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Abstract: In this paper, we report on the design and synthesis of a novel series of quinazoline-
2,4(1H,3H)-dione derivatives as fluoroquinolone-like inhibitors of bacterial gyrase and DNA topoi-
somerase IV to identify and develop antimicrobial agents to prevent bacterial resistance problems.
Their structures were confirmed using spectroscopic analyses (IR, NMR, and EI-MS). The novel
quinazoline-2,4(1H,3H)-dione derivatives were evaluated for their antimicrobial activities against
Gram-positive and Gram-negative bacterial strains using the Agar well diffusion method to study
the antimicrobial activities and compared them with the standard drugs. Most compounds displayed
moderate activity. Among the tested compounds, the most promising compounds 13 and 15 pro-
vided broad bioactive spectrum against Gram-positive and Gram-negative strains compared to the
standard drugs.

Keywords: synthesis; quinazoline; quinazoline-2,4(1H,3H)-dione; antimicrobial; fluoroquinolones

1. Introduction

Nitrogen heterocycles are among the most notable scaffolds for pharmaceuticals,
in which quinazoline is one of those scaffolds that exists in a total of nine U.S. FDA
approved pharmaceuticals. Several reports have revealed that the unique quinazoline
scaffolds possess several and diverse pharmacological activities such as antimicrobial,
antimalarial, anticonvulsant, anti-inflammatory, antihypertensive, cholinesterase inhibitory,
anti-diabetic, and anticancer activities [1]. Among the most important quinazoline fami-
lies are quinazoline-2,4(1H,3H)-dione derivatives, and the various studies have reported
several analogues representing a wide variety of biological activities, for example, antimi-
crobial [2–18], anticancer [19–32], antiplatelet [33], antihypertensive [34], antioxidant [35],
anticonvulsant [36–38], anti-inflammatory [39], phosphodiesterase (PDE) 4 inhibition [40],
5-HT3A receptor antagonist [41], and cyclin-dependent kinase 5 (CDK5) inhibition [42].

Fluoroquinolones, for example, I and II, are fatal and decisive antibacterial agents
to exceedingly control many bacterial diseases [43]. However, many bacterial strains are
resistant to such fluoroquinolone-like compounds [44–46]. Therefore, one way to avoid the
resistance problems is to identify new derivatives to address the resistant mutant. On the
other hand, a comprehensive study proved that quinazoline-2,4(1H,3H)-dione derivatives
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are fluoroquinolone-like inhibitors of bacterial gyrase and DNA topoisomerase IV [5,47]. In
a continuation of our previous work on the synthesis and structural-activity relationships
(SAR) of a novel series of 1,3-disubistituted quinoline derivatives [48] due to the current
need to identify and develop inhibitors to prevent the bacterial resistance. Therefore, we
selected the quinazoline-2,4(1H,3H)-dione scaffold to study and check the substituents’
effect at the same 1- and 3-positions on the quinazoline-dione ring (Figure 1). The most
active compound discovered in our previous work was compound III, as shown in Figure 1.
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2. Results and Discussion
2.1. Chemistry

The structural–activity relationship study of the previous 1,3-disubistituted quinoline
derivatives suggested that the antibacterial activity could be increased by performing
synthetic modification at the 1- and 3-positions, interestingly, the incorporation of the
oxadiazole rings at both positions led to a significantly more potent compound (compd. III,
Figure 1). Therefore, one part of this study aimed to investigate the incorporation of
the same heterocyclic ring at the 1- and 3-positions of the quinazoline-2,4(1H,3H)-dione
scaffold, as depicted in Scheme 1. Appropriately, quinazoline-2,4(1H,3H)-dione (1) was
either commercially available or synthesized from anthranilic acid [49], followed by N-
alkylation with ethyl chloroacetate in stirring dimethyl formamide in the presence of
potassium carbonate at room temperature. The key intermediate 2,2′-(2,4-dioxoquinazoline-
1,3(2H,4H)-diyl)di(acetohydrazide) (3) was afforded via the hydrazinolysis reaction of 2 at
the reflux condition. Alternatively, synthesized from 2,2′-(2,4-dioxoquinazoline-1,3(2H,4H)-
diyl)diacetonitrile (4), the hydrolysis of the respective nitrile groups to afford the acid
derivative 5, was followed by esterification in the presence of sulfuric acid and methanol.
The resulting dimethyl 2,2′-(2,4-dioxoquinazoline-1,3(2H,4H)-diyl)diacetate (6) underwent
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the hydrazinolysis reaction to afford the key intermediate 3 in a good yield of 72%. The
crucial derivative 7 was prepared from dihydrazide 3 by treatment with carbon disulfide
in the presence of potassium hydroxide. Finally, the target compounds 8a and 8b were
synthesized via the alkylation reaction of compound 7 with benzyl chloride or methyl
iodide, respectively. The structure of the synthesized derivatives was confirmed using mass
spectrometry and NMR. The structure of the key intermediate 3 was obviously confirmed
by the 1H-NMR spectrum, which showed the demise of the triplet signals at 1.21 ppm as
well as the multiple signal at 4.17 ppm arising from the two COOEt groups of compound 2.
Moreover, the appearance of signals assignable to the new (CONHNH2) groups at 9.30,
9.21, and 4.27 ppm. The cyclization of compound 3 resulted into compound 7 which was
confirmed by the absence of the last-mentioned signals for (NH & NH2) groups in the
1H-NMR spectrum. Compounds 8a and 8b were confirmed by the appearance of new
signals at 4.44 ppm arising from the new methylene fragments in the 1H-NMR spectrum
for 8a and in parallel with the appearance of a new signal at 2.67 ppm arising from the new
methyl fragments for 8b.
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Scheme 1. The synthesis of the target compounds 3–8.

