD-1 cohort (GSE91061). (C) The proportion of different anti-PD-L1 response statuses in high versus low glycolysis score subgroups from 
the IMvigor210 cohort. (D) The proportion of different anti-PD-L1 response in high versus low glycolysis score subgroups from the GSE91061 
cohort. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; PD-1, programmed cell death protein 1; PD-L1, 
programmed cell death ligand 1.
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Key findings

We explored the profile of the glycolysis score across 
all TCGA tumor types, with COAD was found to score 
highest across pan-cancer. In most tumor types, glycolysis 
score was significantly elevated in tumor tissues compared 
with normal tissues. Patients with high glycolysis score 
also had a relatively high mortality risk than those with 
low score. A high glycolysis score was associated with 

decreased immunostimulatory NK cells and CD8+ T 
cells infiltration, well increased immunosuppressive M2-
TAM cells infiltration. Other immune-related signatures, 
including TMB, MSI and ICPs, were all closely interacted 
with glycolysis score. SNV, CNV, and DNA methylation 
of 12 glycolysis key genes occurred at different frequencies 
and showed different impacts on survival outcomes. 
Furthermore, two immunotherapy cohorts were used to 
valid the predictive and prognostic value of glycolysis score 
for immunotherapy outcomes. Finally, 12 key genes were 
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Figure 15 The expression of 12 glycolysis key genes in the normal endometrial cell and the UCEC tumor cell lines. *, P<0.05; **, P<0.01; ***, 
P<0.001. EEC, endometrial epithelial cell.  

confirmed differentially expressed in normal endometrial 
and three endometrial cancer cell lines.

Strengths and limitations

The current study performed a comprehensive multi-omics 
analysis of the glycolytic process in term of glycolysis score 
and provided an overall picture of glycolysis in pan-cancer 
for future reference. Nevertheless, it should be pointed out 
that this study is a retrospective study based on multiple 
public databases and the above valuable findings are mainly 
based on the results of bioinformatics analysis. These 
conclusions require additional experimental confirmation.

Comparison with similar researches

A body of studies focusing on a specific tumor type have 
revealed that glycolysis-related genes were overexpressed in 
a variety of tumors and were linked with a poor prognosis of 
cancer (29-31). Those results were borne out in our study. 
Previous literatures have indicated that reprogramming of 
glycolysis metabolism could interact with the TME and 
immune reaction and is closely related to the occurrence 
and development of tumors (32,33). Cascone et al. 
demonstrated that the elevated expression of glycolysis-
related genes was associated with poor infiltration and 
impaired tumor cell-killing ability of T cell. Inhibition of 
glycolysis enhanced T cell mediated antitumor immunity 
both in vitro and in vivo (34). However, another study 
including 14 tumor types suggested that highly glycolytic 

tumors tend to present an immune-stimulatory TME with 
a significantly increased ratio between immune-stimulatory 
CD8+ T cells and immune-inhibitory CD4+ regulatory T 
cells (35). In the present pan-cancer analysis, we confirmed 
the immunosuppressive role of glycolysis score: In the 
majority of tumors, the glycolysis score had a negative 
correlation with tumor-antagonizing cells, such as NK cells 
and CD8+ T cells. Contrarily, a positive correlation was 
observed between glycolysis score and the level of TAMs 
infiltration across pan-cancer.

Explanations of findings

It is well established that cells in a living body rely mainly 
on oxidative glucose metabolism for the generation of 
energy. When cells become cancerous, energy generation 
by oxidative phosphorylation of glucose is inefficient 
for the drastically increased demand of tumor cells. As a 
result, the process of glucose metabolism in tumor cells 
are reprogrammed and significantly different from that in 
normal cells (36), which are considered hallmark features of 
the tumor (37). This phenomenon might be responsible for 
the significantly elevated glycolysis score in tumor tissues 
compared with normal tissues. The high glycolysis score is 
associated with poor prognosis in the majority of tumors, 
suggesting glycolysis score deserve more attention for its 
prognostic value.

The TME is the constitutive element in cancer 
immunity (38). Now, it has become increasingly clear that 
TME influences the invasion and metastasis of cancer cells 
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and impacts them as they escape. Considering that glucose 
metabolism as the essential supporter of cancer cell viability 
and malignant processes, it is important to delve a little 
deeper into the involvement of the glycolysis process in 
immune regulation. Our study strongly suggested that the 
glycolysis process played a broad regulatory role in tumor 
immunity and were positively related to some crucial TME-
related pathways.

TAMs are the predominant tumor-infiltrating immune 
cell population within the TME. Most macrophages 
accumulated in the TME are M2 subtypes, which can 
establish an immunosuppressive TME facilitating tumor 
cells to evade immune surveillance and metastasis (39,40). 
NK cells exert an antitumor effect directly by inducing 
the apoptotic death of tumor cells, and/or indirectly by 
recruiting dendritic cells to tumor sites to trigger adaptive 
T cell responses (41). CD8+ T cells are the main effector 
cells that participate in the immune response which can 
recognize and kill tumor cells directly. The decrease in the 
infiltration number of NK cells and CD8+ T cells may also 
assist tumor cells in evading immune destruction. Hence, 
the highly active glycolysis process may participate in tumor 
immune escape and contribute to tumor progression by 
altering immune infiltration, and that perhaps explained 
why patients with high glycolysis score showed worse 
prognosis in terms of tumor immunity.

