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ABSTRACT: In recent years, the time-dependent variational principle (TDVP)
method based on the matrix product state (MPS) wave function formulation has
shown its great power in performing large-scale quantum dynamics simulations
for realistic chemical systems with strong electron−vibration interactions. In this
work, we propose a stochastic adaptive single-site TDVP (SA-1TDVP) scheme to
evolve the bond-dimension adaptively, which can integrate the traditional
advantages of both the high efficiency of the single-site TDVP (1TDVP) variant
and the high accuracy of the two-site TDVP (2TDVP) variant. Based on the
assumption that the level statistics of entanglement Hamiltonians, which originate
from the reduced density matrices of the MPS method, follows a Poisson or
Wigner distribution, as generically predicted by random-matrix theory, additional
random singular values are generated to expand the bond-dimension automati-
cally. Tests on simulating the vibrationally resolved quantum dynamics and absorption spectra in the pyrazine molecule and perylene
bisimide (PBI) J-aggregate trimer as well as a spin-1/2 Heisenberg chain show that it can be automatic and as accurate as 2TDVP
but reduce the computational time remarkably.

KEYWORDS: time-dependent variational principle, time-dependent density-matrix renormalization-group, singular value decomposition,
random-matrix theory

Based on a linear-chain matrix product state (MPS)
representation for the many-body wave function with

the advantages of high compression and local structure, the
time-dependent variational principle (TDVP) approach1,2 as a
time evolution method for MPS (for other approaches, see refs
3−9) has been shown to be a powerful tool for simulating the
quantum dynamics and spectroscopy of large realistic chemical
systems with electron−vibration (electron−phonon) interac-
tions.10−19

In MPS-TDVP simulations, there are several types of errors,
namely the projection error of projecting Ĥ|ψ⟩ onto the
tangent space of the given MPS |ψ⟩, the truncation error in
tensor singular value decomposition (SVD), and the Krylov

and time step error for the evolution operation of − ̂
 Hton |ψ⟩.3

The most widely used single-site TDVP (1TDVP) is
symplectic and accordingly has zero truncation error, but the
bond-dimension m of the time-evolving MPS via 1TDVP
cannot increase to accommodate entanglement increasing with
time. In many cases, numerous test calculations need to be
performed for a given task to test the convergence with respect
to the bond-dimension m and obtain a suitable value of m for
1TDVP simulation. However, it may be quite tedious and
expensive, especially for realistic complicated systems. To
overcome this disadvantage, one can resort to two-site TDVP
(2TDVP). Compared to 1TDVP, 2TDVP can adaptively
increase the bond-dimension m and has a smaller projection

error but a nonzero truncation error. Generally, 2TDVP will be
more accurate and robust but less efficient than 1TDVP.
Therefore, the current TDVP calculations of strongly
correlated large systems always face a dilemma: it is difficult
to balance the accuracy and robustness of 2TDVP and the
computational efficiency of 1TDVP, especially for simulations
of vibronic problems, in which the size of local Hilbert spaces
can be very large.
To break the above bottleneck, Yang and White20 recently

suggested a method to increase the bond-dimension of 1TDVP
dynamically via temporarily creating an MPS representation of
the current time-evolved state by expanding the MPS to
represent both the current state and a sequence of Krylov
vectors generated from it. Utilizing the benefit of the expanded
manifold coming from this representation, the subsequent
1TDVP time step becomes more accurate and reliable. In
addition, Dunnett and Chin21 also proposed an autonomously
adaptive variant of 1TDVP to capture the growing
entanglement “on the fly”. To ensure that the local bond-
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dimension m can evolve, they utilized full QR factorization
instead of the normally used thin or reduced QR factorization in
updating the MPS local tensors. To measure the convergence
behavior with increasing bond-dimension m, the norms of the
effective Hamiltonian applied to their respective MPS site
tensors are evaluated.
In this Letter, we propose a stochastic adaptive 1TDVP

method to evolve the bond-dimensions automatically, which is
computationally efficient without any additional tensor
operations. This method is based on the statistical distribution
law of tensor SVD singular values λ (i.e., the square root of
eigenvalues of the left or right subsystem’s reduced density
matrix) in the MPS decomposition. It is well-known that the λ
spec t rum shows a c lea r exponent i a l decay as
λ ≈ − × nexp( const ln )n