The key intermediate 3 could provide the opportunity for further novel quinazoline-
2,4(1H,3H)-dione derivatives and have been prepared based on the synthetic producers
displayed in Scheme 2. The reaction of compound 3 with diethyl ethoxymethylenemalonate
or ethyl ethoxymethylene cyanoacetate under the reflux condition in acetic acid affording
the malonate derivative 9a or cyanoacetate derivative 9b as a mixture of E/Z isomers,
respectively. Furthermore, the direct condensation of diacetohydrazide 3 with aromatic
aldehyde benzaldehyde, 2-hydroxybenzaldehyde, or 4-methoxybenzaldehyde to afford
the corresponding arylidene 10a, 10b, or 10c, respectively, as mixtures of E/Z isomers.
Comparably, the condensation reaction with cyclic ketone cyclopentanone, cyclohexanone,
or cycloheptanone afforded the corresponding cycloalkylidene derivatives 11a, 11b, or 11c,
respectively. The structure of the novel products 9a and 9b were confirmed by the demise
of the two –NH2 groups in compound 3 and the appearance of new signals corresponding
to the new methine protons (HN–CH=) at 7.69 and 8.20–8.21 ppm, respectively, in the
1H-NMR spectrum, in addition to the appearance of the characteristic signals of the new
COOEt groups. Compounds 10a, 10b, and 10c were confirmed by the 1H-NMR spectrum,
in which the signals matching to the two amino groups in compound 3 were replaced
by singlet signals assignable to the new Schiff base protons (N=CH–Ar) in the region of
8.12–8.44 ppm, in addition to the new aromatic protons because of the insertion of the
aryl group of the appropriate aldehydes in the range of 6.87–8.36 ppm. Compounds
11a, 11b, and 11c showed signals attributable to the new aliphatic protons as a result of
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the installation of cyclic aliphatic moieties of the appropriate cyclic ketones at the range
1.51–2.68 ppm.
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The reaction of diacetohydrazide 3 with phenyl isocyanate or phenyl isothiocyanate
in ethanol under the reflux condition affords the corresponding disemicarbazide derivative
12a or dithiosemicarbazide derivative 12b in a good yield. Consequently, such derivatives
could be practical as a template for further modifications to synthesize more substituted
analogues at the 1- and 3-positions of the quinazoline-2,4(1H,3H)-dione scaffold, partic-
ularly with hetero cyclic moieties. The triazole, oxadiazole, or thiadiazole derivatives
can be afforded during the cyclization reaction of 12b based on the reaction medium.
The cyclization of the last product 12b in the presence of NaOH under reflux conditions
afforded 1,3-bis((5-mercapto-4-phenyl-4H-1,2,4-triazol-3-yl)methyl)quinazoline-2,4(1H,3H)-
dione (13). Otherwise, the cyclization of the dithiosemicarbazide derivative 12b in the
presence of mercuric oxide HgO under reflux conditions gave 1,3-bis((5-(phenylamino)-
1,3,4-oxadiazol-2-yl)methyl)quinazoline-2,4(1H,3H)-dione 14a while the cyclization via
stirring at 0 ◦C in the presence of sulfuric acid provided 1,3-bis((5-mercapto-4-phenyl-4H-
1,2,4-triazol-3-yl)methyl)quinazoline-2,4(1H,3H)-dione 14b. On the other hand, disemicar-
bazide derivative 12a was easily intermolecular-cyclized, either with 2-chloroacetonitrile
or ethyl bromoacetate in the presence of anhydrous sodium acetate in absolute ethanol,
and provided compounds 15 and 16, respectively, in a very good yield (Scheme 3). Com-
pounds 12a and 12b were confirmed by 1H-NMR, in which the signals corresponding to the
(NH2) protons in compound 3 were replaced by signals assignable to the new (CONHPh
or CSNHPh) protons at the range of 9.30–11.00 ppm and the new aromatic protons at the
range of 7.19–8.10 ppm. The cyclization of compound 12b afforded compound 13, which
was confirmed by the absence of signal (CSNHPh) protons with the appearance of new
typical signals of the (SH) proton at 13.79 ppm. Compounds 14a and 14b were confirmed
by the absence of singlet signals at the range of 9.41–11.00 ppm, which was related to
the (NHNHCSNH) protons and by the presence of new singlet signals at the range of
10.44–10.53 ppm related to (NHPh) in the 1H-NMR spectrum. Similarly, compounds 15 and
16 were confirmed by the absence of singlet signals at the range of 8.32–10.09 ppm, which
was related to the (NHNHCONH) protons and by the presence of new signal at 4.25 ppm,
which was related to the new (NH2) group for compound 15, and new signals at 4.52 and
4.72 ppm, which were related to the new (–OCH2CO) groups for compound 16.
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2.2. Antibacterial Activity

The antimicrobial activities of the synthesized compounds were examined against
some targeted pathogenic microorganisms obtained from the American Type of Culture
Collection (ATCC; Rockville, MD, USA). The compounds were evaluated for antimicrobial
activity against Staphylococcus aurous ATCC-47077 (St.), Listeria monocytogenes ATCC-35152
(List.), Escherichia coli ATCC-25922 (E.C.), Salmonella typhi ATCC-15566 (Salm.), and Candida
albicans ATCC-10231 (C. Alb.) [50,51]. The stock cultures of pathogens used in this study
were maintained on nutrient agar slants at 4◦. The Agar well diffusion method was
employed to study the antimicrobial activities according to the method described by
Kheiralla et al. [52] and Abdelhameed et al. [53] in which the zone of inhibition for the
tested compound was measured by a ruler to determine its size (in mm) and compared
with that produced by the reference antibacterial drugs ampicillin and vancomycin. The
minimum inhibitory concentration (MIC) calculation of the synthesized compounds was
also performed according to a slightly modified previous method [54,55] in which the
MIC was defined as the concentration at which the bacteria and yeast did not show visible
growth with respect to the positive control.