Immunotherapy represents great signs of progress 
and breakthroughs in cancer treatment (42). TMB 
and MSI are two emerging biomarkers associated with 
immunotherapy response. Currently, it is considered that 
tumor patients with a high TMB are more susceptible to 
ICIs, such as PD-1/PD-L1 inhibition (43,44). Our study 
provided evidence for the underlying associations between 
glycolysis, TMB, and MSI, reflecting that glycolysis score 
was positively correlated with TMB and MSI in COAD, 
STAD, ESCA, and THYM. Among them, the COAD 
cohort attracted our attention for its highest glycolysis 
score and strongest correlation with TMB, which implies 
COAD patients with high glycolysis score may benefit 
more from ICP blockades. We surmised whether COAD 
patients with greater glycolysis score also have higher 
mutation frequency, and we next confirmed this hypothesis 
using mutational analysis. Subsequently, we performed a 
correlation analysis of the glycolysis score with five major 
ICPs. We found that the glycolysis score exhibited positive 
correlations with the expression of immunosuppressive 
checkpoint genes in LGG, OV, UVM, KICH, LIHC, and 
COAD, suggesting that patients with high glycolysis score 

could respond favorably to ICI therapy in these tumor 
types. These results presented above strongly indicated that 
glycolysis score might be considered a useful biomarker for 
predicting the response to immunotherapy in certain cancer 
types, especially in COAD as its positive correlations with 
TMB and expression of ICP molecules. Nevertheless, such 
associations also implied more frequent mutations of genes 
in high glycolysis score patients, which may be another 
reason for their worse survival outcomes.

Among 200 genes included in glycolysis gene set, we 
further screened 12 key genes based on their impact on 
the prognosis of patients. Not only that, SNV, CNV, 
methylation, as well as the effects of these genetic variations 
on gene expression and prognosis were analyzed across 
pan-cancer in depth. Glycolysis key genes mutations were 
frequent in SKCM, UCEC, and COAD, with the highest 
mutation frequency of 22.22%. The mutation of these 
glycolysis key genes may result in differential protein 
expression levels in different cancers. Mutations of glycolysis 
key genes were not related to the survival of patients, except 
for mutated COL5A1 and B4GALT2, which were poor 
prognostic factors in BLCA and STAD, respectively. CNV 
analysis demonstrated that amplification and deletion of 
glycolysis key genes in pan-cancer. We additionally found 
that CNV has a positive effect whereas methylation has a 
negative effect on the mRNA expression level of glycolysis 
genes in different tumors. Generally, according to survival 
analysis of various tumor types, the occurrence of CNV in 
glycolysis key genes was related to worse patient survival 
while hypermethylation in key genes was mainly associated 
with better survival, except hypermethylated CDK1, 
COL5A1, GPC1, and B4GALT2. The phenomenon of 
hypomethylation of genes was observed in a wide variety of 
tumors and has been thought to be an apparently ubiquitous 
feature of cancer (45). Furthermore, pieces of evidence have 
shown that global hypomethylation could be associated with 
poor survival outcomes in tumor patients (46,47). Similar 
conclusions were reached from the present study.

The immunotherapy response was further assessed by 
IMvigor210 and GSE91061 cohorts. Low glycolysis score 
patients had a better prognosis and responded better to 
immunotherapy. These findings highlight the prognostic 
and predictive value of glycolysis score for individualized 
immunotherapy.

Finally, we examined the mRNA expression levels of 
12 glycolysis key genes in human cell lines and confirmed 
the aberrant expression of these genes in UCEC cell lines 
compared to normal endometrial cell lines.
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Implications and actions needed

The glycolysis score might be used as a predictor 
for clinical prognosis and responsiveness to tumor 
immunotherapy to help physicians decide curative strategies 
more efficiently. Further insights into the prognostic and 
immunomodulatory value of glycolysis score and glycolytic 
hub genes require rigorous experimental validation and 
more prospective clinical trials.

Conclusions

The current study comprehensively analyzed molecular 
expression, clinical implications, and immune features 
of glycolysis score and 12 glycolytic key genes in pan-
cancer. The results revealed that glycolysis score differs 
in tumor versus normal tissues and correlates with clinical 
stage and prognosis. Of note, high glycolysis score 
seemed to be strongly associated with TMB and MSI and 
immunosuppressive microenvironment in tumors, especially 
in COAD patients. The genomic alteration profiles of 
12 glycolytic key genes regarding the SNV, CNV, and 
methylation revealed that genomic alterations of these genes 
have effects on their expression level and impact upon the 
prognosis of patients. Our study reveals the potential role 
of glycolysis score and glycolytic key genes as promising 
indicators for the prognosis and immunotherapeutic efficacy 
of cancer patients.
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