2 for the nth singular value in generic
gapped one-dimensional systems, implying a linear relationship
between the logarithmic singular values (sn ≡ log(λn)) and nln2

.22 However, quantitative deviations from this relationship have
been observed for large m,23,24 preventing the use of this
property to estimate the necessary m value for a predetermined
sufficiently small truncation threshold ε. There is, however,
more information available: one can derive a so-called
entanglement Hamiltonian25−30 from the reduced density
operator ρ of an MPS as Ĥen = −log ρ. Its eigenvalues (energy
levels) are, up to a constant factor of no further importance,
the sn ≡ log(λn); their level spacings (or first-order differ-
entials) are then given by Δsn = sn+1 − sn, and their second-
order differentials are given by Δ2sn = Δsn+1 − Δsn. We assume
here that, in general, entanglement Hamiltonians exhibit the
same level spacing statistics as many-body Hamiltonians do.
There, one finds that the level spacings are distributed
according to a Poisson distribution as arises for randomly
distributed eigenvalues in the case of integrable systems and
according to a Wigner distribution in the case of nonintegrable
systems, as a result of random-matrix theory.31−33 This implies
certain distributions (exponential and quasi-Gaussian) for the
second-order differentials Δ2sn = Δsn+1 − Δsn (see the
Supporting Information), whose parameters are fitted from
the spectrum of the reduced density operators. Using these
distributions, we can estimate the small singular values in
TDVP. The tests on simulating the vibrationally resolved
quantum dynamics and absorption spectra in the pyrazine
molecule and perylene bisimide (PBI) J-aggregate trimer as
well as spin-1/2 Heisenberg chain show that this can be
automatized and be as accurate as 2TDVP but save a lot of
computational time.
To analyze the singular value distribution behavior in real-

time TDVP simulations, we take a 4-mode exciton−vibration
model for the pyrazine molecule34 as an example
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Here, the three terms describe the electronic and vibrational
parts as well as their interactions, respectively. aî

† and aî
represent the creation and annihilation operators of electronic
state i, while εij denotes the onsite energy of state i (i = j) or
the electronic coupling between state i and state j (i ≠ j). b̂K

†

and b̂K are the raising and lowering operators for vibration
mode K, while ωK is the vibrational frequency of mode K. gij

K is

the coupling between vibrational mode K and the electronic
Hamiltonian term. Due to the small number of the degrees of
freedom in this model, we can perform an exact 2TDVP
simulation (total time 4000 au, the time step is 20 au) without
any SVD truncation errors to avoid discarding small singular
values. The computational details can be found in the
Supporting Information. Then, we extract the singular values
{λn} on each bond at different time steps and show the
logarithms of singular values sn versus nlog2 for two example
SVDs with large bond-dimensions within short/long time
ranges across multiple entanglement regimes in Figure 1a,b.

There are obvious linear correlations for large sn, i.e., a small
n, but the linear relationship breaks down for a smaller sn (i.e.,
large n). This agrees with previous findings in grand canonical
ensembles and Ising models23,24 and can be ascribed to the
increasing degree of energetic degeneracy of higher excited
states. However, interestingly, we find that sn’s second-order
differentials (Δ2sn) fulfill an exponential (eq 2) or quasi-
Gaussian (eq 3) distribution, as shown in Figure 1c,d.
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This is related to random features in the vanishingly small
singular values and the analogy between the occurrence of sn’s
first-order difference and inhomogeneous Poisson process or
Wigner distribution (see the Supporting Information for
detailed discussion). It should be also noted that the
exponential/quasi-Gaussian distribution behavior of the
second-order differentials of logarithms of singular values
may be generic for other model Hamiltonians, such as the spin-

Figure 1. Singular value distribution versus log2n at (a) bond 4−5 at a
time point of 300 au and (b) bond 6−7 at a time point of 2000 au.
The red and green lines are fittings by = − × α+y nconst log1 1/ with
α = 1 for the largest 10 singular values and all singular values,
respectively. Distributions of all the second-order differentials (c) at
bond 4−5 during time range of 0−300 au and (d) at bond 6−7
during time range of 0−2000 au with exponential and quasi-Gaussian
fittings.
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1/2 Heisenberg model and Fermi−Hubbard model, as we
show in Supplementary Figures S3 and S5.
Now, we utilize the above exponential/quasi-Gaussian

distribution behavior to implement the bond-dimension
evolution in our stochastic adaptive 1TDVP (SA-1TDVP)
method. First, we recall the MPS wave function

∑ψ σ σ σ| ⟩ = | ⟩
σ σ σ

σ σ σM M M... ... N
...