The synthesized intermediate 3 and compound 9b both showed no activity against
most of the tested Gram-positive and Gram-negative strains, except for the Candida albicans
strain, which is quite sensitive to those derivatives with an inhibition zone value of 11 mm
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and MIC value of 80 mg/mL, and so more effective than the reference antibacterial drug
ampicillin. Compounds 13 and 15 gave broad bioactive spectrum against Gram-positive
and Gram-negative strains in which compound 13 with triazole moieties at the 1- and
3-poisitions of the quinazoline-2,4-dione backbone showed moderate activity with a mea-
sured inhibition zone value of 9 mm against the Staphylococcus aurous strain when compared
with the reference antibacterial drugs ampicillin and vancomycin. It also showed a specific
activity against the Escherichia coli strain with inhibition zone values of 15 mm and MIC
value of 65 mg/mL, which are equipotent to the reference drugs. Compound 13 signifi-
cantly inhibited the growth of the Candida albicans strain with an inhibition zone value of
11 mm, and surpassed the efficacy of the reference antibacterial drug ampicillin. It was
worthwhile to note that compound 15 showed moderate activities against Staphylococcus
aurous, Escherichia coli, and Candida albicans strains with inhibition zone values in the range
of 10–12 mm and MIC values of 80, 75, and 77 mg/mL, respectively. On the other hand, the
synthesized quinazoline-2,4-dione derivatives 14a and 14b with oxadiazole and thiadiazol
moieties at the 1- and 3-poisitions of the quinazoline backbone could effectively inhibit
the growth of Staphylococcus aurous and Candida albicans strains in which both compounds
exhibited moderate activity against Staphylococcus aurous with inhibition zone values of
12 and 13 mm and MIC values of 70 and 75 mg/mL, respectively. The Candida albicans
strain was quite sensitive to compound 14a with an inhibition zone value of 12 mm, which
was more effective than the standard drug ampicillin, as depicted in Table 1.

Table 1. The antimicrobial activity as the inhibition zone value (IZ mm) and minimum inhibitory
concentration (MICs mg/mL) for the synthesized compounds against Staphylococcus aurous, Listeria
monocytogenes, Escherichia coli, Salmonella typhi, and Candida albicans strains.

Sample S. aureus L. monocytogenes E. coli S. typhi C. albicans
MICs mg/mL,

(IZ mm)
MICs mg/mL,

(IZ mm)
MICs mg/mL,

(IZ mm)
MICs mg/mL,

(IZ mm)
MICs mg/mL,

(IZ mm)

Control: DMSO 0.0 0.0 0.0 0.0 0.0
3 >100 >100 >100 >100 80 (11)
7 >100 >100 >100 >100 >100

8a >100 >100 >100 >100 >100
8b >100 >100 >100 >100 >100
9a >100 >100 >100 >100 >100
9b >100 >100 >100 >100 80 (11)
10a >100 >100 >100 >100 >100
10b >100 >100 >100 >100 >100
10c >100 >100 >100 >100 >100
11a >100 >100 >100 >100 >100
11b >100 >100 >100 >100 >100
11c >100 >100 >100 >100 >100
12b >100 >100 >100 >100 >100
13 90 (9) >100 65 (15) >100 80 (11)

14a 75 (12) >100 >100 >100 75 (12)
14b 70 (13) >100 >100 >100 90 (9)
15 80 (11) >100 75 (12) >100 77 (10)
16 >100 >100 >100 >100 >100

Ampicillin (25) (20) (16) (19) (9)
Vancomycin (14) (15) (15) (17) (15)

In this context and concerning the structure–activity relationship (SAR), the synthesized
compounds 13, 14a, 14b, and 15 indicated that the integration of triazole (compound 13),
oxadiazole (compound 14a), thiadiazole (compound 14b), or oxazole (compound 15) across
different linkers at position N-1 and N-3 of the quinazoline nucleus was essential for antimicro-
bial activity. It is worthwhile mentioning that our previous work that included the synthesis
and SAR of a novel series of 1,3-disubistituted quinoline derivatives [49] concluded the same
results. Therefore, molecular hybridization via incorporating these moieties (triazole, oxadia-
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zole, thiadiazole or oxazole) and others in the 1,3-positions of the quinoline or quinazoline
nucleus might be thought to attain more potent antibacterial compounds.

3. Experimental

General Methods: All solvents and reagents were of analytical grade. The reactions
were monitored by aluminum oxide thin layer chromatography TLC (silica gel 60F254,
Merck, Darmstadt, Germany). Melting points were determined and were uncorrected
on a melting point apparatus (Stuart Scientific, Stone, Staffordshire, UK). Mass spectra
were measured on a GC MS-QP 1000 EX Mass Spectrometer (Shimadzu, Tokyo, Japan).
NMR spectra were carried out with a 300 MHz at Cairo University with 400 MHz at Ulm
University, Germany. Chemical shifts (δ) are reported in parts per million (ppm) relative
to the respective solvent as the internal standard and the standard abbreviations were
used. The required starting material 1 was prepared by adopting the earlier reported
procedures [40]. Compounds 2, 3, 4, and 5 were known before and explored in scientific
research [56,57].

The spectral data for the target compounds are shown in the Electronic Supple-
mentary Materials.

3.1. Diethyl 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)diacetate (2)

A mixture of 1 (1.0 g, 6.2 mmol) and potassium carbonate anhydrous (K2CO3) (1.7 g,
12.4 mmol) in dimethylformamide (DMF) (10 mL) was stirred for about 15 min at room
temperature. Then, ethyl chloroacetate (1.5 g, 12.4 mmol) was added. The reaction mixture
was stirred for 24 h at room temperature, poured onto ice water, and the solid product
was collected by filtration, washed with water, and dried to give 2 (1.5 g, 73%) as a white
powder; m.p. 118–120 ◦C; 1H-NMR (400 MHz, DMSO-d6) δ 1.21 (t, J = 7.07 Hz, 6H, 2(-CH3)),
4.17 (q, 4H, 2(-CH2-CH3)), 4.72 (s, 2H, -CH2-), 4.99 (s, 2H, -CH2-), 7.37 (t, J = 7.05 Hz, 1H,
Ar-H), 7.45 (d, J = 8.21 Hz, 1H, Ar-H), 7.80 (t, J = 6.92 Hz, 1H, Ar-H), 8.11 (d, J = 8.66 Hz,
1H, Ar-H) ppm. M.S (EI, m/z, 70 eV): Calcd. = 334.33 and Found = 335.2 [M+ + 1].

3.2. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)di(acetohydrazide) (3)

A mixture of 2 (1.0 g, 3.0 mmol) and hydrazine hydrate (0.3 g, 6.0 mmol) in a 25 mL
one-necked flask was dissolved in (10 mL) absolute ethanol. The mixture was heated
under reflux for 9 h, subsequently, the solvent was concentrated under high vacuum. The
resulting precipitate was filtered off, washed with ethanol, and dried to give 3 (0.8 g, 88%)
as a white powder; m.p. 262–264 ◦C; 1H-NMR (400 MHz, DMSO-d6) δ 4.27 (br.s, 4H,
2(-NH2)), 4.52 (s, 2H, -CH2-), 4.74 (s, 2H, -CH2-), 7.24 (d, J = 8.76 Hz, 1H, Ar-H), 7.33
(t, J = 6.98 Hz, 1H, Ar-H), 7.76 (t, J = 7.01 Hz, 1H, Ar-H), 8.06 (d, J = 8.59 Hz, 1H, Ar-H),
9.21 (s, 1H, -NH-), 9.30 (s, 1H, -NH-) ppm. 13C-NMR (100 MHz, DMSO-d6) δ 42.62, 45.03,
115.07, 122.99, 127.89, 135.29, 140.40, 150.45, 161.03, 165.88, 166.17, 169.87 ppm.

3.3. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)diacetonitrile (4)

A mixture of 1 (1.0 g, 6.2 mmol) and potassium carbonate anhydrous (K2CO3) (1.7 g,
12.4 mmol) in DMF (10 mL) was stirred for about 15 min at room temperature. Then,
chloroacetonitrile (0.94 g, 12.4 mmol) was added. The reaction mixture was stirred for
24 h at room temperature, poured onto ice water, where the solid product was collected by
filtration, washed with water, and dried to give 4 (1 g, 68%) as an off white powder; m.p.
208–210 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 4.94 (s, 2H, -CH2-), 5.33 (s, 2H, -CH2-), 7.42
(t, J = 6.95 Hz, 1H, Ar-H), 7.63 (d, J = 8.68 Hz, 1H, Ar-H), 7.89 (t, J = 7.05 Hz, 1H, Ar-H),
8.12 (d, J = 8.22 Hz, 1H, Ar-H) ppm. M.S (EI, m/z, 70 eV): Calcd. = 240.22, Found = 240.05,
240.95 [M+], 241.95 [M+ + 1], 242.95 [M+ + 2].

3.4. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)diacetic acid (5)

A mixture of 4 (1.0 g, 4.2 mmol) and diluted hydrochloric acid (1:1) (10 mL) was
refluxed for 9 h, then the reaction mixture was cooled. The solid form was filtered off,
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washed with water, and dried to give 5 (1.0 g, 87%) as a yellow powder; m.p. 226–228 ◦C;
1H-NMR (300 MHz, DMSO-d6) δ 4.62 (s, 2H, -CH2-), 4.89 (s, 2H, -CH2-), 7.34 (t, J = 8.76 Hz,
1H, Ar-H), 7.41 (d, J = 8.59 Hz, 1H, Ar-H), 7.78 (t, J = 6.97 Hz, 1H, Ar-H), 8.09 (d, J = 8.75 Hz,
1H, Ar-H) ppm.

3.5. Dimethyl 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)diacetate (6)

A mixture of 5 (1.0 g, 3.6 mmol) in methanol (10 mL) and the catalytic amount of conc.
sulfuric acid were refluxed for 6 h. The reaction mixture was cooled to form a solid that
was filtered off, washed with water, and dried to give 6 (0.8 g, 73%) as a white powder;
m.p. 122–124 ◦C; 1H-NMR (300 MHz, DMSO-d6) δ 3.71 (s, 6H, 2(-CH3-), 4.73 (s, 2H, -CH2-),
5.01 (s, 2H, -CH2), 7.37 (t, J = 7.04 Hz, 1H, Ar-H), 7.46 (d, J = 8.66 Hz, 1H, Ar-H), 7.80
(t, J = 7.12 Hz, 1H, Ar-H), 8.11 (d, J = 8.80 Hz, 1H, Ar-H) ppm.

3.6. 1,3-Bis((5-mercapto-1,3,4-oxadiazol-2-yl)methyl)quinazoline-2,4(1H,3H)-dione (7)

To a solution of potassium hydroxide (0.74 g, 13.2 mmol) in ethanol/water (7 mL/7 mL)
were hydrazide 3 (2.0 g, 6.6 mmol) and carbon disulfide (1.0 g, 13.2 mmol) added. The
reaction mixture was heated under reflux for 8 h, and subsequently, the solvent was
concentrated under high vacuum before adding water and acidified with conc. hydrochloric
acid. The formed solid was filtered off, washed with water, and the obtained compound
was further purified by crystallizing from ethanol and dried to give 7 (1.9 g, 75%) as a
white solid; m.p. 180–182 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ 5.23 (s, 2H, -CH2-), 5.50
(s, 2H, -CH2-), 7.39 (t, J = 6.95 Hz, 1H, Ar-H), 7.64 (d, J = 8.59 Hz, 1H, Ar-H), 7.84 (t,
mboxemphJ = 8.76 Hz, 1H, Ar-H), 8.11(d, J = 8.81 Hz, 1H, Ar-H) ppm. M.S (EI, m/z, 70 eV):
Calcd. = 390.39, Found = 392.30 [M+ + 2].

3.7. General Procedure for the Synthesis of 8a and 8b

A mixture of 7 (0.3 g, 0.8 mmol) and K2CO3 (0.22 g, 1.6 mmol) in DMF (3 mL) was
stirred for about 30 min at room temperature. Then, benzyl chloride or methyl iodide
(0.8 mmol) was added. The reaction mixture was stirred for 24 h at room temperature,
poured onto ice water, and the solid product was collected by filtration and the obtained
compounds were further purified by crystallizing from ethanol.

3.7.1. 1,3-Bis((5-(benzylthio)-1,3,4-oxadiazol-2-yl)methyl)quinazoline-2,4(1H,3H)-dione (8a)

Yield (0.32 g, 74%) as a white solid; m.p. 126–128 ◦C; 1HNMR (500 MHz, DMSO-d6) δ
4.44 (s, 4H, 2(-CH2-)), 5.36 (s, 2H, (-SCH2-)), 5.63 (s, 2H, (-SCH2-)), 7.22 (t, J = 7.07 Hz, 1H,
Ar-H), 7.31–7.36 (m, 10H, Ar-H), 7.60 (d, J = 9.88 Hz, 1H, Ar-H), 7.83 (t, J = 7.06 Hz, 1H,
Ar-H), 8.13 (d, J = 8.99 Hz, 1H, Ar-H) ppm.