1 2

N

N

1 2

1 2

(4)

where σi represents the local d-dimensional basis on site i and
N is the total number of sites. M(Mαi−1,αi

σi ) are rank-3 tensors,
where αi represents the MPS bond-dimension index linking
site i and site i + 1. To optimize the MPS wave function with a
finite value of m for the maximal bond-dimension, one needs to
update Mσi tensors successively. In the ith step of a 1TDVP
left-sweep, only the tensor M on single site i is updated during
the time evolution. In a standard 1TDVP, a reduced SVD is
then performed for the (dm × m)-dimensional M[i] (Mσiαi−1,αi

)

=[ ] †M USVi (5)

Here, the (dm × m)-dimensional matrix U has orthogonal
columns, S contains the m singular values, and square (m ×
m)-dimensional V† has orthogonal rows. To further run the
time evolution at site i + 1 and optimize Mσi+1 in the right-
direction sweeping process, M[i] is then replaced by U, and SV†

is contracted into M[i+1]. Because the number of nonzero
singular values in S is always no more than m, the bond-
dimension of Mσi will not exceed m. In order to increase the
bond-dimension to describe the growing entanglement
adequately, we extend the reduced SVD in eq 5 to
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where the block Uex is constituted from Δm new column
vectors. Gram−Schmidt orthogonalization is performed for the
new randomly generated vectors in Uex with respect to the
matrix U from reduced SVD, while the whole matrix U U( )ex is
still column orthogonal but with a shape of (dm × (m + Δm)).
In the language of MPS, the columns in Uex represent the
newly added bases in (left) subspace. The subspace expansion
is realized by random generation and the subsequent Gram−
Schmidt orthogonalization. O is a block filled with 0. Note that
if the sweep direction is reversed, one needs to extend the
matrix V† instead.
To determine the column size Δm of Uex, we adopt a

stochastic growth algorithm. The detailed SA-1TDVP
algorithm for updating the bond-dimension of site i at an
evolved time step then works as

(1) Try 2TDVP for the initial T (∼20−50) time steps and
save all the second-order difference values existing on
each bond. Use the least-square method (using mean-
square error as the cost function) to fit their
distributions by exponential/quasi-Gaussian lines (eqs
2 and 3, respectively) to get the parameter value for β.
Here, we assume that β does not have a significant
change during time evolution after the few initial steps,
which is supported by Supplementary Figure S7. Then,
the fitting will be performed only once, and the time cost
of fitting is negligible compared to the TDVP
calculation.

(2) Perform a reduced SVD on (dm × m)-dimensional site
tensor M[i] and obtain nonzero singular values {λn}n≤m
and matrices U, V†. Set N = m.

(3) Generate a new random number Δ2sN satisfying the
above exponential/quasi-Gaussian distributions with the
parameter β obtained from fitting and then calculate
λN+1 from λN−1, λN, and Δ2sN.

(4) If the new estimated singular value λN+1 > λN or λN+1 < ε,
exit the stochastic iteration process and go to step 5;
otherwise add λN+1 to {λn}n≤N and set N ← N + 1; then,
go back to step 3.

(5) Set mnew = N and build mnew − m new columns of U (for
left-sweep) or N rows of V† (for right-sweep) to update
M[i].

Our approach for growing m adaptively avoids the additional
and computationally costly operation of applying the
Hamiltonian operator to the MPS, whose complexity is
O(m3wd + m2w2d),3 where w represents the bond-dimension
of the matrix product operator (MPO). Moreover, as shown in
eqs 5 and 6, the extension of the basis will not change the MPS
itself, which is crucial for time evolution and is not fulfilled by
those perturbative methods suggested for static single-site
density-matrix renormalization-group (DMRG) calcula-
tions.35,36 We now first test the SA-1TDVP method by using
the 4-mode pyrazine model. We compare the performances of
convergence and accuracy of conventional TDVP and our

method in Figure 2. The autocorrelation function C(t) is
defined as

ψ ψ= ⟨ | ⟩C t t( ) (0) ( ) (7)

Here, |ψ(t)⟩ is the MPS at time t. Because the number of
degrees of freedom in this model is small, we can perform an
exact 2TDVP simulation with no truncation error, and we take
this as a reference. It is shown that one can obtain very
accurate results using SA-1TDVP with an SVD truncation
cutoff ε of 10−8. The two different distribution formulas