3.7.2. 1,3-Bis((5-(methylthio)-1,3,4-oxadiazol-2-yl)methyl)quinazoline-2,4(1H,3H)-dione (8b)

Yield (0.3 g, 94%) as a white solid; m.p. 178–180 ◦C; 1H-NMR (400 MHz, DMSO-d6) δ
2.67 (s, 6H, 2(-CH3)), 5.37 (s, 2H, -CH2-), 5.63 (s, 2H, -CH2-), 7.39 (t, J = 7.04 Hz, 1H, Ar-H),
7.64 (d, J = 8.87 Hz, 1H, Ar-H), 7.83 (t, J = 7.08 Hz, 1H, Ar-H), 8.13 (d, J = 8.66 Hz, 1H, Ar-H)
ppm. 13C-NMR (100 MHz, DMSO-d6) δ 14.42, 36.19, 38.65, 114.75, 115.11, 123.95, 128.39,
136.10, 139.44, 149.91, 160.60, 162.99, 163.33, 164.83, 165.39 ppm.

3.8. General Procedure for the Synthesis of 9a and 9b

To a solution of 3 (0.2 g, 0.7 mmol) in absolute ethanol (2 mL), diethyl ethoxymethylen-
emalonate or ethyl ethoxymethylene cyanoacetate (1.4 mmol) was added and the reaction
mixture was refluxed for 20 h. The reaction mixture was cooled to reach room temperature,
poured into ice water, then the solid product was collected by filtration and washed with
ethanol to give 9a and 9b, respectively.
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3.8.1. Tetraethyl 2,2′-(((2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(acetyl))bis(hydrazine-
2,1-diyl))bis(methanylylidene))dimalonate (9a)

Yield (0.3 g, 71%) as a white solid; m.p. 128–130 ◦C; 1H-NMR (500 MHz, DMSO-d6)
δ 1.16–1.21 (m, 12H, 4(-CH3)), 4.00 (q, 2H, -CH2CH3), 4.01–4.23 (m, 4H, 2(-CH2CH3)), 4.2
(q, 2H, -CH2CH3), 4.65 (s, 2H,-CH2-), 4.88 (s, 2H, -CH2-), 7.35 (t, J = 6.92 Hz, 1H, Ar-H),
7.69 (s, 2H, 2(-CH=)), 7.71 (d, J = 8.66 Hz, 1H, Ar-H), 7.8 (t, J = 7.08 Hz, 1H, Ar-H), 8.08 (d,
J = 8.59 Hz, 1H, Ar-H), 10.06 (s, 1H, -NH-), 10.09 (s, 1H, -NH-), 11.04 (s, 1 H, -NH-), 11.06 (s,
1H, -NH-) ppm. M.S (EI, m/z, 70 eV): Calcd. = 646.61, Found = 648 [M+ + 2].

3.8.2. Ethyl-2-cyano-3-(2-(2-(1-(2-(2-(-2-cyano-3-ethoxy-3-oxoprop-1-en-1-yl)hydrazinyl)-
2-oxoethyl)-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetyl)hydrazinyl)acrylate (9b)

Yield (0.3 g, 83%) as a white solid; m.p. 158–160 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ
1.26 (t, J = 6.95 Hz, 6H, 2(-CH3)), 4.22 (q, 4H, 2(-CH2CH3)), 5.38 (s, 2H, -CH2-), 5.64 (s, 2 H,
-CH2-), 7.39 (t, J = 7.02 Hz, 1H, Ar-H), 7.65 (d, J = 8.66 Hz, 1H, Ar-H), 7.75 (t, J = 7.07 Hz,
1H, Ar-H), 7.89 (s, 1H, -CH=), 7.92 (s, 1H, -CH=), 8.1 (d, J = 8.77 Hz, 1H, Ar-H) ppm. M.S
(EI, m/z, 70 eV): Calcd. = 552.50, Found = 553 [M+ + 1], 554 [M+ + 2].

3.9. General Procedure for the Synthesis of Compounds 10a, 10b, 10c, 11a, 11b, and 11c

A mixture of 3 (0.2 g, 0.7 mmol) and aldehyde or ketone (1.4 mmol) in absolute ethanol
(10 mL) in the presence of five drops of piperidine, the reaction mixture was refluxed for
16 h. The formed solid was filtered off and dried. The obtained compounds were further
purified by crystallizing from ethanol.

3.9.1. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-(-benzylidene)acetohydrazide) (10a)

Yield (0.25 g, 81%) as a white solid; m.p. 320–322 ◦C; 1H-NMR (500 MHz, DMSO-d6)
δ 5.10 (s, 2H, -CH2-), 5.36 (s, 2H, -CH2-), 7.34–8.1 (m, 14H, Ar-H), 8.2 (s, 1H, -N=CH-),),
8.21 (s, 1H, -N=CH-), 11.77 (s, 1H, -NH-), 11.89 (br.s, 1H, -NH-) ppm. M.S (EI, m/z, 70 eV):
Calcd. = 482.50, Found = 482.10 [M+].

3.9.2. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-(-2 hydroxybenzylidene)acetohydrazide)
(10b)

Yield (0.29 g, 88%) as a white solid; m.p. 312–314 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ
5.07 (s, 2H, -CH2-), 5.33 (s, 2H, -CH2-), 6.87–8.36 (m, 12H, Ar-H), 8.41 (s, 1H, -N=CH-), 8.44
(s, 1H, -N=CH-), 10.05 (br.s, 1H, -NH-), 10.95 (br.s, 1H, -NH-), 11.68 (br.s, 1H, -OH), 11.95
(br.s, 1H, -OH) ppm. M.S (EI, m/z, 70 eV): Calcd. = 514.50, Found = 514.10 [M+], 515.10
[M+ + 1], 516.10 [M+ + 2].

3.9.3. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-(-4-methoxybenzylidene)acetohydrazide)
(10c)

Yield (0.3 g, 86%) as a yellow solid; m.p. 310–312 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ
3.79 (s, 6H, 2(-CH3)), 5.08 (s, 2H, (-CH2-)), 5.33 (s, 2H, (-CH2-)), 6.98–8.1 (m, 12H, Ar-H),
8.12 (s, 1H, -N=CH-), 8.15 (s, 1H, -N=CH-), 11.60 (br.s, 1H, -NH-), 11.68 (br.s, 1H, -NH-)
ppm. M.S (EI, m/z, 70 eV): Calcd. = 542.55, Found = 542.10 [M+], 543.10 [M+ + 1], 544.10
[M+ + 2].

3.9.4. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-cyclopentylideneacetohydrazide)
(11a)

Yield (0.22 g, 79%) as a white solid; m.p. 236–238 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ
1.67–1.71 (m, 4H, 2(-CH2-)), 1.75–1.78 (m, 4H, 2(-CH2-)), 2.28–2.37 (m, 8H, 4(-CH2-)), 4.90
(s, 2H, -CH2-), 5.15 (s, 2H, -CH2-), 7.25 (d, J = 7.91 Hz, 1H, Ar-H), 7.32 (d, J = 8.12 Hz, 1H,
Ar-H), 7.75 (d, J = 8.24 Hz, 1H, Ar-H), 8.06 (t, J = 7.05 Hz, 1H, Ar-H), 10.37 (s, 1H, -NH-),
10.49 (s, 1H, -NH-) ppm. M.S (EI, m/z, 70 eV): Calcd. = 438.49, Found = 438.10 [M+], 439.10
[M+ + 1], 440.10 [M+ + 2].
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3.9.5. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-cyclohexylideneacetohydrazide)
(11b)

Yield (0.25 g, 83%) as a white solid; m.p. 278–280 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ
1.51–1.69 (m, 12H, 6(-CH2-)), 2.21–2.41 (m, 8H, 4(-CH2-)), 4.93 (d, J = 8.66 Hz, 2H, -CH2-),
5.17 (s, 2H, -CH2-), 7.27 (t, J = 7.05 Hz, 1H, -Ar-H), 7.32 (d, J = 8.72 Hz, 1H, Ar-H), 7.75 (t,
J = 6.95 Hz, 1H, Ar-H), 8.06 (d, J = 8.59 Hz, 1H, Ar-H), 10.51 (s, 1H, -NH-), 10.75 (s, 1H,
-NH-) ppm. M.S (EI, m/z, 70 eV): Calcd. = 466.54, Found = 466.15 [M+], 467.15 [M+ + 1],
468.20 [M+ + 2].

3.9.6. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-cycloheptylideneacetohydrazide)
(11c)

Yield (0.29 g, 91%) as a white solid; m.p. 290–292 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ
1.53–1.63 (m, 16H, 8(-CH2-)), 2.30–2.68 (m, 8H, 4(-CH2-)), 4.93 (s, 2H, -CH2-), 5.17 (s, 2H,
-CH2-), 7.26 (d, J = 8.68 Hz, 1H, Ar-H), 7.32 (t, J = 7.12 Hz, 1H, Ar-H), 7.69–7.78 (m, 1H,
Ar-H), 8.06 (d, J = 8.55 Hz, 1H, Ar-H), 10.39 (s, 1H, -NH-), 10.50 (s, 1H, -NH-) ppm. M.S (EI,
m/z, 70 eV): Calcd. = 494.60, Found = 494.10 [M+], 495.10 [M+ + 1], 496.10 [M+ + 2].

3.10. General Procedure for the Synthesis of Compounds 12a and 12b

In a 25 mL one-necked flask, a mixture of 3 (1.0 g, 3.3 mmol) and phenylisothiocyanate
or phenylisocyanate (6.6 mmol) was dissolved in absolute ethanol (10 mL). The reaction
mixture was heated to reflux for 10 h and the formed solid was filtered off and washed
with ethanol to give 12a or 12b.

3.10.1. 2,2′-(2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(acetyl))bis(N-phenylhydrazine-1-
carboxamide) (12a)

Yield (1.5 g, 85%) as a white solid; m.p. 248–250 ◦C; 1H-NMR (400 MHz, DMSO-d6)
δ 4.52 (s, 2H, -CH2-), 4.74 (s, 2H, -CH2-), 6.95 (t, J = 6.96 Hz, 1H, Ar-H), 7.15–7.25 (m, 5H,
Ar-H), 7.26–7.34 (m, 5H, Ar-H), 7.48 (d, J = 8.84 Hz, 1H, Ar-H), 7.76 (t, J = 7.08 Hz, 1H,
Ar-H), 8.08 (d, J = 8.77 Hz, 1H, Ar-H), 8.32 (br.s, 1H, -NH-), 8.58 (br.s, 1H, -NH-), 8.6 (br.s,
1H, -NH-), 9.21 (s, 1H, -NH-), 9.30 (s, 1H, -NH-), 10.09 (br.s, 1H, -NH-) ppm. 13C-NMR
(100 MHz, DMSO-d6) δ 42.61, 45.03, 114.49, 115.06, 118.14, 122.23, 122.98, 127.77, 128.66,
135.28, 140.06, 150.41, 161.03, 165.87, 166.07 ppm. M.S (EI, m/z, 70 eV): Calcd. = 544.18,
Found = 545.04 [M+ + 1].

3.10.2. 2,2′-(2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(acetyl))bis(N-phenylhydrazine-1-
carbothioamide) (12b)

Yield (1.8 g, 96%) as a white solid; m.p. 270–272 ◦C; 1H-NMR (400 MHz, DMSO-d6)
δ 4.77 (s, 2H, -CH2-), 4.98 (s, 2H, -CH2-), 7.19 (d, J = 8.59 Hz, 2H, Ar-H), 7.34–7.38 (m, 5H,
Ar-H), 7.45–7.52 (m, 5H, Ar-H), 7.79 (t, J = 6.96 Hz, 1H, Ar-H), 8.10 (d, J = 8.80 Hz, 1H,
Ar-H), 9.41 (br.s, 1H, -NH-), 9.70 (br.s, 1H, -NH-), 9.76 (br.s, 1H, -NH-), 9.82 (br.s, 1H, -NH-),
10.41 (s, 1H, -NH-), 11.0 (br.s, 1H, -NH-) ppm. 13C-NMR (100 MHz, DMSO-d6) δ 42.69,
44.79, 114.49, 114.56, 115.08, 123.29, 125.11, 127.81, 128.15, 135.49, 138.93, 138.97, 140.08,
150.52, 161.04, 166.60 ppm. M.S (EI, m/z, 70 eV): Calcd. = 576.14, Found = 576.99 [M+ + 1].