Figure 2. Results for the 4-mode pyrazine model from SA-1TDVP (T
= 50) and conventional 2TDVP methods. (a) The absolute
correlation function from conventional 2TDVP and SA-1TDVP. (b)
The error of correlation functions, measured by the absolute value of
differences between them with those by exact 2TDVP. (c) The time
cost of the SA-1TDVP and 2TDVP. (d) The increase of the max
bond-dimension of SA-1TDVP and 2TDVP.
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(exponential and quasi-Gaussian) give very similar perform-
ances. Figure 2b demonstrates that the error of time
correlation functions for SA-1TDVP is of similar order of
magnitude as the cutoff in the entire time evolution of this
model. One may notice the slight increase of SA-1TDVP’s
errors at long-time limit. This inefficiency may be caused by
the fact the added random vectors in SA-1TDVP are
nonoptimized and will be more likely orthogonal to the
physically relevant renormalized states from 2TDVP when m is
large. Figure 2c further shows that with the same cutoff value
SA-1TDVP costs 90% less time than 2TDVP. At the same
time, as a stochastic algorithm, SA-1TDVP is found to generate
nearly the same bond-dimension as 2TDVP as shown in Figure
2d. In this particular case, the speedup of the two distributions
is essentially the same, but this is a peculiarity. The efficiency
gain for SA-1TDVP over 2TDVP was also found for the tests
of the Heisenberg model (see Supplementary Figure S4),
where the quasi-Gaussian distribution shows a slightly better
performance than the exponential one, saving 84 and 75%
computational time when compared with 2TDVP respectively.
We now switch to the 24-mode pyrazine model37 to show

the performance of SA-1TDVP in larger systems. MPSs with
different bond-dimensions in conventional 1TDVP are
obtained from a 1 au preliminary 2TDVP calculation. For
SA-1TDVP, all dynamics starts from an m = 10 MPS. We find
that one can obtain nearly converged results using SA-1TDVP
with a decreasing SVD truncation cutoff ε, as shown in Figure
3a. From Figure 3b, one can find that in the long-time range,

the error of SA-1TDVP does not increase much because of the
adaption of bond-dimensions in the latter, as illustrated in
Figure 3d. From Figure 3c,d we find that the small change of
cutoff may cause different behaviors. This is because a finite
cutoff and relatively large bond-dimension result in a dense
sequence so that one can find many singular values in a small
interval. Other computational details can be found in the
Supporting Information.
Finally, we test the calculation of the absorption spectra of

24-mode pyrazine and PBI trimer models38,39 and compare our
SA-1TDVP results with other accurate 2TDVP and multi-
configuration time-dependent Hartree (MCTDH)40 calcula-
tions in Figure 4. The SA-1TDVP results are in good
agreement with accurate methods. Our method reproduces

the details successfully, such as the small oscillations in Figure
4a and the relative magnitudes of peaks in Figure 4b. This
implies that SA-1TDVP provides an efficient and automatic
computational tool for the full quantum dynamics simulation
of realistic chemical problems.
In conclusion, we observe an exponential/quasi-Gaussian

distribution behavior for the second-order differentials of
logarithmic singular values in DMRG and TDVP simulations
for the first time, which can be ascribed to the Poisson or
Wigner distribution of Δsn. We propose an SA-1TDVP
algorithm based on this distribution behavior to perform
subspace expansion of MPS randomly and adaptively during
the time evolution. We compare the accuracy and efficiency of
our method in Heisenberg and exciton−vibration interaction
models with conventional 2TDVP and 1TDVP as well as
MCTDH. The tests on simulating the vibrationally resolved
quantum dynamics and absorption spectra in the pyrazine
molecule and PBI trimer show that it can be automatic and as
accurate as 2TDVP but increase the computational efficiency
significantly. The automatic adaption means that SA-1TDVP
has the advantage of being able to avoid tedious tests of trying
different bond-dimensions repeatedly in conventional 1TDVP.
It is also worth to mention that this strategy can be easily
incorporated in any time-dependent DMRG (tDMRG) code if
there are SVD steps. For these reasons, SA-1TDVP provides an
efficient, accurate, and user-friendly tool for quantum dynamics
simulations of large strongly correlated systems.
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