3.11. 1,3-Bis((5-mercapto-4-phenyl-4H-1,2,4-triazol-3-yl)methyl)quinazoline-2,4(1H,3H)-dione (13)

A mixture of 12b (0.4 g, 0.7 mmol) was added gradually with stirring to a solution
of sodium hydroxide (2N, 5 mL). The mixture was heated to reflux for 11 h, after that,
the reaction mixture was cooled and acidified with 2 N hydrochloric acid. The resulting
precipitate was filtered off, washed with water, and the obtained compound was further
purified by crystallizing from ethanol and dried to give 13 (0.3 g, 81%) as a white solid;
m.p. 140–142 ◦C; 1H-NMR (400 MHz, DMSO-d6) δ 4.23 (s, 2H, -CH2-), 4.29 (s, 2H, -CH2-),
6.51–6.60 (m, 2H, Ar-H), 7.34–7.37 (m, 1H, Ar-H), 7.45–7.46 (m, 3H, Ar-H), 7.50–7.52 (m,
7H, Ar-H), 8.58–8.62 (m, 1H, Ar-H), 13.79 (br.s, 2H, 2(-SH)) ppm. 13C-NMR (100 MHz,
DMSO-d6) δ 34.83, 44.23, 111.42, 114.48, 115.31, 117.76, 127.98, 128.43, 129.40, 132.57, 133.47,
147.80, 148.31, 149.75, 167.98, 168.73, 171.78 ppm.
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3.12. 1,3-Bis((5-(phenylamino)-1,3,4-oxadiazol-2-yl)methyl)quinazoline-2,4(1H,3H)-dione (14a)

To a solution of 12b (0.4 g, 0.7 mmol) in methanol (4 mL), mercuric oxide (0.3 g, 1.4
mmol) was added. The resulting mixture was heated under reflux conditions for 6 h. The
precipitated mercuric sulfide was filtered off and washed several times with hot methanol.
On cooling, the filtrate gave a solid product, which was filtered, washed with methanol,
and dried to give 14a (0.2 g, 57%) as a white solid; m.p. 160–162 ◦C; 1H-NMR (500 MHz,
DMSO-d6) δ 5.32 (s, 2H, -CH2-), 5.57(s, 2H, -CH2-), 6.95 (t, J = 7.11 Hz, 1H, Ar-H), 7.28–7.31
(m, 4H, Ar-H), 7.40 (t, J = 6.96 Hz, 2H, Ar-H), 7.49–7.51 (m, 4H, Ar-H), 7.7 (d, J = 8.78 Hz,
1H, Ar-H), 7.85 (t, J = 7.13 Hz, 1H, Ar-H), 8.1 (d, J = 8.63 Hz, 1H, Ar-H), 10.47 (s, 1H, -NH-),
10.53 (s, 1H, -NH-) ppm. M.S (EI, m/z, 70 eV): Calcd. = 508.50, Found = 508.25 [M+], 509.20
[M+ + 1], 510.20 [M+ + 2].

3.13. 1,3-Bis((5-(phenylamino)-1,3,4-thiadiazol-2-yl)methyl)quinazoline-2,4(1H,3H)-dione (14b)

The 12b (0.4 g, 0.7 mmol) was added gradually and carefully with stirring to ice-cooled
conc. sulfuric acid (10.5 mL) over 10 min. At 0 ◦C, the reaction mixture was stirred for 6
h and carefully poured onto ice water. The solid separated out was filtered off, washed
with water, and the obtained compound was further purified by crystallizing from ethanol
and dried to give 14b (0.25 g, 68%) as off white solid; m.p. < 360 ◦C; 1H-NMR (400 MHz,
DMSO-d6) δ 5.43 (s, 2H, -CH2-), 5.62 (s, 2H, -CH2-), 7.38 (t, J = 7.07 Hz, 1H, Ar-H), 7.51-7.58
(m, 10H, Ar-H), 7.70 (d, J = 8.66 Hz, 1H, Ar-H), 7.84 (t, J = 7.02 Hz, 1H, Ar-H), 8.13 (d,
J = 8.59 Hz, 1H, Ar-H), 10.44 (br.s, 2H, 2(-NH-)) ppm. 13C-NMR (100 MHz, DMSO-d6)
δ 40.12, 42.38,114.94, 116.45, 123.63, 126.59, 128.21, 135.83, 139.34, 140.66, 141.58, 150.06,
154.28, 160.67, 165.27 ppm. M.S (EI, m/z, 70 eV): Calcd. = 540.12, Found = 541.20 [M+ + 1].

3.14. General Procedure for the Synthesis of Compounds 15 and 16

A mixture of 12a (0.4 g, 0.8 mmol) and chloroacetonitrile or ethyl bromoacetate (1.6 mmol)
in (4 mL) absolute ethanol containing anhydrous sodium acetate (0.26 g, 3.2 mmol) was heated
under reflux for 12 h and 16 h, respectively. The reaction mixture was cooled, diluted with
water, and allowed to stand overnight. The solid precipitate was filtered off, washed
with water, and the obtained compounds were further purified by crystallizing from
ethanol/acetone (8:2) and dried to give 15 and 16, respectively.

3.14.1. N′-(-4-Amino-3-phenyloxazol-2(3H)-ylidene)-2-(1-(2-(2-(-4-amino-3-phenyloxazol-2(3H)-
ylidene)hydrazinyl)-2-oxoethyl)-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetohydrazide (15)

Yield (0.35 g, 78%) as an off white solid; m.p. 232–234 ◦C; 1H-NMR (400 MHz, DMSO-
d6) δ 4.25 (br.s, 4H, 2(-NH2)), 4.52 (s, 2H, -CH2-), 4.74 (s, 2H, -CH2-), 6.95 (t, J = 6.93 Hz, 1H,
Ar-H), 7.24–7.26 (m, 5H, Ar-H), 7.28–7.31 (m, 5H, Ar-H), 7.49 (d, J = 8.57 Hz, 1H, Ar-H),
7.78 (t, J = 7.06 Hz, 1H, Ar-H), 8.06 (d, J = 8.77 Hz, 1H, Ar-H), 8.79 (s, 2H, 2(-CH-)), 9.21 (s,
1H, -NH-), 9.29 (s, 1H, -NH-) ppm. 13C-NMR (100 MHz, DMSO-d6) δ 42.61, 45.03, 114.45,
115.07, 118.41, 121.76, 122.98, 127.77, 128.55, 135.28, 139.68, 140.06, 150.41, 155.99, 161.03,
165.87, 166.07 ppm. M.S (EI, m/z, 70 eV): Calcd. = 622.20, Found = 623.11 [M+ + 1].

3.14.2. 2-(2,4-Dioxo-1-(2-oxo-2-(2-(-4-oxo-3-phenyloxazolidin-2-ylidene)hydrazinyl)ethyl)-1,4-
dihydroquinazolin-3(2H)-yl)-N′-(-4-oxo-3-phenyloxazolidin-2-ylidene)acetohydrazide (16)

Yield (0.3 g, 67%) as a white solid; m.p. 234–236 ◦C; 1H-NMR (400 MHz, DMSO-
d6) δ 4.22 (s, 2H, -CH2-), 4.28 (s, 2H, -CH2-), 4.52 (s, 2 H, -OCH2-), 4.74 (s, 2H, -OCH2-),
6.94 (t, J = 7.03 Hz, 1H, Ar-H), 7.22–7.26 (m, 5H, Ar-H), 7.31–7.34 (m, 5H, Ar-H), 7.49 (d,
J = 8.76 Hz, 1H, Ar-H), 7.78 (t, J = 6.78 Hz, 1H, Ar-H), 8.06 (d, J = 8.57 Hz, 1H, Ar-H), 9.21 (s,
1H, -NH-), 9.29 (s, 1H, -NH-) ppm. 13C-NMR (100 MHz, DMSO-d6) δ 42.60, 45.02, 114.64,
115.06, 118.40, 121.73, 122.97, 127.76, 128.58, 135.27, 139.70, 140.05, 150.44, 156, 160.96, 161.02,
165.99, 166.15, 169.84 ppm. M.S (EI, m/z, 70 eV): Calcd. = 624.17, Found = 625.06 [M+ + 1].
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4. Biological Methods
Antibacterial Assay

The stock cultures of pathogens used in this study were maintained on nutrient agar
slants at 4◦. The reference antibacterial drugs ampicillin and vancomycin were evaluated for
their antibacterial and antifungal activities and compared with the synthesized compounds.
Seventy microliters of bacterial and yeast cells (106 CFU/mL) of each pathogen were spread
on the nutrient agar plates. The wells (6 mm diameter) were dug in the inoculated agar
plates and 100 µL of the tested compound in DMSO (100 mg/mL) was added to the wells.
The reference antibiotic disks (10 µg/disk of ampicillin and 30 µg/disk of vancomycin)
were potted onto the surface of agar inoculated plates. Before incubation, the plates were
allowed to stand for 2 h at 4 ◦C to allow for diffusion. Subsequently, the plates were
incubated for 24 h at 37 ◦C, except for the yeast strain, which was incubated for 24 h at
28 ◦C. Next, we applied the measurement of the diameter of the inhibition zone (mm) and
three replicates were averaged [58].

MIC calculation: The MIC was defined as the concentration at which the bacteria
and yeast do not show visible growth with respect to the positive control. Serial dilutions
were prepared of the tested compounds dissolved in DMSO. In each well of the 96 well
microtiter plate, a 150 µL of double strength Mueller Hinton broth medium was loaded
followed by 150 µL of the 2-fold appropriate concentration, and mixed well to obtain
the final concentration. Overnight broth cultures of the tested bacterial and yeast strains
prepared as an inoculum of 5% (V/V) (OD = 0.5 McFarland standard) was inoculated
into the respective wells. For the positive-growth control, the same inoculum size of each
test strain was inoculated in wells that did not contain any of the tested compounds. The
DMSO solution was tested as the negative control. The plates were statically incubated
at 37 ◦C for 24 h. A total of 30 µL of resazurin solution (0.18%) was added to each well
to act as an electron acceptor and was reduced to a pink, red, or purple resorufin colored
product by active microorganisms (i.e., the inhibition of bacterial growth was appearing as
a dark blue well and the presence of growth was detected by the presence of a pink, red, or
purple color).

5. Conclusions

In conclusion, a series of novel quinazoline-2,4(1H,3H)-dione derivatives were de-
signed and synthesized by installing different moieties into in the 1- and 3-positions
of the quinazoline nucleus and their structures were determined based on the spectral
data. The synthesized compounds generally showed moderate or no activity against
the tested strains Staphylococcus aurous, Listeria monocytogenes, Escherichia coli, Salmonella
typhi, and Candida albicans in comparison with the reference drugs ampicillin and van-
comycin. Among the tested compounds, 1,3-bis((5-mercapto-4-phenyl-4H-1,2,4-triazol-
3-yl)methyl)quinazoline-2,4(1H,3H)-dione (13) and N′-(-4-amino-3-phenyloxazol-2(3H)-
ylidene)-2-(1-(2-(2-((E)-4-amino-3-phenyloxazol-2(3H) ylidene)hydrazinyl)-2-oxoethyl)-2,4-
dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetohydrazide (15) generally exhibited better and
broad bioactive spectrum against Gram-positive and Gram-negative strains. For our further
studies, derivatives 13 and 15 were selected as promising leads to synthesize more selective
derivatives to generate more effective antibacterial agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27123853/s1; 1H- and 13C-NMR spectral data of com-
pounds 3–16.
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